You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Europe could teach America a thing or two about interconnection.

As the invasion of Ukraine raged last year, all eyes were on Europe’s power grid. Gas prices skyrocketed, Scandinavia’s water levels fell, and France’s trusty nuclear power plants went offline. It was a test of whether the world’s most interconnected energy grid could keep the lights on under extreme stress — and Europe passed. Today, as increasingly volatile weather patterns wreak havoc on infrastructure, the grid is proving to be more important than ever.
“Climate change is going to make us rely on the grid more,” Michael Pollitt, a professor of economics at Cambridge and an expert in energy economics, told me. “It’s not just gas price effects across Europe, it’s low water years and low wind years that will have impacts everywhere.”
This summer’s extreme heat could have been the next greatest threat to the power grid following the invasion of Ukraine. But instead, the stresses posed by recent weather have shown the strength of Europe’s power grid, proving the importance of interconnection in an era of global warming.
Europe’s power grid is made up of a series of interconnected localized grids. The primary one is the continental grid, where about 15% of the continent’s energy is traded across borders every year. This grid serves 400 million consumers across 24 countries, including most of the European Union countries, plus the Balkans and Turkey. These 24 countries are also connected to several other grids: the Nordic grid, the British grid, the Irish grid, and, as of August this year, the Baltic grid. Those additions bring electricity to more than 600 million consumers. In addition, there are discussions about connecting North Africa’s power grid, and especially Morocco, which would provide a rich source of solar energy.
Each country invests in what they do best: Norway champions hydropower, France has nuclear power plants, the U.K. invests in wind turbines, Spain does solar, etc. And each one can sell the excess energy to the grid to assist other countries. When water levels are low in the summer months, Norway relies on countries like Spain, who have ample power from their solar fields. In the cloudier winter months, Norway returns the favor. There is a call for faster progress on interconnection and transmission to make this into an even more reliable “Super Grid.”
This tool provides an interactive map of the grid today, and the expected changes up until 2040.
This single market allows for an energy security not seen in the United States, which has several disconnected state or regional grids with much more limited interconnection. This not only restricts the distribution of renewable energy in the U.S., but it can lead to blackouts, most famously in Texas in 2021.
One reason that Europe’s grid has proved remarkably resilient is that mutual reliance also means mutually assured destruction.
“If a country were to reduce exports, it would reduce costs in their country,” said Pollitt, referring to fears last year that European countries would unplug from the interconnected grid to safeguard their own energy supplies. “But you barely think about that for too long before you realize it’s a nuclear option to keep prices down.”
EU countries came together to agree on a gas price cap to contain the energy crisis in December 2022. But the rise in gas prices was a powerful incentive for countries to increase their reliance on renewables. Wind and solar generated 10% more energy compared with the same period in 2021-2022, saving the region 12 billion euros in gas imports (about the same in dollars), according to Ember, an energy think tank.
“I’m very happy to see European solidarity manifest itself and be resilient even though there was some temptation to go it alone,” Kristian Ruby, the secretary general for Eurelectric, the association for the electricity sector in Europe, told me. “By standing together and doubling down on solutions, we’ve seen them keep the lights on during an extremely difficult time.”
Extreme weather is the next big hurdle for the grid to overcome. “There’s no doubt that extreme weather events are becoming a strain on electricity operators,” said Ruby. A recent report from Eurelectric says that all power systems are exposed to the effects of extreme weather, including generation, transmission, and distribution. For hydropower, low water levels are detrimental and extreme cold can cause ice and blockages. Geothermal and nuclear energy become less efficient during heat waves because they require water and cold air for cooling. Many of these plants are also vulnerable to coastal and inland flooding.
This summer in particular, the grid was put to the test. Extreme heat in Spain and Italy pushed the grid to its upper limit. Using power from places like Britain, Norway and Switzerland, Spain was able to provide the power needed. It also benefited from investments in solar panels, which supplied 20 percent more solar power than in the summer of 2022.
The grid’s strength is in its variability. “Different types of weather phenomena call for different coping strategies. Resilience is about diversity. It’s about having a mix of different things. One technology will not solve it alone,” said Ruby.
Renewable energy sources differ based on the conditions in which they are built, which can make the electricity supply more adaptable. If there’s enough interconnection to bring power from, say, where it’s sunny or windy to where it’s needed, countries are much less likely to experience blackouts during severe weather. Whereas with fossil fuel based energy like coal plants, the energy supply is concentrated and more susceptible to shocks.
Despite the success, some experts are concerned that transmission isn’t growing fast enough to handle electrification. People are buying more heat pumps and using electric vehicles, but NGO WindEurope says that the grid itself is not expanding at the same pace. Experts also say that as loads increase, electricity flows will become more complex. Ruby advocates more digitalization in order to handle these complex flows.
The EU Commissioner for Energy Kadri Simson wrote an op-ed piece in the Financial Times this month saying that Europe must sustain a fast pace in rolling out renewables and electrifying the economy. She references the need to integrate intermittent renewable power and adapt more decentralized electricity systems. She says the emphasis needs to be on transmission and distribution grids.
The EU reduced the length of time needed for permitting electricity transmission. It also introduced new emergency legislation last year to accelerate the authorization of renewable projects.
Despite concerns about pace, experts seem generally optimistic about the EU's grid. “EU energy and climate policy are really a success story in European coordination and interdependence,” said Pollitt.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.
Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.
A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.
The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.
As we chronicle time and time again in The Fight, residents in farming communities are fighting back aggressively – protesting, petitioning, suing and yelling loudly. Things have gotten so tense that some are refusing to let representatives for Piedmont’s developer, PSEG, onto their properties, and a court battle is currently underway over giving the company federal marshal protection amid threats from landowners.
Exacerbating the situation is a quirk we don’t often deal with in The Fight. Unlike energy generation projects, which are usually subject to local review, transmission sits entirely under the purview of Maryland’s Public Service Commission, a five-member board consisting entirely of Democrats appointed by current Governor Wes Moore – a rumored candidate for the 2028 Democratic presidential nomination. It’s going to be months before the PSC formally considers the Piedmont project, and it likely won’t issue a decision until 2027 – a date convenient for Moore, as it’s right after he’s up for re-election. Moore last month expressed “concerns” about the project’s development process, but has brushed aside calls to take a personal position on whether it should ultimately be built.
Enter a potential Trump card that could force Moore’s hand. In early October, commissioners and state legislators representing Carroll County – one of the farm-heavy counties in Piedmont’s path – sent Trump a letter requesting that he intervene in the case before the commission. The letter followed previous examples of Trump coming in to kill planned projects, including the Grain Belt Express transmission line and a Tennessee Valley Authority gas plant in Tennessee that was relocated after lobbying from a country rock musician.
One of the letter’s lead signatories was Kenneth Kiler, president of the Carroll County Board of Commissioners, who told me this lobbying effort will soon expand beyond Trump to the Agriculture and Energy Departments. He’s hoping regulators weigh in before PJM, the regional grid operator overseeing Mid-Atlantic states. “We’re hoping they go to PJM and say, ‘You’re supposed to be managing the grid, and if you were properly managing the grid you wouldn’t need to build a transmission line through a state you’re not giving power to.’”
Part of the reason why these efforts are expanding, though, is that it’s been more than a month since they sent their letter, and they’ve heard nothing but radio silence from the White House.
“My worry is that I think President Trump likes and sees the need for data centers. They take a lot of water and a lot of electric [power],” Kiler, a Republican, told me in an interview. “He’s conservative, he values property rights, but I’m not sure that he’s not wanting data centers so badly that he feels this request is justified.”
Kiler told me the plan to kill the transmission line centers hinges on delaying development long enough that interest rates, inflation and rising demand for electricity make it too painful and inconvenient to build it through his resentful community. It’s easy to believe the federal government flexing its muscle here would help with that, either by drawing out the decision-making or employing some other as yet unforeseen stall tactic. “That’s why we’re doing this second letter to the Secretary of Agriculture and Secretary of Energy asking them for help. I think they may be more sympathetic than the president,” Kiler said.
At the moment, Kiler thinks the odds of Piedmont’s construction come down to a coin flip – 50-50. “They’re running straight through us for data centers. We want this project stopped, and we’ll fight as well as we can, but it just seems like ultimately they’re going to do it,” he confessed to me.
Thus is the predicament of the rural Marylander. On the one hand, Kiler’s situation represents a great opportunity for a GOP president to come in and stand with his base against a would-be presidential candidate. On the other, data center development and artificial intelligence represent one of the president’s few economic bright spots, and he has dedicated copious policy attention to expanding growth in this precise avenue of the tech sector. It’s hard to imagine something less “energy dominance” than killing a transmission line.
The White House did not respond to a request for comment.
Plus more of the week’s most important fights around renewable energy.
1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.
2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.
3. Dane County, Wisconsin – The fight over a ginormous data center development out here is turning into perhaps one of the nation’s most important local conflicts over AI and land use.
4. Hardeman County, Texas – It’s not all bad news today for renewable energy – because it never really is.