You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
China’s car industry has been on a tear lately. Last year, China became the world’s largest auto exporter, and its home-grown carmaker BYD recently eclipsed Tesla as the world’s No. 1 maker of electrified vehicles.
If China were following a playbook first written by Japanese or Korean automakers, you’d expect them to start selling their cars in the United States pretty soon. But China — unlike Japan or South Korea — is not an American ally, and so it’s going to have to follow a different path.
On Thursday, the Biden administration opened an investigation into the national security risks posed by Chinese-made “connected vehicles,” which essentially means any vehicle or any car part that connects to the internet. New cars, especially EVs, are outfitted with cameras, sensors, or cellular modems required for modern safety features.
The probe is the first part of what is likely to be a broad American policy response to the rise of Chinese electric vehicles. “China’s policies could flood our market with its vehicles, posing risks to our national security,” President Joe Biden said in a statement. “I’m not going to let that happen on my watch.”
The investigation is a big deal, in part because it marks that the backlash to Chinese EVs has begun in earnest in the U.S. Look closely and you’ll see Biden’s quote this morning gives away the game: Is the risk that Chinese vehicles flood the market, or is the risk that they’ll harm national security? For this administration, one has the sense that it’s both.
In a press briefing with reporters, Commerce Secretary Gina Rainmondo, whose office will lead the investigation, argued that these sensors and computers could pose a risk to national security.
“Imagine if there were thousands, or hundreds of thousands, of Chinese connected vehicles on American roads that could be immediately and simultaneously disabled by somebody in Beijing,” she said. “It doesn’t take a lot of imagination to figure out how a foreign adversary like China with access to this sort of information at scale could pose a serious risk for national security and the privacy of U.S. citizens.”
It was crucial to launch the investigation now, she added, before Chinese-made vehicles became more prevalent on American roads. Today, only a handful of brands — including Volvo, Polestar, and Buick — sell Chinese-made vehicles in the United States, and no Chinese-originating brand sells cars here.
There are three more things to observe about the sudden American action against Chinese EVs.
First, the administration’s actions aren’t particularly surprising. As I’ve previously written, the rise of Chinese EVs poses an existential threat to the legacy American automakers, including Ford and General Motors. These companies employ four times more workers in Michigan than in any other state, and Biden’s path to reelection runs straight through Michigan this November.
And even though Biden’s climate agenda has been aggressively focused on domestic development — you could argue that the Inflation Reduction Act is as much about national competitiveness as emissions reductions, per se — Donald Trump will claim no matter what that Biden’s climate policy is a “job-killing” gift to China. So Biden has to be especially certain that Chinese-made EVs don’t threaten — can’t even seem like a threat — to the Michigan auto industry.
Democrats, too, are not alone in calling for action against Chinese EV makers. Republicans have already branded Biden’s pro-EV campaign as a giveaway to China. On Wednesday, Senator Josh Hawley, a far-right Missouri Republican, proposed legislation that would raise tariffs on Chinese EVs much higher than their current level — to an astounding 125%. That would exceed the highest tariff rates on the books, and it would also apply the duties to Chinese-branded EVs made anywhere in the world, including in countries that the U.S. has a free-trade agreement with.
Second, the investigation reflects just how difficult it will be for the United States and China to keep from fighting over their highest quality technological exports. Over the past few years, the U.S. has targeted or restricted Huawei devices and the social network TikTok. China has slapped rules on how Apple’s and Tesla’s products can be used.
At Heatmap, we have written frequently about how the effort to deploy green technologies is becoming inseparable from geopolitics. But this fight is over something much broader than zero-carbon technologies — it’s potentially about digitized products, anything with software, which includes electric vehicles and batteries as well as smartphones and gadgets. If the American government now believes that Chinese-made products with cameras or sensors risk U.S. national security, then potentially a whole range of products — robot vacuums, e-bikes, GPS watches, even home appliances — could pose some sort of security risk. Electric vehicles may represent a greater security risk, but the difference between them and, say, phones is one of degrees and not kind.
Finally, the investigation reveals something that canny observers have already noted: Tariffs alone probably can’t keep Chinese-branded EVs out of the American market forever. BYD, the world’s No. 1 seller of electrified vehicles, is planning to open a factory in Mexico; it already sells its cars there. If BYD succeeds in establishing a North American beachhead, then its cars could potentially fall under U.S.-Mexico-Canada Trade Agreement rules and freely enter the United States. (The Hawley bill would theoretically circumvent this by applying its tariffs to Chinese-branded vehicles wherever they are made. Whether this would actually be worth the rift it would open with one of our most important manufacturing partners is an open question.)
Those vehicles could rapidly become the most affordable new cars on the road — if not in the United States itself, then in Mexico and Canada, where American brands compete. BYD recently advertised an $11,000 plug-in hybrid targeted at the Chinese market. Even if meeting American highway safety regulations added another $4,000 to that vehicle’s cost, it would still be among the cheapest new cars sold in this country. Even doubling its price with tariffs would keep it firmly among the country’s most affordable new vehicles.
That could be good. Electric vehicles need to get cheaper everywhere, including the U.S., if we are to fight climate change. Likewise, the Commerce Department’s investigation could result in a happy outcome, by which the national security and privacy risks of Chinese EVs could be managed — through software, for instance — allowing BYD or Polestar to sell some cars here without exposing Americans to significant risk. But that’s not the the direction that I expect things to take.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It would have delivered a gargantuan 6.2 gigawatts of power.
The Bureau of Land Management says the largest solar project in Nevada has been canceled amidst the Trump administration’s federal permitting freeze.
Esmeralda 7 was supposed to produce a gargantuan 6.2 gigawatts of power – equal to nearly all the power supplied to southern Nevada by the state’s primary public utility. It would do so with a sprawling web of solar panels and batteries across the western Nevada desert. Backed by NextEra Energy, Invenergy, ConnectGen and other renewables developers, the project was moving forward at a relatively smooth pace under the Biden administration, albeit with significant concerns raised by environmentalists about its impacts on wildlife and fauna. And Esmeralda 7 even received a rare procedural win in the early days of the Trump administration when the Bureau of Land Management released the draft environmental impact statement for the project.
When Esmeralda 7’s environmental review was released, BLM said the record of decision would arrive in July. But that never happened. Instead, Donald Trump issued an executive order as part of a deal with conservative hardliners in Congress to pass his tax megabill, which also effectively repealed the Inflation Reduction Act’s renewable electricity tax credits. This led to subsequent actions by Interior Secretary Doug Burgum to freeze all federal permitting decisions for solar energy.
Flash forward to today, when BLM quietly updated its website for Esmeralda 7 permitting to explicitly say the project’s status is “cancelled.” Normally when the agency says this, it means developers pulled the plug.
I’ve reached out to some of the companies behind Esmeralda 7 but was unable to reach them in time for publication. If I hear from them confirming the project is canceled – or that BLM is wrong in some way – I will let you know.
It’s not perfect, but pretty soon, it’ll be available for under $30,000.
Here’s what you need to know about the rejuvenated Chevrolet Bolt: It’s back, it’s better, and it starts at under $30,000.
Although the revived 2027 Bolt doesn’t officially hit the market until January 2026, GM revealed the new version of the iconic affordable EV at a Wednesday evening event at the Universal Studios backlot in Los Angeles. The assembled Bolt owners and media members drove the new cars past Amity Island from Jaws and around the Old West and New York sets that have served as the backdrops of so many television shows and movies. It was star treatment for a car that, like its predecessor, isn’t the fanciest EV around. But given the giveaway patches that read “Chevy Bolt: Back by popular demand,” it’s clear that GM heard the cries of people who missed having the plucky electric hatchback on the market.
The Bolt died at the height of its powers. The original Bolt EV and Bolt EUV sold in big numbers in the late 2010s and early 2020s, powered by a surprisingly affordable price compared to competitor EVs and an interior that didn’t feel cramped despite its size as a smallish hatchback. In 2023, the year Chevy stopped selling it, the Bolt was the third-best-selling EV in America after Tesla’s top two models.
Yet the original had a few major deficiencies that reflected the previous era of EVs. The most egregious of which was its charging speed that topped out at around 50 kilowatts. Given that today’s high-speed chargers can reach 250 to 350 kilowatts — and an even faster future could be on the way — the Bolt’s pit stops on a road trip were a slog that didn’t live up to its peppy name.
Thankfully, Chevy fixed it. Charging speed now reaches 150 kilowatts. While that figure isn’t anywhere near the 350 kilowatts that’s possible in something like the Hyundai Ioniq 9, it’s a threefold improvement for the Bolt that lets it go from 10% to 80% charged in a respectable 26 minutes. The engineers said they drove a quartet of the new cars down old Route 66 from the Kansas City area, where the Bolt is made, to Los Angeles to demonstrate that the EV was finally ready for such an adventure.
From the outside, the 2027 Bolt is virtually indistinguishable from the old car, but what’s inside is a welcome leap forward. New Bolt has a lithium-ion-phosphate, or LFP battery that holds 65 kilowatt-hours of energy, but still delivers 255 miles of max range because of the EV’s relatively light weight. Whereas older EVs encourage drivers to stop refueling at around 80%, the LFP battery can be charged to 100% regularly without the worry of long-term damage to the battery.
The Bolt is GM’s first EV with the NACS charging standard, the former Tesla proprietary plug, which would allow the little Chevy to visit Tesla Superchargers without an adapter (though its port placement on the front of the driver’s side is backwards from the way older Supercharger stations are built). Now built on GM’s Ultium platform, the Bolt shares its 210-horsepower electric motor with the Chevy Equinox EV and gets vehicle-to-load capability, meaning you’ll be able to tap into its battery energy for other uses such as powering your home.
But it’s the price that’s the real wow factor. Bolt will launch with an RS version that gets the fancier visual accents and starts at $32,000. The Bolt LT that will be available a little later will eventually start as low as $28,995, a figure that includes the destination charge that’s typically slapped on top of a car’s price, to the tune of an extra $1,000 to $2,000 on delivery. Perhaps it’s no surprise that GM revealed this car just a week after the end of the $7,500 federal tax credit for EV purchases (and just a day after Tesla announced its budget versions of the Model Y and Model 3). Bringing in a pretty decent EV at under $30,000 without the help of a big tax break is a pretty big deal.
The car is not without compromises. Plenty of Bolt fans are aghast that Chevy abandoned the Apple CarPlay and Android Auto integrations that worked with the first Bolt in favor of GM’s own built-in infotainment system as the only option. Although the new Bolt was based on the longer, “EUV” version of the original, this is still a pretty compact car without a ton of storage space behind the back seats. Still, for those who truly need a bigger vehicle, there’s the Chevy Equinox EV.
For as much time as I’ve spent clamoring for truly affordable EVs that could compete with entry-level gas cars on prices, the Bolt’s faults are minor. At $29,000 for an electric vehicle in the U.S., there is practically zero competition until the new Nissan Leaf arrives. The biggest threats to the Bolt are America’s aversion to small cars and the rapid rates of depreciation that could allow someone to buy a much larger, gently used EV for the price of the new Chevy. But the original Bolt found a steady footing among drivers who wanted that somewhat counter-cultural car — and this one is a lot better.
“Old economy” companies like Caterpillar and Williams are cashing in by selling smaller, less-efficient turbines to impatient developers.
From the perspective of the stock market, you’re either in the AI business or you’re not. If you build the large language models pushing out the frontiers of artificial intelligence, investors love it. If you rent out the chips the large language models train on, investors love it. If you supply the servers that go in the data centers that power the large language models, investors love it. And, of course, if you design the chips themselves, investors love it.
But companies far from the software and semiconductor industry are profiting from this boom as well. One example that’s caught the market’s fancy is Caterpillar, better known for its scale-defying mining and construction equipment, which has become a “secular winner” in the AI boom, writes Bloomberg’s Joe Weisenthal.
Typically construction businesses do well when the overall economy is doing well — that is, they don’t typically take off with a major technological shift like AI. Now, however, Caterpillar has joined the ranks of the “picks and shovels” businesses capitalizing on the AI boom thanks to its gas turbine business, which is helping power OpenAI’s Stargate data center project in Abilene, Texas.
Just one link up the chain is another classic “old economy” business: Williams Companies, the natural gas infrastructure company that controls or has an interest in over 33,000 miles of pipeline and has been around in some form or another since the early 20th century.
Gas pipeline companies are not supposed to be particularly exciting, either. They build large-scale infrastructure. Their ratemaking is overseen by federal regulators. They pay dividends. The last gas pipeline company that got really into digital technology, well, uh, it was Enron.
But Williams’ shares are up around 28% in the past year — more than Caterpillar. That’s in part, due to its investing billions in powering data centers with behind the meter natural gas.
Last week, Williams announced that it would funnel over $3 billion into two data center projects, bringing its total investments in powering AI to $5 billion. This latest bet, the company said, is “to continue to deliver speed-to-market solutions in grid-constrained markets.”
If we stipulate that the turbines made by Caterpillar are powering the AI boom in a way analogous to the chips designed by Nvidia or AMD and fabricated by TSMC, then Williams, by developing behind the meter gas-fired power plants, is something more like a cloud computing provider or data center developer like CoreWeave, except that its facilities house gas turbines, not semiconductors.
The company has “seen the rapid emergence of the need for speed with respect to energy,” Williams Chief Executive Chad Zamarin said on an August earnings call.
And while Williams is not a traditional power plant developer or utility, it knows its way around natural gas. “We understand pipeline capacity,” Zamarin said on a May earnings call. “We obviously build a lot of pipeline and turbine facilities. And so, bringing all the different pieces together into a solution that is ready-made for a customer, I think, has been truly a differentiator.”
Williams is already behind the Socrates project for Meta in Ohio, described in a securities filing as a $1.6 billion project that will provide 400 megawatts of gas-fired power. That project has been “upsized” to $2 billion and 750 megawatts, according to Morgan Stanley analysts.
Meta CEO Mark Zuckerberg has said that “energy constraints” are a more pressing issue for artificial intelligence development than whether the marginal dollar invested is worth it. In other words, Zuckerberg expects to run out of energy before he runs out of projects that are worth pursuing.
That’s great news for anyone in the business of providing power to data centers quickly. The fact that developers seem to have found their answer in the Williamses and Caterpillars of the world, however, calls into question a key pillar of the renewable industry’s case for itself in a time of energy scarcity — that the fastest and cheapest way to get power for data centers is a mix of solar and batteries.
Just about every renewable developer or clean energy expert I’ve spoken to in the past year has pointed to renewables’ fast timeline and low cost to deploy compared to building new gas-fired, grid-scale generation as a reason why utilities and data centers should prefer them, even absent any concerns around greenhouse gas emissions.
“Renewables and battery storage are the lowest-cost form of power generation and capacity,” Next Era chief executive John Ketchum said on an April earnings call. “We can build these projects and get new electrons on the grid in 12 to 18 months.” Ketchum also said that the price of a gas-fired power plant had tripled, meanwhile lead times for turbines are stretching to the early 2030s.
The gas turbine shortage, however, is most severe for large turbines that are built into combined cycle systems for new power plants that serve the grid.
GE Vernova is discussing delivering turbines in 2029 and 2030. While one manufacturer of gas turbines, Mitsubishi Heavy Industries, has announced that it plans to expand its capacity, the industry overall remains capacity constrained.
But according to Morgan Stanley, Williams can set up behind the meter power plants in 18 months. xAI’s Colossus data center in Memphis, which was initially powered by on-site gas turbines, went from signing a lease to training a large language model in about six months.
These behind the meter plants often rely on cheaper, smaller, simple cycle turbines, which generate electricity just from the burning of natural gas, compared to combined cycle systems, which use the waste heat from the gas turbines to run steam turbines and generate more energy. The GE Vernova 7HA combined cycle turbines that utility Duke Energy buys, for instance, range in output from 290 to 430 megawatts. The simple cycle turbines being placed in Ohio for the Meta data center range in output from about 14 megawatts to 23 megawatts.
Simple cycle turbines also tend to be less efficient than the large combined cycle system used for grid-scale natural gas, according to energy analysts at BloombergNEF. The BNEF analysts put the emissions difference at almost 1,400 pounds of carbon per megawatt-hour for the single turbines, compared to just over 800 pounds for combined cycle.
Overall, Williams is under contract to install 6 gigawatts of behind-the-meter power, to be completed by the first half of 2027, Morgan Stanley analysts write. By comparison, a joint venture between GE Vernova, the independent power producer NRG, and the construction company Kiewit to develop combined cycle gas-fired power plants has a timeline that could stretch into 2032.
The Williams projects will pencil out on their own, the company says, but they have an obvious auxiliary benefit: more demand for natural gas.
Williams’ former chief executive, Alan Armstrong, told investors in a May earnings call that he was “encouraged” by the “indirect business we are seeing on our gas transmission systems,” i.e. how increased natural gas consumption benefits the company’s traditional pipeline business.
Wall Street has duly rewarded Williams for its aggressive moves.
Morgan Stanley analysts boosted their price target for the stock from $70 to $83 after last week’s $3 billion announcement, saying in a note to clients that the company has “shifted from an underappreciated value (impaired terminal value of existing assets) to underappreciated growth (accelerating project pipeline) story.” Mizuho Securities also boosted its price target from $67 to $72, with analyst Gabriel Moreen telling clients that Williams “continues to raise the bar on the scope and potential benefits.”
But at the same time, Moreen notes, “the announcement also likely enhances some investor skepticism around WMB pushing further into direct power generation and, to a lesser extent, prioritizing growth (and growth capex) at the expense of near-term free cash flow and balance sheet.”
In other words, the pipeline business is just like everyone else — torn between prudence in a time of vertiginous economic shifts and wanting to go all-in on the AI boom.
Williams seems to have decided on the latter. “We will be a big beneficiary of the fast rising data center power load,” Armstrong said.