Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

A New Push to Recycle EV Junk

Batteries aren’t the only electric vehicle accessories chock-full of critical minerals.

Charger recycling.
Heatmap Illustration/Getty Images

Whenever projections of future electric vehicle demand come up, the conversation will inevitably turn to battery recycling. And for good reason: It takes a lot of expensive, difficult-to-acquire metals and materials to make the big lithium-ion batteries that power EVs, making it environmentally and financially prudent to recover them.

But there is a lot of other infrastructure, materials, and ephemera that come with a big transition to EVs, collectively known as EV supply equipment, or EVSE. Just think of all the charging stations and charging cables that have sprung up around the world, and which will reach the end of their lives sooner than you might think.

The question of what to do with them is the subject of a new partnership between business and academia. XCharge North America, a producer of DC fast chargers, has begun to send its busted and beat-up EV chargers and modules to the recycling group Grensol, which has partnered with researchers at Worcester Polytechnic Institute to find better, cheaper ways to recycle materials that otherwise would have been sent to the landfill.

“EVSEs have a particularly short useful life due to constant wear and tear, so the need for a recyclable material solution is the driving force behind this partnership,” Grensol’s Rajiv Singhal told me.

EVSE leads a difficult life. The stuff inside the cable endures rapid heating and cooling cycles as electricity races through day after day. This leads to premature degradation, explains Akanksha Gupta, a postdoctoral researcher at WPI. Meanwhile, the polymer material on the outside of the cable, which insulates the electrical components within, is subject to rain, cold, being walked on and run over — whatever the outside world can throw at it.

As a result, Gupta said, EV charging cables last just five to 15 years before they need to be replaced. EV stations are more durable, since their parts are tucked inside metal housing. But even there, specific components that are subject to high stresses wear down and fail after years of heavy usage, sending the entire charging stall to the great beyond.

Some parts we already know how to deal with. The exterior housing of an EV charger is typically made of aluminum or steel, materials that recyclers can already recover in their entirety. Gupta told me there are also existing techniques to recycle cables by (mostly) separating the plastic parts from the valuable metals, like copper.

The materials that are most important to recover, however — because they’re valuable, and because there is a limited supply of them to mine from the Earth’s crust — are also the hardest to get. Gold and silver, which have excellent electrical conductivity and corrosion resistance, are used in printed circuit boards inside the power electronic modules. Tantalum and rare earth elements can be found in capacitors, while tin is used in solders on printed circuit boards.

The electronic module found inside the charging station is a particularly thorny problem, Gupta said.

“Rare earth elements and some critical materials like tantalum and silicon carbide are found in trace amounts and bonded with other metals or plastic components,” she told me. “It is hard to recover and recycle these materials without sufficient economic incentives.” (Estimates for the value of the recycled metals industry vary widely but coalesce around the hundreds of billions of dollars, currently.) “Moreover, during the separation and recovery stages, the elements present in trace amounts can get easily discarded or landfilled, lowering the recovery rate for such materials, which are often of high value.”

The researchers at WPI are investigating new techniques for separating materials and recycling the polymers present in EV charging equipment. Though neither side of the partnership was willing to put a dollar figure or a timeframe to their partnership, the work at hand is as much economic as it is scientific, if indeed it will become economically viable to recycle EVSE. Precious tantalum, for instance, can be recovered as tantalum pentoxide or tantalum chloride depending on the chemical process used, and those two materials each have different markets.

“Our aim is to compare recovery processes for an EVSE station … in terms of both economic and ecological considerations,” Gupta said. “There will be several markets for recovered materials, including the steel and aluminum industry for base metals, the semiconductor industry for silicon, tantalum, and gallium-related products, and the petrochemical industry for polymer-based products, among other industries.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

The EPA’s Backdoor Move to Hobble the Carbon Capture Industry

Why killing a government climate database could essentially gut a tax credit

Lee Zeldin.
Heatmap Illustration/Getty Images

The Trump administration’s bid to end an Environmental Protection Agency program may essentially block any company — even an oil firm — from accessing federal subsidies for capturing carbon or producing hydrogen fuel.

On Friday, the Environmental Protection Agency proposed that it would stop collecting and publishing greenhouse gas emissions data from thousands of refineries, power plants, and factories across the country.

Keep reading...Show less
Blue
Adaptation

The ‘Buffer’ That Can Protect a Town from Wildfires

Paradise, California, is snatching up high-risk properties to create a defensive perimeter and prevent the town from burning again.

Homes as a wildfire buffer.
Heatmap Illustration/Getty Images

The 2018 Camp Fire was the deadliest wildfire in California’s history, wiping out 90% of the structures in the mountain town of Paradise and killing at least 85 people in a matter of hours. Investigations afterward found that Paradise’s town planners had ignored warnings of the fire risk to its residents and forgone common-sense preparations that would have saved lives. In the years since, the Camp Fire has consequently become a cautionary tale for similar communities in high-risk wildfire areas — places like Chinese Camp, a small historic landmark in the Sierra Nevada foothills that dramatically burned to the ground last week as part of the nearly 14,000-acre TCU September Lightning Complex.

More recently, Paradise has also become a model for how a town can rebuild wisely after a wildfire. At least some of that is due to the work of Dan Efseaff, the director of the Paradise Recreation and Park District, who has launched a program to identify and acquire some of the highest-risk, hardest-to-access properties in the Camp Fire burn scar. Though he has a limited total operating budget of around $5.5 million and relies heavily on the charity of local property owners (he’s currently in the process of applying for a $15 million grant with a $5 million match for the program) Efseaff has nevertheless managed to build the beginning of a defensible buffer of managed parkland around Paradise that could potentially buy the town time in the case of a future wildfire.

Keep reading...Show less
Spotlight

How the Tax Bill Is Empowering Anti-Renewables Activists

A war of attrition is now turning in opponents’ favor.

Massachusetts and solar panels.
Heatmap Illustration/Library of Congress, Getty Images

A solar developer’s defeat in Massachusetts last week reveals just how much stronger project opponents are on the battlefield after the de facto repeal of the Inflation Reduction Act.

Last week, solar developer PureSky pulled five projects under development around the western Massachusetts town of Shutesbury. PureSky’s facilities had been in the works for years and would together represent what the developer has claimed would be one of the state’s largest solar projects thus far. In a statement, the company laid blame on “broader policy and regulatory headwinds,” including the state’s existing renewables incentives not keeping pace with rising costs and “federal policy updates,” which PureSky said were “making it harder to finance projects like those proposed near Shutesbury.”

Keep reading...Show less
Yellow