You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Batteries aren’t the only electric vehicle accessories chock-full of critical minerals.
Whenever projections of future electric vehicle demand come up, the conversation will inevitably turn to battery recycling. And for good reason: It takes a lot of expensive, difficult-to-acquire metals and materials to make the big lithium-ion batteries that power EVs, making it environmentally and financially prudent to recover them.
But there is a lot of other infrastructure, materials, and ephemera that come with a big transition to EVs, collectively known as EV supply equipment, or EVSE. Just think of all the charging stations and charging cables that have sprung up around the world, and which will reach the end of their lives sooner than you might think.
The question of what to do with them is the subject of a new partnership between business and academia. XCharge North America, a producer of DC fast chargers, has begun to send its busted and beat-up EV chargers and modules to the recycling group Grensol, which has partnered with researchers at Worcester Polytechnic Institute to find better, cheaper ways to recycle materials that otherwise would have been sent to the landfill.
“EVSEs have a particularly short useful life due to constant wear and tear, so the need for a recyclable material solution is the driving force behind this partnership,” Grensol’s Rajiv Singhal told me.
EVSE leads a difficult life. The stuff inside the cable endures rapid heating and cooling cycles as electricity races through day after day. This leads to premature degradation, explains Akanksha Gupta, a postdoctoral researcher at WPI. Meanwhile, the polymer material on the outside of the cable, which insulates the electrical components within, is subject to rain, cold, being walked on and run over — whatever the outside world can throw at it.
As a result, Gupta said, EV charging cables last just five to 15 years before they need to be replaced. EV stations are more durable, since their parts are tucked inside metal housing. But even there, specific components that are subject to high stresses wear down and fail after years of heavy usage, sending the entire charging stall to the great beyond.
Some parts we already know how to deal with. The exterior housing of an EV charger is typically made of aluminum or steel, materials that recyclers can already recover in their entirety. Gupta told me there are also existing techniques to recycle cables by (mostly) separating the plastic parts from the valuable metals, like copper.
The materials that are most important to recover, however — because they’re valuable, and because there is a limited supply of them to mine from the Earth’s crust — are also the hardest to get. Gold and silver, which have excellent electrical conductivity and corrosion resistance, are used in printed circuit boards inside the power electronic modules. Tantalum and rare earth elements can be found in capacitors, while tin is used in solders on printed circuit boards.
The electronic module found inside the charging station is a particularly thorny problem, Gupta said.
“Rare earth elements and some critical materials like tantalum and silicon carbide are found in trace amounts and bonded with other metals or plastic components,” she told me. “It is hard to recover and recycle these materials without sufficient economic incentives.” (Estimates for the value of the recycled metals industry vary widely but coalesce around the hundreds of billions of dollars, currently.) “Moreover, during the separation and recovery stages, the elements present in trace amounts can get easily discarded or landfilled, lowering the recovery rate for such materials, which are often of high value.”
The researchers at WPI are investigating new techniques for separating materials and recycling the polymers present in EV charging equipment. Though neither side of the partnership was willing to put a dollar figure or a timeframe to their partnership, the work at hand is as much economic as it is scientific, if indeed it will become economically viable to recycle EVSE. Precious tantalum, for instance, can be recovered as tantalum pentoxide or tantalum chloride depending on the chemical process used, and those two materials each have different markets.
“Our aim is to compare recovery processes for an EVSE station … in terms of both economic and ecological considerations,” Gupta said. “There will be several markets for recovered materials, including the steel and aluminum industry for base metals, the semiconductor industry for silicon, tantalum, and gallium-related products, and the petrochemical industry for polymer-based products, among other industries.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
And more of this week’s top renewable energy fights across the country.
1. Otsego County, Michigan – The Mitten State is proving just how hard it can be to build a solar project in wooded areas. Especially once Fox News gets involved.
2. Atlantic County, New Jersey – Opponents of offshore wind in Atlantic City are trying to undo an ordinance allowing construction of transmission cables that would connect the Atlantic Shores offshore wind project to the grid.
3. Benton County, Washington – Sorry Scout Clean Energy, but the Yakima Nation is coming for Horse Heaven.
Here’s what else we’re watching right now…
In Connecticut, officials have withdrawn from Vineyard Wind 2 — leading to the project being indefinitely shelved.
In Indiana, Invenergy just got a rejection from Marshall County for special use of agricultural lands.
In Kansas, residents in Dickinson County are filing legal action against county commissioners who approved Enel’s Hope Ridge wind project.
In Kentucky, a solar project was actually approved for once – this time for the East Kentucky Power Cooperative.
In North Carolina, Davidson County is getting a solar moratorium.
In Pennsylvania, the town of Unity rejected a solar project. Elsewhere in the state, the developer of the Newton 1 solar project is appealing their denial.
In South Carolina, a state appeals court has upheld the rejection of a 2,300 acre solar project proposed by Coastal Pine Solar.
In Washington State, Yakima County looks like it’ll keep its solar moratorium in place.
And more of this week’s top policy news around renewables.
1. Trump’s Big Promise – Our nation’s incoming president is now saying he’ll ban all wind projects on Day 1, an expansion of his previous promise to stop only offshore wind.
2. The Big Nuclear Lawsuit – Texas and Utah are suing to kill the Nuclear Regulatory Commission’s authority to license small modular reactors.
3. Biden’s parting words – The Biden administration has finished its long-awaited guidance for the IRA’s tech-neutral electricity credit (which barely changed) and hydrogen production credit.
A conversation with J. Timmons Roberts, executive director of Brown University’s Climate Social Science Network
This week’s interview is with Brown University professor J. Timmons Roberts. Those of you familiar with the fight over offshore wind may not know Roberts by name, but you’re definitely familiar with his work: He and his students have spearheaded some of the most impactful research conducted on anti-offshore wind opposition networks. This work is a must-read for anyone who wants to best understand how the anti-renewables movement functions and why it may be difficult to stop it from winning out.
So with Trump 2.0 on the verge of banning offshore wind outright, I decided to ask Roberts what he thinks developers should be paying attention to at this moment. The following interview has been lightly edited for clarity.
Is the anti-renewables movement a political force the country needs to reckon with?
Absolutely. In my opinion it’s been unfortunate for the environmental groups, the wind development, the government officials, climate scientists – they’ve been unwilling to engage directly with those groups. They want to keep a very positive message talking about the great things that come with wind and solar. And they’ve really left the field open as a result.
I think that as these claims sit there unrefuted and naive people – I don’t mean naive in a negative sense but people who don’t know much about this issue – are only hearing the negative spin about renewables. It’s a big problem.
When you say renewables developers aren’t interacting here – are you telling me the wind industry is just letting these people run roughshod?
I’ve seen no direct refutation in those anti-wind Facebook groups, and there’s very few environmentalists or others. People are quite afraid to go in there.
But even just generally. This vast network you’ve tracked – have you seen a similar kind of counter mobilization on the part of those who want to build these wind farms offshore?
There’s some mobilization. There’s something called the New England for Offshore Wind coalition. There’s some university programs. There’s some other oceanographic groups, things like that.
My observation is that they’re mostly staff organizations and they’re very cautious. They’re trying to work as a coalition. And they’re going as slow as their most cautious member.
As someone who has researched these networks, what are you watching for in the coming year? Under the first year of Trump 2.0?
Yeah I mean, channeling my optimistic and Midwestern dad, my thought is that there may be an overstepping by the Trump administration and by some of these activists. The lack of viable alternative pathways forward and almost anti-climate approaches these groups are now a part of can backfire for them. Folks may say, why would I want to be supportive of your group if you’re basically undermining everything I believe in?
What do you think developers should know about the research you have done into these networks?
I think it's important for deciding bodies and the public, the media and so on, to know who they’re hearing when they hear voices at a public hearing or in a congressional field hearing. Who are the people representing? Whose voice are they advancing?
It’s important for these actors that want to advance action on climate change and renewables to know what strategies and the tactics are being used and also know about the connections.
One of the things you pointed out in your research is that, yes, there are dark money groups involved in this movement and there are outside figures involved, but a lot of this sometimes is just one person posts something to the internet and then another person posts something to the internet.
Does that make things harder when it comes to addressing the anti-renewables movement?
Absolutely. Social media’s really been devastating for developing science and informed, rational public policymaking. It’s so easy to create a conspiracy and false information and very slanted, partial information to shoot holes at something as big as getting us off of fossil fuels.
Our position has developed as we understand that indeed these are not just astro-turf groups created by some far away corporation but there are legitimate concerns – like fishing, where most of it is based on certainty – and then there are these sensationalized claims that drive fears. That fear is real. And it’s unfortunate.
Anything else you’d really like to tell our readers?
I didn’t really choose this topic. I feel like it really got me. It was me and four students sitting in my conference room down the hall and I said, have you heard about this group that just started here in Rhode Island that’s making these claims we should investigate? And students were super excited about it and have really been the leaders.