Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

A New Push to Recycle EV Junk

Batteries aren’t the only electric vehicle accessories chock-full of critical minerals.

Charger recycling.
Heatmap Illustration/Getty Images

Whenever projections of future electric vehicle demand come up, the conversation will inevitably turn to battery recycling. And for good reason: It takes a lot of expensive, difficult-to-acquire metals and materials to make the big lithium-ion batteries that power EVs, making it environmentally and financially prudent to recover them.

But there is a lot of other infrastructure, materials, and ephemera that come with a big transition to EVs, collectively known as EV supply equipment, or EVSE. Just think of all the charging stations and charging cables that have sprung up around the world, and which will reach the end of their lives sooner than you might think.

The question of what to do with them is the subject of a new partnership between business and academia. XCharge North America, a producer of DC fast chargers, has begun to send its busted and beat-up EV chargers and modules to the recycling group Grensol, which has partnered with researchers at Worcester Polytechnic Institute to find better, cheaper ways to recycle materials that otherwise would have been sent to the landfill.

“EVSEs have a particularly short useful life due to constant wear and tear, so the need for a recyclable material solution is the driving force behind this partnership,” Grensol’s Rajiv Singhal told me.

EVSE leads a difficult life. The stuff inside the cable endures rapid heating and cooling cycles as electricity races through day after day. This leads to premature degradation, explains Akanksha Gupta, a postdoctoral researcher at WPI. Meanwhile, the polymer material on the outside of the cable, which insulates the electrical components within, is subject to rain, cold, being walked on and run over — whatever the outside world can throw at it.

As a result, Gupta said, EV charging cables last just five to 15 years before they need to be replaced. EV stations are more durable, since their parts are tucked inside metal housing. But even there, specific components that are subject to high stresses wear down and fail after years of heavy usage, sending the entire charging stall to the great beyond.

Some parts we already know how to deal with. The exterior housing of an EV charger is typically made of aluminum or steel, materials that recyclers can already recover in their entirety. Gupta told me there are also existing techniques to recycle cables by (mostly) separating the plastic parts from the valuable metals, like copper.

The materials that are most important to recover, however — because they’re valuable, and because there is a limited supply of them to mine from the Earth’s crust — are also the hardest to get. Gold and silver, which have excellent electrical conductivity and corrosion resistance, are used in printed circuit boards inside the power electronic modules. Tantalum and rare earth elements can be found in capacitors, while tin is used in solders on printed circuit boards.

The electronic module found inside the charging station is a particularly thorny problem, Gupta said.

“Rare earth elements and some critical materials like tantalum and silicon carbide are found in trace amounts and bonded with other metals or plastic components,” she told me. “It is hard to recover and recycle these materials without sufficient economic incentives.” (Estimates for the value of the recycled metals industry vary widely but coalesce around the hundreds of billions of dollars, currently.) “Moreover, during the separation and recovery stages, the elements present in trace amounts can get easily discarded or landfilled, lowering the recovery rate for such materials, which are often of high value.”

The researchers at WPI are investigating new techniques for separating materials and recycling the polymers present in EV charging equipment. Though neither side of the partnership was willing to put a dollar figure or a timeframe to their partnership, the work at hand is as much economic as it is scientific, if indeed it will become economically viable to recycle EVSE. Precious tantalum, for instance, can be recovered as tantalum pentoxide or tantalum chloride depending on the chemical process used, and those two materials each have different markets.

“Our aim is to compare recovery processes for an EVSE station … in terms of both economic and ecological considerations,” Gupta said. “There will be several markets for recovered materials, including the steel and aluminum industry for base metals, the semiconductor industry for silicon, tantalum, and gallium-related products, and the petrochemical industry for polymer-based products, among other industries.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Electric Vehicles

Why the Electric Toyota Highlander Matters

The maker of the Prius is finally embracing batteries — just as the rest of the industry retreats.

The 2027 Highlander.
Heatmap Illustration/Toyota, Getty Images

Selling an electric version of a widely known car model is no guarantee of success. Just look at the Ford F-150 Lightning, a great electric truck that, thanks to its high sticker price, soon will be no more. But the Toyota Highlander EV, announced Tuesday as a new vehicle for the 2027 model year, certainly has a chance to succeed given America’s love for cavernous SUVs.

Highlander is Toyota’s flagship titan, a three-row SUV with loads of room for seven people. It doesn’t sell in quite the staggering numbers of the two-row RAV4, which became the third-best-selling vehicle of any kind in America last year. Still, the Highlander is so popular as a big family ride that Toyota recently introduced an even bigger version, the Grand Highlander. Now, at last, comes the battery-powered version. (It’s just called Highlander and not “Highlander EV,” by the way. The Highlander nameplate will be electric-only, while gas and hybrid SUVs will fly the Grand Highlander flag.)

Keep reading...Show less
Green
Energy

Democrats Should Embrace ‘Cleaner’ LNG, This Think Tank Says

Third Way’s latest memo argues that climate politics must accept a harsh reality: natural gas isn’t going away anytime soon.

A tree and a LNG boat.
Heatmap Illustration/Getty Images

It wasn’t that long ago that Democratic politicians would brag about growing oil and natural gas production. In 2014, President Obama boasted to Northwestern University students that “our 100-year supply of natural gas is a big factor in drawing jobs back to our shores;” two years earlier, Montana Governor Brian Schweitzer devoted a portion of his speech at the Democratic National Convention to explaining that “manufacturing jobs are coming back — not just because we’re producing a record amount of natural gas that’s lowering electricity prices, but because we have the best-trained, hardest-working labor force in the history of the world.”

Third Way, the long tenured center-left group, would like to go back to those days.

Keep reading...Show less
Green
AM Briefing

The Nuclear Backstop

On Equinor’s CCS squeamishness, Indian solar, and Orsted in Oz

A nuclear power plant.
Heatmap Illustration/Getty Images

Current conditions: A foot of snow piled up on Hawaii's mountaintops • Fresh snow in parts of the Northeast’s highlands, from the New York Adirondacks to Vermont’s Green Mountains, could top 10 inches • The seismic swarm that rattled Iceland with more than 600 relatively low-level earthquakes over the course of two days has finally subsided.

THE TOP FIVE

1. New bipartisan bill aims to clear nuclear’s biggest remaining bottleneck

Say what you will about President Donald Trump’s cuts to electric vehicles, renewables, and carbon capture, the administration has given the nuclear industry red-carpet treatment. The Department of Energy refashioned its in-house lender into a financing hub for novel nuclear projects. After saving the Biden-era nuclear funding from the One Big Beautiful Bill Act’s cleaver, the agency distributed hundreds of millions of dollars to specific small modular reactors and rolled out testing programs to speed up deployment of cutting-edge microreactors. The Department of Commerce brokered a deal with the Japanese government to provide the Westinghouse Electric Company with $80 billion to fund construction of up to 10 large-scale AP1000 reactors. But still, in private, I’m hearing from industry sources that utilities and developers want more financial protection against bankruptcy if something goes wrong. My sources tell me the Trump administration is resistant to providing companies with a blanket bailout if nuclear construction goes awry. But legislation in the Senate could step in to provide billions of dollars in federal backing for over-budget nuclear reactors. Senator Jim Risch, an Idaho Republican, previously introduced the Accelerating Reliable Capacity Act in 2024 to backstop nuclear developers still reeling from the bankruptcies associated with the last AP1000 buildout. This time, as E&E News noted, “he has a prominent Democrat as a partner.” Senator Ruben Gallego, an Arizona Democrat who stood out in 2024 by focusing his campaign’s energy platform on atomic energy and just recently put out an energy strategy document, co-sponsored the bill, which authorizes up to $3.6 billion to help offset cost overruns at three or more next-generation nuclear projects.

Keep reading...Show less
Green