Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

A New Push to Recycle EV Junk

Batteries aren’t the only electric vehicle accessories chock-full of critical minerals.

Charger recycling.
Heatmap Illustration/Getty Images

Whenever projections of future electric vehicle demand come up, the conversation will inevitably turn to battery recycling. And for good reason: It takes a lot of expensive, difficult-to-acquire metals and materials to make the big lithium-ion batteries that power EVs, making it environmentally and financially prudent to recover them.

But there is a lot of other infrastructure, materials, and ephemera that come with a big transition to EVs, collectively known as EV supply equipment, or EVSE. Just think of all the charging stations and charging cables that have sprung up around the world, and which will reach the end of their lives sooner than you might think.

The question of what to do with them is the subject of a new partnership between business and academia. XCharge North America, a producer of DC fast chargers, has begun to send its busted and beat-up EV chargers and modules to the recycling group Grensol, which has partnered with researchers at Worcester Polytechnic Institute to find better, cheaper ways to recycle materials that otherwise would have been sent to the landfill.

“EVSEs have a particularly short useful life due to constant wear and tear, so the need for a recyclable material solution is the driving force behind this partnership,” Grensol’s Rajiv Singhal told me.

EVSE leads a difficult life. The stuff inside the cable endures rapid heating and cooling cycles as electricity races through day after day. This leads to premature degradation, explains Akanksha Gupta, a postdoctoral researcher at WPI. Meanwhile, the polymer material on the outside of the cable, which insulates the electrical components within, is subject to rain, cold, being walked on and run over — whatever the outside world can throw at it.

As a result, Gupta said, EV charging cables last just five to 15 years before they need to be replaced. EV stations are more durable, since their parts are tucked inside metal housing. But even there, specific components that are subject to high stresses wear down and fail after years of heavy usage, sending the entire charging stall to the great beyond.

Some parts we already know how to deal with. The exterior housing of an EV charger is typically made of aluminum or steel, materials that recyclers can already recover in their entirety. Gupta told me there are also existing techniques to recycle cables by (mostly) separating the plastic parts from the valuable metals, like copper.

The materials that are most important to recover, however — because they’re valuable, and because there is a limited supply of them to mine from the Earth’s crust — are also the hardest to get. Gold and silver, which have excellent electrical conductivity and corrosion resistance, are used in printed circuit boards inside the power electronic modules. Tantalum and rare earth elements can be found in capacitors, while tin is used in solders on printed circuit boards.

The electronic module found inside the charging station is a particularly thorny problem, Gupta said.

“Rare earth elements and some critical materials like tantalum and silicon carbide are found in trace amounts and bonded with other metals or plastic components,” she told me. “It is hard to recover and recycle these materials without sufficient economic incentives.” (Estimates for the value of the recycled metals industry vary widely but coalesce around the hundreds of billions of dollars, currently.) “Moreover, during the separation and recovery stages, the elements present in trace amounts can get easily discarded or landfilled, lowering the recovery rate for such materials, which are often of high value.”

The researchers at WPI are investigating new techniques for separating materials and recycling the polymers present in EV charging equipment. Though neither side of the partnership was willing to put a dollar figure or a timeframe to their partnership, the work at hand is as much economic as it is scientific, if indeed it will become economically viable to recycle EVSE. Precious tantalum, for instance, can be recovered as tantalum pentoxide or tantalum chloride depending on the chemical process used, and those two materials each have different markets.

“Our aim is to compare recovery processes for an EVSE station … in terms of both economic and ecological considerations,” Gupta said. “There will be several markets for recovered materials, including the steel and aluminum industry for base metals, the semiconductor industry for silicon, tantalum, and gallium-related products, and the petrochemical industry for polymer-based products, among other industries.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Hotspots

Fox News Goes After a Solar Farm

And more of this week’s top renewable energy fights across the country.

Map of U.S. renewable energy.
Heatmap Illustration

1. Otsego County, Michigan – The Mitten State is proving just how hard it can be to build a solar project in wooded areas. Especially once Fox News gets involved.

  • Last week, the Michigan Department of Natural Resources said it wanted to lease more than 400 acres of undeveloped state-owned forestland for part of a much larger RWE Clean Energy solar project near the northern Michigan town of Gaylord.
  • Officials said they were approached by the company about the land. But the news sparked an immediate outcry, as state elected Republicans – and some Democrats – demanded to know why a forest would be cleared for ‘green’ energy. Some called for government firings.
  • Then came the national news coverage. On Friday, Fox News hosted a full four-minute segment focused on this one solar farm featuring iconoclastic activist Michael Shellenberger.
  • A few days later, RWE told the media it would not develop the project on state lands.
  • “[D]uring the development process, we conducted outreach to all landowners adjacent to the project location, including the Michigan Department of Natural Resources,” the company said in a statement to the Petoskey News-Review, adding it instead decided to move forward with leasing property from two private landowners.

2. Atlantic County, New Jersey – Opponents of offshore wind in Atlantic City are trying to undo an ordinance allowing construction of transmission cables that would connect the Atlantic Shores offshore wind project to the grid.

Keep reading...Show less
Policy Watch

How to Solve a Problem Like a Wind Ban

And more of this week’s top policy news around renewables.

Trump.
Heatmap Illustration/Getty Images

1. Trump’s Big Promise – Our nation’s incoming president is now saying he’ll ban all wind projects on Day 1, an expansion of his previous promise to stop only offshore wind.

  • “They litter our country like paper, like dropping garbage in a field,” Trump said at a press conference Tuesday. “We’re going to try and have a policy where no windmills are built.”
  • Is this possible? It would be quite tricky, as the president only has control over the usage of federal lands and waters. While offshore wind falls entirely under the president’s purview, many onshore wind projects themselves fall entirely on state lands.
  • This is where the whole “wind kills birds” argument becomes important. Nearly all wind projects have at least some federal nexus because of wildlife protection laws, such as the Endangered Species Act and Migratory Bird Treaty Act.
  • Then there are the cables connecting these projects to the grid and interstate transmission projects that may require approval from the Federal Energy Regulatory Commission.
  • I’m personally doubtful he will actually stop all wind in the U.S., though I do think offshore wind in its entirety is at risk (which I’ve written about). Trump has a habit of conflating things, and in classic fashion, he only spoke at the press conference about offshore wind projects. I think he was only referring to offshore wind, though I’m willing to eat my words.

2. The Big Nuclear Lawsuit – Texas and Utah are suing to kill the Nuclear Regulatory Commission’s authority to license small modular reactors.

Keep reading...Show less
Q&A

Are Anti-Renewables Activists Going Unchallenged?

A conversation with J. Timmons Roberts, executive director of Brown University’s Climate Social Science Network


J. Timmons Roberts
Heatmap Illustration

This week’s interview is with Brown University professor J. Timmons Roberts. Those of you familiar with the fight over offshore wind may not know Roberts by name, but you’re definitely familiar with his work: He and his students have spearheaded some of the most impactful research conducted on anti-offshore wind opposition networks. This work is a must-read for anyone who wants to best understand how the anti-renewables movement functions and why it may be difficult to stop it from winning out.

So with Trump 2.0 on the verge of banning offshore wind outright, I decided to ask Roberts what he thinks developers should be paying attention to at this moment. The following interview has been lightly edited for clarity.

Keep reading...Show less