You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Electric vehicles are heavy because batteries are heavy. But building a lighter battery is no easy feat.
The transition from gasoline to electric vehicles will be a massive one in more than just a metaphorical sense. EVs have a weight problem — one that could undo some of the good created by going electric and exacerbate a bunch of cascading problems.
Electric vehicles are heavy because batteries are heavy. There’s just no way around it. The lithium-ion packs in EVs are the state of the art in modern battery technology and can store far more energy in a given amount of space compared to other rechargeable battery types such as nickel-cadmium. But their energy density still pales in comparison to gasoline. So, giving a car hundreds of miles of driving range means slinging a huge, heavy battery along the bottom of the vehicle.
A simple way to see the difference is between two versions of the same vehicle, one electric and one not. Depending on the various configurations, the Ford F-150 Lightning EV outweighs the gas-powered version of the pickup by at least 1,000 lbs., and sometimes closer to a full ton. Differences aren’t always so dramatic, but adding a giant battery, even when it means losing a bunch of internal combustion components, typically inflates weight.
Electrics are also heavy because all cars are heavy. The story of the last half-century of the auto industry is the death of smaller passenger cars, with consumer preference and regulatory loopholes having now led to the utter dominance of SUVs and trucks. In the EV market, smaller and lighter vehicles like the Tesla Model 3 and Chevy Bolt sold in decent numbers by hitting the market early and meeting the car-buyers who don’t want a giant ride. Now, though, the EV space is going the same way as gas. With American car-buyers willing to pay more for the crossovers and pickups they desire, automakers are moving away from less profitable modestly sized EVs in favor of crossovers and pickups.
It adds up to a lot of extra bulk rolling down the streets and highways. The most pressing danger from all these oversized electric vehicles is the threat they pose to anybody outside the car. The extra mass, combined with additional safety tech that can be built into places where engines and hoses used to go, means a big EV’s passengers are inside a fortress. It’s not such good news for pedestrians, cyclists, and occupants of any vehicle that’s not a multi-ton tank. Pedestrian deaths, which had been declining for years, began to climb again in 2010 and have reached their highest point in 40 years. It’s more difficult to see out of our increasingly huge vehicles, and when accidents happen, they are deadlier.
That’s not the only weighty concern. Over time, heavy vehicles cause more damage to roadways, bridges, and other driving infrastructure, and require them to need maintenance more often — causing even more of those pesky construction zones that slow highway traffic. At the same time, electric vehicles don’t pay for gasoline taxes that fund road maintenance, something economists are trying to solve, fast. EVs and other new vehicles are so hefty, Slatereports, that those auto-hauler semi-trucks — the ones you see on the interstate ferrying a bunch of cars to their new homes — can carry fewer cars at once because of overall limits on their cargo weight.
There is also the question of energy use. The relative fuel efficiency of electric cars is a rarely discussed part of the discourse about climate, cars, and energy. Perhaps that’s because EVs don’t come with a handy metric everyone is accustomed to, like miles per gallon (EVs can deliver an equivalent, or Mpg-e, but it’s a murky number that requires some math). Perhaps it’s because so few Americans drive electric — or because the focus, from a national perspective, has been on convincing as many people as possible to go electric, even if it means selling them a war machine like the GMC Hummer EV.
But not all electric cars are created equal. Using its imperfect data, the EPA rates a smaller electric sedan like the Tesla Model 3 at about 140 Mpg-E. For bigger SUVs, that figure falls under 100, and as low as the 60s for the Porsche Taycan or the fully loaded F-150 Lightning. That mark is still better than what you could get from an ordinary gas or hybrid car. However, it means you’re using roughly twice as much energy to run errands in an Audi E-Tron as in a Chevy Bolt. From a climate perspective, we’re giving away much of the good of transitioning to electric cars by selling bigger, bulkier, more inefficient ones.
It’s not clear there’s an immediate fix to this problem. Carmakers will sell what car shoppers want to buy. Most Americans clearly want big vehicles, and no amount of climate scolding will change that. To convince car buyers who are already wary of range anxiety to switch to electric, new vehicles need as much range as they can get — and that means packing as much battery as possible into the bottom of the car.
Are lighter EV batteries the solution, then? Well, lowering a car’s power-to-weight ratio has been an automotive obsession since the dawn of the industry, because getting more power from less weight makes a vehicle zoom-ier. As the industry transitions to electric power, lots of auto engineers are now focused on squeezing more juice out of batteries, while researchers like Kimberly See at Caltech experiment with new battery chemistries that could, one day, perhaps supplant the lithium-ion cells of today. [Editor’s note: Caltech is where I do my day job.]
It’s a tough problem, See told me. Some ideas for alternative battery chemistries potentially can store more energy per unit of mass, but their design is nascent compared to that of lithium-ion, which has been developed since the 1990s. Building an actual working battery always involves trade-offs between weight, safety, and power — and weight can’t always win.
“There are chemistries out there, like Li-S [lithium-sulfur], that would make packs much, much smaller,” See says. “But there are many fundamental science challenges.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Republicans are taking over some of the most powerful institutions for crafting climate policy on Earth.
When Republicans flipped the Senate, they took the keys to three critical energy and climate-focused committees.
These are among the most powerful institutions for crafting climate policy on Earth. The Senate plays the role of gatekeeper for important legislation, as it requires a supermajority to overcome the filibuster. Hence, it’s both where many promising climate bills from the House go to die, as well as where key administrators such as the heads of the Department of Energy and the Environmental Protection Agency are vetted and confirmed.
We’ll have to wait a bit for the Senate’s new committee chairs to be officially confirmed. But Jeff Navin, co-founder at the climate change-focused government affairs firm Boundary Stone Partners, told me that since selections are usually based on seniority, in many cases it’s already clear which Republicans are poised to lead under Trump and which Democrats will assume second-in-command (known as the ranking member). Here’s what we know so far.
This committee has been famously led by Joe Manchin, the former Democrat, now Independent senator from West Virginia, who will retire at the end of this legislative session. Energy and Natural Resources has a history of bipartisan collaboration and was integral in developing many of the key provisions in the Inflation Reduction Act — and could thus play a key role in dismantling them. Overall, the committee oversees the DOE, the Department of the Interior, the U.S. Forest Service, and the Federal Energy Regulatory Commission, so it’s no small deal that its next chairman will likely be Mike Lee, the ultra-conservative Republican from Utah. That’s assuming that the committee's current ranking member, John Barrasso of Wyoming, wins his bid for Republican Senate whip, which seems very likely.
Lee opposes federal ownership of public lands, setting himself up to butt heads with Martin Heinrich, the Democrat from New Mexico and likely the committee’s next ranking member. Lee has also said that solving climate change is simply a matter of having more babies, as “problems of human imagination are not solved by more laws, they’re solved by more humans.” As Navin told me, “We've had this kind of safe space where so-called quiet climate policy could get done in the margins. And it’s not clear that that's going to continue to exist with the new leadership.”
This committee is currently chaired by Democrat Tom Carper of Delaware, who is retiring after this term. Poised to take over is the Republican’s current ranking member, Shelley Moore Capito of West Virginia. She’s been a strong advocate for continued reliance on coal and natural gas power plants, while also carving out areas of bipartisan consensus on issues such as nuclear energy, carbon capture, and infrastructure projects during her tenure on the committee. The job of the Environment and Public Works committee is in the name: It oversees the EPA, writes key pieces of environmental legislation such as the Clean Air Act and Clean Water Act, and supervises public infrastructure projects such as highways, bridges, and dams.
Navin told me that many believe the new Democratic ranking member will be Sheldon Whitehouse of Rhode Island, although to do so, he would have to step down from his perch at the Senate Budget Committee, where he is currently chair. A tireless advocate of the climate cause, Whitehouse has worked on the Environment and Public Works committee for over 15 years, and lately seems to have had a relatively productive working relationship with Capito.
This subcommittee falls under the broader Senate Appropriations Committee and is responsible for allocating funding for the DOE, various water development projects, and various other agencies such as the Nuclear Regulatory Commission.
California’s Dianne Feinstein used to chair this subcommittee until her death last year, when Democrat Patty Murray of Washington took over. Navin told me that the subcommittee’s next leader will depend on how the game of “musical chairs” in the larger Appropriations Committee shakes out. Depending on their subcommittee preferences, the chair could end up being John Kennedy of Louisiana, outgoing Senate Minority Leader Mitch McConnell of Kentucky, or Lisa Murkowski of Alaska. It’s likewise hard to say who the top Democrat will be.
Inside a wild race sparked by a solar farm in Knox County, Ohio.
The most important climate election you’ve never heard of? Your local county commissioner.
County commissioners are usually the most powerful governing individuals in a county government. As officials closer to community-level planning than, say a sitting senator, commissioners wind up on the frontlines of grassroots opposition to renewables. And increasingly, property owners that may be personally impacted by solar or wind farms in their backyards are gunning for county commissioner positions on explicitly anti-development platforms.
Take the case of newly-elected Ohio county commissioner – and Christian social media lifestyle influencer – Drenda Keesee.
In March, Keesee beat fellow Republican Thom Collier in a primary to become a GOP nominee for a commissioner seat in Knox County, Ohio. Knox, a ruby red area with very few Democratic voters, is one of the hottest battlegrounds in the war over solar energy on prime farmland and one of the riskiest counties in the country for developers, according to Heatmap Pro’s database. But Collier had expressed openness to allowing new solar to be built on a case-by-case basis, while Keesee ran on a platform focused almost exclusively on blocking solar development. Collier ultimately placed third in the primary, behind Keesee and another anti-solar candidate placing second.
Fighting solar is a personal issue for Keesee (pronounced keh-see, like “messy”). She has aggressively fought Frasier Solar – a 120 megawatt solar project in the country proposed by Open Road Renewables – getting involved in organizing against the project and regularly attending state regulator hearings. Filings she submitted to the Ohio Power Siting Board state she owns a property at least somewhat adjacent to the proposed solar farm. Based on the sheer volume of those filings this is clearly her passion project – alongside preaching and comparing gay people to Hitler.
Yesterday I spoke to Collier who told me the Frasier Solar project motivated Keesee’s candidacy. He remembered first encountering her at a community meeting – “she verbally accosted me” – and that she “decided she’d run against me because [the solar farm] was going to be next to her house.” In his view, he lost the race because excitement and money combined to produce high anti-solar turnout in a kind of local government primary that ordinarily has low campaign spending and is quite quiet. Some of that funding and activity has been well documented.
“She did it right: tons of ground troops, people from her church, people she’s close with went door-to-door, and they put out lots of propaganda. She got them stirred up that we were going to take all the farmland and turn it into solar,” he said.
Collier’s takeaway from the race was that local commissioner races are particularly vulnerable to the sorts of disinformation, campaign spending and political attacks we’re used to seeing more often in races for higher offices at the state and federal level.
“Unfortunately it has become this,” he bemoaned, “fueled by people who have little to no knowledge of what we do or how we do it. If you stir up enough stuff and you cry out loud enough and put up enough misinformation, people will start to believe it.”
Races like these are happening elsewhere in Ohio and in other states like Georgia, where opposition to a battery plant mobilized Republican primaries. As the climate world digests the federal election results and tries to work backwards from there, perhaps at least some attention will refocus on local campaigns like these.
And more of the week’s most important conflicts around renewable energy.
1. Madison County, Missouri – A giant battery material recycling plant owned by Critical Mineral Recovery exploded and became engulfed in flames last week, creating a potential Vineyard Wind-level PR headache for energy storage.
2. Benton County, Washington State – Governor Jay Inslee finally got state approvals finished for Scout Clean Energy’s massive Horse Heaven wind farm after a prolonged battle over project siting, cultural heritage management, and bird habitat.
3. Fulton County, Georgia – A large NextEra battery storage facility outside of Atlanta is facing a lawsuit that commingles usual conflicts over building these properties with environmental justice concerns, I’ve learned.
Here’s what else I’m watching…
In Colorado, Weld County commissioners approved part of one of the largest solar projects in the nation proposed by Balanced Rock Power.
In New Mexico, a large solar farm in Sandoval County proposed by a subsidiary of U.S. PCR Investments on land typically used for cattle is facing consternation.
In Pennsylvania, Schuylkill County commissioners are thinking about new solar zoning restrictions.
In Kentucky, Lost City Renewables is still wrestling with local concerns surrounding a 1,300-acre solar farm in rural Muhlenberg County.
In Minnesota, Ranger Power’s Gopher State solar project is starting to go through the public hearing process.
In Texas, Trina Solar – a company media reports have linked to China – announced it sold a large battery plant the day after the election. It was acquired by Norwegian company FREYR.