Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

EVs Are Too Heavy. Can They Get Lighter?

Electric vehicles are heavy because batteries are heavy. But building a lighter battery is no easy feat.

A Hummer EV on a scale.
Heatmap Illustration/Getty Images

The transition from gasoline to electric vehicles will be a massive one in more than just a metaphorical sense. EVs have a weight problem — one that could undo some of the good created by going electric and exacerbate a bunch of cascading problems.

Electric vehicles are heavy because batteries are heavy. There’s just no way around it. The lithium-ion packs in EVs are the state of the art in modern battery technology and can store far more energy in a given amount of space compared to other rechargeable battery types such as nickel-cadmium. But their energy density still pales in comparison to gasoline. So, giving a car hundreds of miles of driving range means slinging a huge, heavy battery along the bottom of the vehicle.

A simple way to see the difference is between two versions of the same vehicle, one electric and one not. Depending on the various configurations, the Ford F-150 Lightning EV outweighs the gas-powered version of the pickup by at least 1,000 lbs., and sometimes closer to a full ton. Differences aren’t always so dramatic, but adding a giant battery, even when it means losing a bunch of internal combustion components, typically inflates weight.

Electrics are also heavy because all cars are heavy. The story of the last half-century of the auto industry is the death of smaller passenger cars, with consumer preference and regulatory loopholes having now led to the utter dominance of SUVs and trucks. In the EV market, smaller and lighter vehicles like the Tesla Model 3 and Chevy Bolt sold in decent numbers by hitting the market early and meeting the car-buyers who don’t want a giant ride. Now, though, the EV space is going the same way as gas. With American car-buyers willing to pay more for the crossovers and pickups they desire, automakers are moving away from less profitable modestly sized EVs in favor of crossovers and pickups.

It adds up to a lot of extra bulk rolling down the streets and highways. The most pressing danger from all these oversized electric vehicles is the threat they pose to anybody outside the car. The extra mass, combined with additional safety tech that can be built into places where engines and hoses used to go, means a big EV’s passengers are inside a fortress. It’s not such good news for pedestrians, cyclists, and occupants of any vehicle that’s not a multi-ton tank. Pedestrian deaths, which had been declining for years, began to climb again in 2010 and have reached their highest point in 40 years. It’s more difficult to see out of our increasingly huge vehicles, and when accidents happen, they are deadlier.

That’s not the only weighty concern. Over time, heavy vehicles cause more damage to roadways, bridges, and other driving infrastructure, and require them to need maintenance more often — causing even more of those pesky construction zones that slow highway traffic. At the same time, electric vehicles don’t pay for gasoline taxes that fund road maintenance, something economists are trying to solve, fast. EVs and other new vehicles are so hefty, Slate reports, that those auto-hauler semi-trucks — the ones you see on the interstate ferrying a bunch of cars to their new homes — can carry fewer cars at once because of overall limits on their cargo weight.

There is also the question of energy use. The relative fuel efficiency of electric cars is a rarely discussed part of the discourse about climate, cars, and energy. Perhaps that’s because EVs don’t come with a handy metric everyone is accustomed to, like miles per gallon (EVs can deliver an equivalent, or Mpg-e, but it’s a murky number that requires some math). Perhaps it’s because so few Americans drive electric — or because the focus, from a national perspective, has been on convincing as many people as possible to go electric, even if it means selling them a war machine like the GMC Hummer EV.

But not all electric cars are created equal. Using its imperfect data, the EPA rates a smaller electric sedan like the Tesla Model 3 at about 140 Mpg-E. For bigger SUVs, that figure falls under 100, and as low as the 60s for the Porsche Taycan or the fully loaded F-150 Lightning. That mark is still better than what you could get from an ordinary gas or hybrid car. However, it means you’re using roughly twice as much energy to run errands in an Audi E-Tron as in a Chevy Bolt. From a climate perspective, we’re giving away much of the good of transitioning to electric cars by selling bigger, bulkier, more inefficient ones.

It’s not clear there’s an immediate fix to this problem. Carmakers will sell what car shoppers want to buy. Most Americans clearly want big vehicles, and no amount of climate scolding will change that. To convince car buyers who are already wary of range anxiety to switch to electric, new vehicles need as much range as they can get — and that means packing as much battery as possible into the bottom of the car.

Are lighter EV batteries the solution, then? Well, lowering a car’s power-to-weight ratio has been an automotive obsession since the dawn of the industry, because getting more power from less weight makes a vehicle zoom-ier. As the industry transitions to electric power, lots of auto engineers are now focused on squeezing more juice out of batteries, while researchers like Kimberly See at Caltech experiment with new battery chemistries that could, one day, perhaps supplant the lithium-ion cells of today. [Editor’s note: Caltech is where I do my day job.]

It’s a tough problem, See told me. Some ideas for alternative battery chemistries potentially can store more energy per unit of mass, but their design is nascent compared to that of lithium-ion, which has been developed since the 1990s. Building an actual working battery always involves trade-offs between weight, safety, and power — and weight can’t always win.

“There are chemistries out there, like Li-S [lithium-sulfur], that would make packs much, much smaller,” See says. “But there are many fundamental science challenges.”

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

Trump Wants to Prop Up Coal Plants. They Keep Breaking Down.

According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.

Donald Trump as Sisyphus.
Heatmap Illustration/Getty Images

The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.

This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.

Keep reading...Show less
Blue
Spotlight

The New Transmission Line Pitting Trump’s Rural Fans Against His Big Tech Allies

Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.

Donald Trump, Maryland, and Virginia.
Heatmap Illustration/Getty Images

A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.

The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.

Keep reading...Show less
Yellow
Hotspots

Trump Punished Wind Farms for Eagle Deaths During the Shutdown

Plus more of the week’s most important fights around renewable energy.

The United States.
Heatmap Illustration/Getty Images

1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.

  • On November 3, Fox News published a story claiming it had “reviewed” a notice from the Fish and Wildlife Service showing that it had proposed fining Orsted more than $32,000 for dead bald eagles that were discovered last year at two of its wind projects – the Plum Creek wind farm in Wayne County and the Lincoln Land Wind facility in Morgan County, Illinois.
  • Per Fox News, the Service claims Orsted did not have incidental take permits for the two projects but came forward to the agency with the bird carcasses once it became aware of the deaths.
  • In an email to me, Orsted confirmed that it received the letter on October 29 – weeks into what became the longest government shutdown in American history.
  • This is the first action we’ve seen to date on bird impacts tied to Trump’s wind industry crackdown. If you remember, the administration sent wind developers across the country requests for records on eagle deaths from their turbines. If companies don’t have their “take” permits – i.e. permission to harm birds incidentally through their operations – they may be vulnerable to fines like these.

2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.

Keep reading...Show less
Yellow