You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Fuel is out. Supply chains are in.
It was not long ago that the combination of “hydrogen” and “automakers” would bring to mind fuel cells, a technology that has already fallen out of favor as buyers flock to electric cars. In its wake, though, green hydrogen is catching the eye of automakers for another reason: It could allow them to decarbonize one of their trickiest supply chains.
In the last two years, major car companies have committed to integrating green or recycled steel, made with hydrogen, into their vehicles. At the forefront of this effort is Volvo, which aims to be the first automaker to use fossil-free steel in its cars. If successful — and, given where the company is in the process, that’s a big if — the Swedish automaker’s efforts could provide a template for how to decarbonize other challenging parts of industrial supply chains.
Steelmaking is responsible for roughly 8% of global energy demand and 2.6 gigatonnes of carbon dioxide emissions per year, a total higher than all of the European Union’s emissions in 2021. Steelmakers use fossil fuels — and especially highly polluting coal — to process iron ore and produce the alloy. At present, there aren’t any surefire paths to reduce these emissions, given how crucial a role steel plays in modern manufacturing.
But green steel has real promise. Hydrogen made using renewable energy can be used to replace coal in steelmaking with near-zero greenhouse gas emissions. The market for green steel is still small, though, in part because there is simply not a lot on offer. In 2019, just 8% of the world’s steel mills had even begun committing to zero-carbon technology, according to the green energy non-profit RMI.
This is largely because the supply of green hydrogen — the ingredient that gives green steel its name and a hot commodity among investors — is itself constrained. Creating the fuel is incredibly energy intensive. To produce 550 million metric tons of green hydrogen annually, the world would need 18 times more solar capacity than it has installed today, according to the Hydrogen Council.
As of 2020, the world demanded 90 million metric tons of hydrogen for refining and industrial applications, which were produced almost entirely by fossil fuels. Of that, just 30,000 metric tons were produced using renewable energy.
For Volvo, the first step of the enormous undertaking of steel decarbonization was to assess the carbon footprint of a car, specifically its first electric vehicle. It found its XC40 Recharge would emit 27 metric tons of carbon dioxide over its lifetime even if it were charged entirely using renewable energy. Of that total, 18% of the materials-related emissions came from the steel used to build the car.
According to Jonas Otterheim, who was until recently the head of climate action for the Swedish automaker (though he is temporarily on leave), this realization drove home that finding suppliers of low- or no-emissions steel would be “critical” to reach the company’s goal of supply chain-wide carbon neutrality by 2040.
Volvo turned to its steel suppliers, namely SSAB, the manufacturer that has long provided the company’s conventional steel. In June 2021, the two partnered to explore developing fossil-free steel for use in its cars as well.
It may seem that substituting green steel for conventional is straightforward, especially given that, per SSAB, “the only difference in the process is that the energy used will be exclusively fossil-free electricity and other fossil-free fuels.” However, with an operation as complicated as auto manufacturing, any material change requires exhaustive testing.
And that’s where Volvo is today. The automaker aims to integrate green steel into its vehicles in 2026, which is when SSAB intends to have its fossil-free plant up and running. In the meantime, Volvo is evaluating “part-by-part” which components of its manufacturing process can safely be replaced with green steel.
“This is [a] very big job over a number of years, before the material can be put into any car,” said Otterheim. The two companies are evaluating whether the switch to green steel will require retooling its plants, which “are built specifically for every car and every material quality we have,” he added.
Otterheim said the deal initially was just exploratory in nature: an opportunity for both companies to explore whether it’s possible to make fossil-free versions of all the different grades of steel that are necessary to build a car, and potentially use it in a concept car.
However, his colleague Stina Klingvall, who is Volvo’s acting head of climate action in Otterheim’s absence, said that things have developed to the point where Volvo is actively starting to prepare to produce components with the new steel.
One promising development has come already from within the Volvo ecosystem. In August 2021, SSAB shipped a batch of green steel made at a pilot plant with renewable electricity and hydrogen to Volvo’s truck-making arm (separate from Volvo Cars), which was then integrated the steel into a dump truck prototype. (SSAB produced this steel under its Hybrit initiative, a collaboration with mining company LKAB and power company Vattenfall.)
One big outstanding question is how much automakers and other green steel buyers will have to pay to use the more sustainable metal.
RMI’s analysis found that hydrogen-based steel production can result in a 20% cost premium, but also that the premium disappears when electricity prices are in the range of $15-$20 per megawatt-hour or lower. This remains out of reach across most of the U.S., though a Lawrence Berkeley National Laboratory study found that the country is on track for solar costing $22 per MWh hour on average by 2035 (down from $34 per MWh in 2020).
Meanwhile, Otterheim said that he hopes that Volvo’s work will “help drive down costs'' to be more in line with the status quo for steel, and that it will push more automakers to make commitments of their own. This represents the most crucial knock-on effect of a single company’s dipping a toe into greener materials: peer pressure.
“Due to the scarcity of these materials over the short-term period, other premium car makers are also starting to act to secure volumes for their supply,” Otterheim said. “The race for such materials is naturally good, creating an even stronger signal to other steel suppliers to follow.”
Volvo may have made the first green steel purchase commitment, but several automaker competitors have followed suit, including BMW and General Motors. While the pool of customers for steel is a big one (and includes the renewables industry), transportation is a particularly big fish in that pool, responsible for 12% of global steel consumption, per the World Steel Association.
When it comes to urging heavy industry to decarbonize, there is strength in numbers. Materials like steel, cement, and chemicals are integral parts of countless other supply chains, which means it’s hard for a single customer to have much sway. As a consequence, heavy industrial companies lack the incentive to innovate, said former New York Times journalist Justin Gillis, who recently published a book on how to push for climate action. There are few market signals “that clean products are going to be favored,” he said.
But some companies are trying to change that dynamic. The First Movers Coalition was formed last year explicitly to create markets for nascent sectors like green steel and carbon dioxide removal. With a market cap of $8.5 trillion between the more than 50 companies involved, their collective pledges to procure climate-friendly products despite the higher price tag offers market certainty. When Ford joined the coalition in May, the company pledged that at least 10% of its steel and aluminum would have near-zero carbon emissions by 2030.
Ultimately, companies that have committed to cleaning up their supply chains have a choice of how to decide to define that supply chain, and how much pressure to put on their suppliers with hard-to-abate emissions.
“How many steps back in the supply chain do you go? The further back you go, the less responsibility any one consumer-facing company can have,” Gillis said. “I do think these companies can play a role by sending market pressure, but they need to be willing to pay a price premium for cleaner supplies or materials.”
If you enjoyed this article, sign up for Heatmap Daily to receive our top articles delivered to your inbox Monday through Friday:
Editor's note: This article was updated at 12:23 pm ET to clarify part of the steelmaking process.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
From Kansas to Brooklyn, the fire is turning battery skeptics into outright opponents.
The symbol of the American battery backlash can be found in the tiny town of Halstead, Kansas.
Angry residents protesting a large storage project proposed by Boston developer Concurrent LLC have begun brandishing flashy yard signs picturing the Moss Landing battery plant blaze, all while freaking out local officials with their intensity. The modern storage project bears little if any resemblance to the Moss Landing facility, which uses older technology,, but that hasn’t calmed down anxious locals or stopped news stations from replaying footage of the blaze in their coverage of the conflict.
The city of Halstead, under pressure from these locals, is now developing a battery storage zoning ordinance – and explicitly saying this will not mean a project “has been formally approved or can be built in the city.” The backlash is now so intense that Halstead’s mayor Dennis Travis has taken to fighting back against criticism on Facebook, writing in a series of posts about individuals in his community “trying to rule by MOB mentality, pushing out false information and intimidating” volunteers working for the city. “I’m exercising MY First Amendment Right and well, if you don’t like it you can kiss my grits,” he wrote. Other posts shared information on the financial benefits of building battery storage and facts to dispel worries about battery fires. “You might want to close your eyes and wish this technology away but that is not going to happen,” another post declared. “Isn’t it better to be able to regulate it in our community?”
What’s happening in Halstead is a sign of a slow-spreading public relations wildfire that’s nudging communities that were already skeptical of battery storage over the edge into outright opposition. We’re not seeing any evidence that communities are transforming from supportive to hostile – but we are seeing new areas that were predisposed to dislike battery storage grow more aggressive and aghast at the idea of new projects.
Heatmap Pro data actually tells the story quite neatly: Halstead is located in Harvey County, a high risk area for developers that already has a restrictive ordinance banning all large-scale solar and wind development. There’s nothing about battery storage on the books yet, but our own opinion poll modeling shows that individuals in this county are more likely to oppose battery storage than renewable energy.
We’re seeing this phenomenon play out elsewhere as well. Take Fannin County, Texas, where residents have begun brandishing the example of Moss Landing to rail against an Engie battery storage project, and our modeling similarly shows an intense hostility to battery projects. The same can be said about Brooklyn, New York, where anti-battery concerns are far higher in our polling forecasts – and opposition to battery storage on the ground is gaining steam.
And more on the week’s conflicts around renewable energy.
1. Carbon County, Wyoming – I have learned that the Bureau of Land Management is close to approving the environmental review for a transmission line that would connect to BluEarth Renewables’ Lucky Star wind project.
2. Nantucket County, Massachusetts – Anti-offshore wind advocates are pushing the Trump administration to rescind air permits issued to Avangrid for New England Wind 1 and 2, the same approval that was ripped away from Atlantic Shores offshore wind farm last Friday.
3. Campbell County, Virginia – The HEP Solar utility-scale project in rural Virginia is being accused of creating a damaging amount of runoff, turning a nearby lake into a “mud pit.” (To see the story making the rounds on anti-renewables social media, watch this TV news segment.)
4. Marrow County, Ohio – A solar farm in Ohio got approvals for once! Congratulations to ESA Solar on this rare 23-acre conquest.
5. Madison County, Indiana – The Indiana Supreme Court has rejected an effort by Invenergy to void a restrictive county ordinance.
6. Davidson County, North Carolina – A fraught conflict is playing out over a Cypress Creek Renewables solar project in the town of Denton, which passed a solar moratorium that contradicts approval for the project issued by county officials in 2022.
7. Knox County, Nebraska – A federal judge has dismissed key aspects of a legal challenge North Fork Wind, a subsidiary of National Grid Renewables, filed against the county for enacting a restrictive wind ordinance that hinders development of their project.
8. Livingston Parish, Louisiana – This parish is extending a moratorium on new solar farm approvals for at least another year, claiming such action is necessary to comply with a request from the state.
9. Jefferson County, Texas – The city council in the heavily industrial city of Port Arthur, Texas, has approved a lease for constructing wind turbines in a lake.
10. Linn County, Oregon – What is supposed to be this county’s first large-scale solar farm is starting to face pushback over impacts to a wetlands area.Today’s sit-down is with Nikhil Kumar, a program director at GridLab and an expert in battery storage safety and regulation. Kumar’s folks reached out to me after learning I was writing about Moss Landing and wanted to give his honest and open perspective on how the disaster is impacting the future of storage development in the U.S. Let’s dive in!
The following is an abridged and edited version of our conversation.
So okay – walk me through your perspective on what happened with Moss Landing.
When this incident occurred, I’d already been to Moss Landing plenty of times. It caught me by surprise in the sense that it had reoccurred – the site had issues in the past.
A bit of context about my background – I joined GridLab relatively recently, but before that I spent 20 years in this industry, often working on the integrity and quality assurance of energy assets, anything from a natural gas power plant to nuclear to battery to a solar plant. I’m very familiar with safety regulation and standards for the energy industry, writ large.
Help me understand how things have improved since Moss Landing. Why is this facility considered by some to be an exception to the rule?
It’s definitely an outlier. Batteries are very modular by nature, you don’t need a lot of overall facility to put battery storage on the ground. From a construction standpoint, a wind or solar farm or even a gas plant is more complex to put together. But battery storage, that simplicity is a good thing.
That’s not the case with Moss Landing. If you look at the overall design of these sites, having battery packs in a building with a big hall is rare.
Pretty much every battery that’s been installed in the last two or three years, industry has already known about this [risk]. When the first [battery] fire occurred, they basically containerized everything – you want to containerize everything so you don’t have these thermal runaway events, where the entire battery batch catches fire. If you look at the record, in the last two or three years, I do not believe a single such design was implemented by anybody. People have learned from that experience already.
Are we seeing industry have to reckon with this anyway? I can’t help but wonder if you’ve witnessed these community fears. It does seem like when a fire happens, it creates problems for developers in other parts of the country. Are developers reckoning with a conflation from this event itself?
I think so. Developers that we’ve talked to are very well aware of reputational risk. They do not want people to have general concern with this technology because, if you look at how much battery is waiting to be connected to the grid, that’s pretty much it. There’s 12 times more capacity of batteries waiting to be connected to the grid than gas. That’s 12X.
We should wait for the city and I would really expect [Vistra] to release the root cause investigation of this fire. Experts have raised a number of these potential root causes. But we don’t know – was it the fire suppression system that failed? Was it something with the batteries?
We don’t know. I would hope that the details come out in a transparent way, so industry can make those changes, in terms of designs.
Is there anything in terms of national regulation governing this sector’s performance standards and safety standards, and do you think something like that should exist?
It should exist and it is happening. The NFPA [National Fire Prevention Association] is putting stuff out there. There might be some leaders in the way California’s introduced some new regulation to make sure there’s better documentation, safety preparedness.
There should be better regulation. There should be better rules. I don’t think developers are even against that.
OK, so NFPA. But what about the Trump administration? Should they get involved here?
I don’t think so. The OSHA standards apply to people who work on site — the regulatory frameworks are already there. I don’t think they need some special safety standard that’s new that applies to all these sites. The ingredients are already there.
It’s like coal power plants. There’s regulation on greenhouse gas emissions, but not all aspects of coal plants. I’m not sure if the Trump administration needs to get involved.
It sounds like you're saying the existing regulations are suitable in your view and what’s needed is for states and industry to step up?
I would think so. Just to give you an example, from an interconnection standpoint, there’s IEEE standards. From the battery level, there are UL standards. From the battery management system that also manages a lot of the ins and outs of how the battery operates —- a lot of those already have standards. To get insurance on a large battery site, they have to meet a lot of these guidelines already — nobody would insure a site otherwise. There’s a lot of financial risk. You don’t want batteries exploding because you didn’t meet any of these hundreds of guidelines that already exist and in many cases standards that exist.
So, I don’t know if something at the federal level changes anything.
My last question is, if you were giving advice to a developer, what would you say to them about making communities best aware of these tech advancements?
Before that, I am really hoping Vistra and all the agencies involved [with Moss Landing] have a transparent and accountable process of revealing what actually happened at this site. I think that’s really important.