You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Fuel is out. Supply chains are in.
It was not long ago that the combination of “hydrogen” and “automakers” would bring to mind fuel cells, a technology that has already fallen out of favor as buyers flock to electric cars. In its wake, though, green hydrogen is catching the eye of automakers for another reason: It could allow them to decarbonize one of their trickiest supply chains.
In the last two years, major car companies have committed to integrating green or recycled steel, made with hydrogen, into their vehicles. At the forefront of this effort is Volvo, which aims to be the first automaker to use fossil-free steel in its cars. If successful — and, given where the company is in the process, that’s a big if — the Swedish automaker’s efforts could provide a template for how to decarbonize other challenging parts of industrial supply chains.
Steelmaking is responsible for roughly 8% of global energy demand and 2.6 gigatonnes of carbon dioxide emissions per year, a total higher than all of the European Union’s emissions in 2021. Steelmakers use fossil fuels — and especially highly polluting coal — to process iron ore and produce the alloy. At present, there aren’t any surefire paths to reduce these emissions, given how crucial a role steel plays in modern manufacturing.
But green steel has real promise. Hydrogen made using renewable energy can be used to replace coal in steelmaking with near-zero greenhouse gas emissions. The market for green steel is still small, though, in part because there is simply not a lot on offer. In 2019, just 8% of the world’s steel mills had even begun committing to zero-carbon technology, according to the green energy non-profit RMI.
This is largely because the supply of green hydrogen — the ingredient that gives green steel its name and a hot commodity among investors — is itself constrained. Creating the fuel is incredibly energy intensive. To produce 550 million metric tons of green hydrogen annually, the world would need 18 times more solar capacity than it has installed today, according to the Hydrogen Council.
As of 2020, the world demanded 90 million metric tons of hydrogen for refining and industrial applications, which were produced almost entirely by fossil fuels. Of that, just 30,000 metric tons were produced using renewable energy.
For Volvo, the first step of the enormous undertaking of steel decarbonization was to assess the carbon footprint of a car, specifically its first electric vehicle. It found its XC40 Recharge would emit 27 metric tons of carbon dioxide over its lifetime even if it were charged entirely using renewable energy. Of that total, 18% of the materials-related emissions came from the steel used to build the car.
According to Jonas Otterheim, who was until recently the head of climate action for the Swedish automaker (though he is temporarily on leave), this realization drove home that finding suppliers of low- or no-emissions steel would be “critical” to reach the company’s goal of supply chain-wide carbon neutrality by 2040.
Volvo turned to its steel suppliers, namely SSAB, the manufacturer that has long provided the company’s conventional steel. In June 2021, the two partnered to explore developing fossil-free steel for use in its cars as well.
It may seem that substituting green steel for conventional is straightforward, especially given that, per SSAB, “the only difference in the process is that the energy used will be exclusively fossil-free electricity and other fossil-free fuels.” However, with an operation as complicated as auto manufacturing, any material change requires exhaustive testing.
And that’s where Volvo is today. The automaker aims to integrate green steel into its vehicles in 2026, which is when SSAB intends to have its fossil-free plant up and running. In the meantime, Volvo is evaluating “part-by-part” which components of its manufacturing process can safely be replaced with green steel.
“This is [a] very big job over a number of years, before the material can be put into any car,” said Otterheim. The two companies are evaluating whether the switch to green steel will require retooling its plants, which “are built specifically for every car and every material quality we have,” he added.
Otterheim said the deal initially was just exploratory in nature: an opportunity for both companies to explore whether it’s possible to make fossil-free versions of all the different grades of steel that are necessary to build a car, and potentially use it in a concept car.
However, his colleague Stina Klingvall, who is Volvo’s acting head of climate action in Otterheim’s absence, said that things have developed to the point where Volvo is actively starting to prepare to produce components with the new steel.
One promising development has come already from within the Volvo ecosystem. In August 2021, SSAB shipped a batch of green steel made at a pilot plant with renewable electricity and hydrogen to Volvo’s truck-making arm (separate from Volvo Cars), which was then integrated the steel into a dump truck prototype. (SSAB produced this steel under its Hybrit initiative, a collaboration with mining company LKAB and power company Vattenfall.)
One big outstanding question is how much automakers and other green steel buyers will have to pay to use the more sustainable metal.
RMI’s analysis found that hydrogen-based steel production can result in a 20% cost premium, but also that the premium disappears when electricity prices are in the range of $15-$20 per megawatt-hour or lower. This remains out of reach across most of the U.S., though a Lawrence Berkeley National Laboratory study found that the country is on track for solar costing $22 per MWh hour on average by 2035 (down from $34 per MWh in 2020).
Meanwhile, Otterheim said that he hopes that Volvo’s work will “help drive down costs'' to be more in line with the status quo for steel, and that it will push more automakers to make commitments of their own. This represents the most crucial knock-on effect of a single company’s dipping a toe into greener materials: peer pressure.
“Due to the scarcity of these materials over the short-term period, other premium car makers are also starting to act to secure volumes for their supply,” Otterheim said. “The race for such materials is naturally good, creating an even stronger signal to other steel suppliers to follow.”
Volvo may have made the first green steel purchase commitment, but several automaker competitors have followed suit, including BMW and General Motors. While the pool of customers for steel is a big one (and includes the renewables industry), transportation is a particularly big fish in that pool, responsible for 12% of global steel consumption, per the World Steel Association.
When it comes to urging heavy industry to decarbonize, there is strength in numbers. Materials like steel, cement, and chemicals are integral parts of countless other supply chains, which means it’s hard for a single customer to have much sway. As a consequence, heavy industrial companies lack the incentive to innovate, said former New York Times journalist Justin Gillis, who recently published a book on how to push for climate action. There are few market signals “that clean products are going to be favored,” he said.
But some companies are trying to change that dynamic. The First Movers Coalition was formed last year explicitly to create markets for nascent sectors like green steel and carbon dioxide removal. With a market cap of $8.5 trillion between the more than 50 companies involved, their collective pledges to procure climate-friendly products despite the higher price tag offers market certainty. When Ford joined the coalition in May, the company pledged that at least 10% of its steel and aluminum would have near-zero carbon emissions by 2030.
Ultimately, companies that have committed to cleaning up their supply chains have a choice of how to decide to define that supply chain, and how much pressure to put on their suppliers with hard-to-abate emissions.
“How many steps back in the supply chain do you go? The further back you go, the less responsibility any one consumer-facing company can have,” Gillis said. “I do think these companies can play a role by sending market pressure, but they need to be willing to pay a price premium for cleaner supplies or materials.”
If you enjoyed this article, sign up for Heatmap Daily to receive our top articles delivered to your inbox Monday through Friday:
Editor's note: This article was updated at 12:23 pm ET to clarify part of the steelmaking process.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On boasts and brags, clean power installations, and dirty air
Current conditions: Strong winds helped spark dozens of fires across parched Texas • India’s Himalayan state of Uttarakhand experienced a 600% rise in precipitation over 24 hours, which triggered a deadly avalanche • The world’s biggest iceberg, which has been drifting across the Southern Ocean for 5 years, has run aground.
President Trump addressed Congress last night in a wide-ranging speech boasting about the actions taken during his first five weeks in office. There were some familiar themes: He claimed to have “ended all of [former President] Biden’s environmental restrictions” (false) and the “insane electric vehicle mandate” (also false — no such thing has ever existed), and bragged about withdrawing from the Paris climate agreement (true). He also doubled down on his plan to boost U.S. fossil fuel production while spouting false statements about the Biden administration’s energy policies, and suggested that Japan and South Korea want to team up with the U.S. to build a “gigantic” natural gas pipeline in Alaska.
On the same day as the speech, new tariffs on imports from Canada, Mexico, and China came into effect, triggering retaliatory duties and causing stock markets to plunge. Experts are busy trying to figure out what it all means for American businesses and consumers. As Heatmap’s Robinson Meyer explained, the tariffs are likely to make electricity prices go up, raise construction costs, make gas more expensive at the pump, and make new cars costlier. Fossil fuel firms aren’t thrilled. The American Gas Association said the 10% tariff on Canadian natural gas “indicates potential impacts totaling at least $1.1 billion in additional costs to American consumers per year.” Chet Thompson, CEO of the American Fuel & Petrochemical Manufacturers, said that “imposing tariffs on energy, refined products, and petrochemical imports will not make us more energy secure or lower costs for consumers.”
Commerce Secretary Howard Lutnick has implied Trump might lift these tariffs as soon as today, but TBD.
The Trump administration has ended a program that monitored the air quality at more than 80 U.S. embassies and consulates around the world, citing “budget constraints.” The program started in 2008 with the U.S. embassy in Beijing and expanded from there. The data collected, which was posted on the AirNow website, has been used in academic studies and credited with helping reduce pollution levels in the host countries, leading to better health outcomes. This move “puts the health of foreign service officers at risk” and could hinder research and policy, Dan Westervelt, a research professor at Columbia University’s Lamont-Doherty Earth Observatory, toldThe New York Times.
Clean power installations soared in the fourth quarter of 2024, sending total operational capacity above and beyond the 300 gigawatt mark, according to a new report from the American Clean Power Association. “It took more than 20 years for the U.S. to install the first 100 GW of clean power, five years to install the next 100 GW, and three years to install the most recent 100 GW,” the report says. Here are some takeaways:
ACPA
China plans to ramp up its efforts to rein in emissions, expanding its emissions trading system beyond power plants to to include industries such as steel, aluminum, and cement, Premier Li Qiang said in a report this week. “Li also confirmed China intends to continue to play a key role in diplomacy on emissions reduction, as the U.S. retreats from international cooperation,” Bloombergreported. The country plans to roll out major climate projects such as offshore wind farms, “new energy bases” across its deserts, with a goal of reaching peak emissions before 2030. China is the world’s largest emitter of greenhouse gases, and while it has been rapidly expanding renewable power generation, it also struggles to wean itself off coal.
The Supreme Court yesterday watered down the Environmental Protection Agency’s authority to regulate water pollution, siding with the city of San Francisco in an unusual lawsuit pitting the liberal hub against the environmental authority. In a 5-4 decision, the justices said the agency had overstepped its authority under the Clean Water Act when it issued permitting for a San Francisco wastewater treatment plant that empties into the Pacific. The permit included provisions that would have made San Francisco authorities responsible for ensuring the water quality in the Pacific met EPA standards. Justice Samuel Alito essentially wrote that the permitting rules were too vague. “When a permit contains such requirements, a permittee that punctiliously follows every specific requirement in its permit may nevertheless face crushing penalties if the quality of the water in its receiving waters falls below the applicable standards,” Alito wrote. The ruling will make it harder for the EPA to limit water pollution. Next up on the SCOTUS docket: nuclear waste!
Bernard Looney, the former CEO of oil giant BP, is the new boss of an AI startup that tells businesses how to cut their emissions.
A conversation with Resources for the Future’s David Wear on the fires in the Carolinas and how the political environment could affect the future of forecasting.
The Wikipedia article for “wildfire” has 22 photographs, including those of incidents in Arizona, Utah, Washington, and California. But there is not a single picture of a fire in the American Southeast, despite researchers warning that the lower righthand quadrant of the country will face a “perfect storm” of fire conditions over the next 50 years.
In what is perhaps a grim premonition of what is to come, several major fires are burning across the Southeast now — including the nearly 600-acre Melrose Fire in Polk County, North Carolina, a little over 80 miles to the west of Charlotte, and the more than 2,000-acre Carolina Forest fire in Horry County, South Carolina. The region is also battling hundreds of smaller brush fires, the smoke from which David Wear — the land use, forestry, and agriculture program director at Resources for the Future — could see out his Raleigh-area window.
Wear is also the co-author of a study by RFF and the U.S. Forest Service that came out in late 2024 and singled out the Southeast as facing a “particularly worrisome” rise in wildfire risk over the next half-century. I spoke with him this week to learn more about why the Carolinas are burning and what the future of fire looks like for the region. Our conversation has been edited and condensed for clarity.
When discussing fires in the American West, we often talk about how historic suppression efforts are responsible for the megafires we see today. What was the historic fire regime like in the Southeast? What’s going on to make it a hot spot for wildfires?
First, there are the similarities. Both Western and Southeastern forests, especially pine forests, are fire-adapted systems; they need regular fires to maintain health. Anything that takes those forests out of balance is a problem, and fire suppression is an issue in the East and the West, and especially in the Southeast. But forests in the Southeast are the most heavily managed forests in the country — perhaps in the world. In many cases, they’re regularly burned; the South does more prescribed burning than the rest of the country combined. It’s a very, very common practice in this part of the world.
So we shouldn’t be surprised that there is fire in Southeastern forests. There have been big, episodic fires in the South, though they’re not as common. There was the fire in 2016 in East Tennessee, from the Smokies into Gatlinburg, with a number of fatalities and lots of structures damaged or destroyed. There have been big fire years in east and west Texas. And there have been big fire seasons in Florida, though it’s been a while.
How is population growth in the Southeast adding to the strain?
We’re accustomed to talking about the wildland-urban interface in the West, but it’s also a big issue in the Southeast. Some of our urban growth centers in the Southeast include the Raleigh-Durham area, where I live, and Atlanta, Nashville, and Florida. These are generally flat landscapes, as well as very heavily forested landscapes. As the population grows out of the city centers, they go into pine and mixed-pine hardwood forests that are fire-adapted ecosystems. Then you have interspersed communities with forest vegetation, and that’s a big issue.
I also read in your report that much of that land is privately owned, which makes management tricky.
Private ownership is about 89% of forests in the South. [Editor’s note: By comparison, only about a third of forests in the West are publicly owned.] Even where you have public ownership, a lot of that is by the Department of Defense and concentrated in a couple of different areas in the Ozarks and southern Appalachians. Much of the landscape in the coastal plain and Piedmont — which is most of the South — is predominantly private ownership.
There’s a distinction to be made between commercial owners, like timber investment management companies or real estate investment trusts, who actively manage landscapes. With timber harvesting, there are a lot of risk mitigation activities and a lot of prescribed burning. But then you have over a million non-industrial private landowners with small holdings. If you’re trying to coordinate any kind of wildfire mitigation scheme using fuel treatments and the like, it requires some work.
Horry County, South Carolina, and Polk County, North Carolina, were not part of your paper’s list of counties vulnerable to wildfire. I’m curious if you think what we’re seeing now says something about the limits of the study and the data you had available, or if you have another takeaway about what’s going on.
Importantly, our study looked at long-term averages. Throughout the South, there is a fire regime, and in any given year, it is possible to have wildfires of consequence. I would point out that we were especially concerned this year because Hurricane Helene laid down an awful lot of trees and created a fuel load.
We’re also entering one of the two fire seasons in the South. Wildfire is most predominant in the spring and in the fall; it’s at those times when temperatures begin to rise but humidity remains low, and there are extended dry periods that allow the fuels to dry out. You have warm temperatures and wind in the spring, setting the stage for wildfire. Typically, that window will begin to close at the end of April because it’s pretty darn humid in the South at that point, and it’s much less likely that fuels will get dry enough to carry a fire.
The same thing happens in the fall: Temperatures may remain high, and if we don’t have a lot of precipitation and humidity — usually in October and into November — then you have the conditions right for fire. But as the climate shifts, we see the length of those seasons growing to the point where the fall is approaching the spring. Wildfires in January and February indicate that these two seasons are growing toward one another and providing a much longer season. Our paper showed that, when you account for climate change across all of those global climate models and representative concentration pathways, the windows for more wildfire activity and more intense wildfire activity are expanding.
Your paper cited wildfire risks across the Sun Belt. Today, the National Weather Service is warning of “potentially historic” fire conditions in central Texas. Can local emergency managers use your modeling to prepare for such situations?
Things like the year-to-year fire projections and the day-to-day forecasts best serve local emergency managers. Wildfire in the South is determined by the drying of fuels and temperature and humidity conditions, which vary daily. If we look over the last week, Saturday was beautiful in the Carolinas. It was sunny, in the 70s, dry, and a little windy. That was the day [hundreds of] fires started across the Southeast. And the next day, there were very few new fires. Mid-week projections of wildfire potential in the Southeast show that it’s really low, with the exception of Texas. It changes day to day, driven by fine-grain weather forecasts, and that gives emergency managers some insight into where they might want to pre-position crews or do pre-suppression activities.
What we’re doing with the modeling is asking, What is this going to look like in 50 years? The takeaway is that wildfire activity is going to remain strong and perhaps grow in the West, but the big structural change is really strong growth and active fire in the Southeast, where you have wildfire and wildlands proximal to millions of people and more vulnerable communities. It’s a fire regime that’s going to affect more people.
I also wanted to ask about the USDA Forest Service’s contributions to your paper. Do you think research like this could still happen today, given the Trump administration’s efforts to eliminate anything climate-related from the federal agenda?
I came to Resources for the Future six years ago after a long career with the Forest Service, so it’s hard for me to remain a dispassionate scientist here. I think we need to see how the dust settles. It’s hard to imagine a future where the agency and federal government do not have a high level of concern regarding fire — and I don’t think you can do any kind of effective planning, or thinking about the future, or targeting of activities without understanding how climate is likely to impact these disturbance regimes.
I don’t have the crystal ball that many people are seeking right now. We’ll have to wait to see. But our research demonstrates the vital role of understanding climate dynamics, and it shows how critical weather forecasts are for people with boots on the ground who are trying to stay ahead of disaster.
Rob and Jesse visit Intersolar and Energy Storage North America.
Longtime listeners of Shift Key will recognize the name Intersolar and Energy Storage North America, one of the country’s premier solar industry conferences. Shift Key was live at this year’s event, hosting a panel on the present and future of the solar industry featuring a pair of marquee panelists: Tom Starrs, currently the vice president for government and public affairs at EDP Renewables, North America, who has more than 30 years of experience in the renewables industry; and Maria Robinson, until recently the director of the Department of Energy’s Grid Deployment Office and now the president and CEO of the Interstate Renewable Energy Council. (Robinson is also a repeat Shift Key guest.)
On this week’s episode of Shift Key, Rob and Jesse talk with the panelists about the momentum propelling solar energy forward in the U.S. and whether the uncertainty created by the Trump administration could put a damper on that. Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Maria Robinson: I actually want to go back to the permitting piece because I think this is directly related to the conversation. I suspect everyone here has tried to permit at some point in time on federal lands and found that to be an incredibly overwhelming experience, right? When we talk about this — and my new bugaboo, for the rest of my life, is we cannot call it NEPA anymore. It is not just NEPA. It is also the Fish and Wildlife Section 7 piece, it is also working with your state historical preservation offices. There are so many other pieces than just NEPA that some of these energy permitting reform bills do not, will not actually solve some of the issues that folks are looking at.
Jesse Jenkins: They’re too narrow, yeah.
Robinson: They’re just far too narrow, associated with that. And I think that was one of the things that I was not allowed to say like four weeks ago but I can say now. That did not go far enough in —
Robinson Meyer: Do you think that friendlier lawmakers in Congress understand this distinction? Or is it all the focus is still on NEPA?
Robinson: I think all the focus is still on NEPA, and there has to be a little bit more of that conversation, right? It was fascinating to me: This weekend, the National Governors Association met in D.C., and they all agreed on this resolution about, we need to do energy permitting. And the truth of the matter is, I think, I’m sure for many of you who’ve tried to work with a state historical preservation office, that you’re actually butting up against a lack of capacity at the state level sometimes, as opposed to at the federal level.
So there needs to be that conversation that is not just all, if we suddenly make vast changes to NEPA, that everything in terms of investment is and infrastructure is going to move faster. And I think that that is something that, especially Republican lobbyists and members of Congress and members of the administration can get behind, is that sort of efficiency, right? Efficiency is the word of the moment.
Music for Shift Key is by Adam Kromelow.