You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Let’s talk about the Ramcharger 1500 — and why it’s different from a plug-in hybrid.
The American car buyer is a hard one to satisfy.
The freedom of the open road is embedded in our consciousness in a way it is in few (if any) other countries. A typical American consumer may want to be able to embark on a summer road-trip across the United States’ vast distances, to cram in a family of five and all their camping supplies (and maybe a dog and a canoe!), or to hitch up a trailer to haul a boat or RV wherever they might want to adventure.
We may not use all those features most of the time, but we don’t want to make a major purchase like a car, truck, or SUV to meet the average use case; if we can afford to, we buy for the edge case.
That’s why I can’t stop thinking about a recent announcement made by Stellantis, the Euro-American conglomerate behind brands like Dodge, Jeep, Ram and Alfa Romeo.
For model year 2025, Stellantis will electrify its full-size Ram 1500 pickup, following in the footsteps of GM and Ford. But unlike its rivals, Stellantis will offer the Ram 1500 REV in both an all-electric model (with 350-500 mile range) anda "range extender" Ramcharger 1500 that features around 140 miles of electric range — plus a V6 engine mated to a generator to power the vehicle when the battery is depleted.
I think it’s brilliant.
This kind of range-extended EV seems like the ideal near-term product to satisfy some of the trickiest American market segments to electrify: namely the uniquely American demand for full-size pickups and massive SUVs.
I’ve been a critic of plug-in hybrid vehicles as a bridge to an electrified future in the past. But I’ve leveled that critique against the popular “parallel” plug-in hybrid architecture, which features both a conventional internal combustion engine and mechanical transmission plus a battery and electric motor/generator.
Despite Toyota’s reputation for hybrids, Stellantis is actually the undisputed king of plug-in hybrids in the U.S. already, with plug-in hybrid versions of popular models like the Jeep Wrangler and Cherokee and the Chrysler Pacifica minivan selling at a record pace in recent months.
While this common plug-in hybrid architecture could be right for many Americans reluctant to fully electrify (especially those without access to dedicated Level 2 charging), they suffer from one big drawback: they carry around the full drive train — and all the baggage and cost — of both a conventional gas-burning vehicle and a full battery EV. Duplicate drivetrains means they’ll never be cheaper than a pure internal-combustion or electric car. And with limited space on board to cram in a big battery, these vehicles sport a modest 20-40 mile all-electric range.
(Listen to this recent episode of Shift Keyfor more on my problems with plug-ins and a discussion of recent U.S. electrified vehicle trends)
In contrast, a “range-extended EV” or “series” plug-in hybrid (or whatever we start calling this other third thing) like the new Ramcharger is a fully electric-drive vehicle. There’s no mechanical transmission to power the wheels. It simply has a compact gasoline engine, tuned to run at a single, most-efficient speed, married to a generator that can produce electricity to run the electric motors when the battery is depleted.
Thanks to the extended range provided by the gasoline generator, these vehicles can drop battery mass and cost, squeeze in a gasoline engine and fuel tank, and still come out comparable on cost as a pure EV with substantially longer range than parallel plug-in hybrids.
The Ram 1500 EV needs a massive 229 kilowatt-hour (kWh) pack to deliver an as-advertised 500 mile range. (The 168-kWh battery for the 350-mile-range version is also huge, 85% larger than the pack in my extended range Mustang Mach-E which gets about 300 miles range.)
In contrast, the Ramcharger has a 92 kWh pack and offers about 145 miles of all-electric range.
The range-extended series hybrid thus sheds 137 kWh of batteries vs. the 500 mile range EV. At about $100+ per kWh to manufacture and assemble those incremental battery cells, that saves Stellantis at least $14,000 to manufacture the truck. A new V6 engine costs about $5,000-10,000 retail and surely much less for an automaker to manufacture, so swapping batteries for the V6 nets a significant cost savings.
The economics and capabilities of a range-extended EV thus make a lot of sense, especially for massive vehicles like the full-size trucks and SUVs so many Americans love. And they squash any concerns about range anxiety that might give buyers pause — especially those interested in towing something, which decimates the range of the all-electric pickups on the market today.
At the same time, more range-extended EVs on the road would reduce demand for D.C. fast chargers — which are especially scarce in the more rural areas of America where the full-size pickup is king. You can still charge these vehicles at a D.C. fast charger (if you can find one), but you can also pull into any gas station to extend range on road trips.
Meanwhile, a 100+ mile electric range is sufficient to cover around 99% of trips taken in personal vehicle in America. Plus, even when running in generator mode, a series electric drive train with regenerative braking is more efficient than a pure internal combustion drive (especially when the internal combustion generator can bypass the battery to directly power the electric motors, as it can in the Ramcharger). Near-term adoption of range-extended EVs could deliver substantial reductions in both emissions and gas use.
Sound familiar? That’s because this was exactly how the original Chevy Volt and BMW i3 range extended option were configured way back in 2011. Why GM didn’t continue down this path to electrify their massive Silverados, Sierras, and Escalades is beyond me.
Stellantis isn’t the only automaker going down this path. Mazda has struggled to get a competitive EV out, with their MX-30 offering a paltry 100-mile range. So they’re launching a range-extended version with a compact 830cc rotary engine (one of Mazda’s core IPs), which could turn the compact SUV into a truly viable product. Across the Atlantic, Nissan also offers a series hybrid drivetrain marketed as e-POWER in Europe and the U.K.
Building range-extended battery EVs is also a good way for manufacturers to develop experience with all-electric vehicle architecture and achieve economies of scale in production. A series hybrid can ride on the same all-electric platform as a full battery electric variant — as in the case of the Ram 1500 REV and Ramcharger — which is key to keeping manufacturing costs low. (Several Chinese automakers took this route.) In contrast, a parallel plug-in hybrid always shares a platform with its pure fossil fueled siblings.
Finally, the U.S. is embarking on a strategic effort to onshore and “friend shore” the whole EV battery and critical minerals supply chain. It’s going to be a serious challenge. Cutting the size of battery packs in electric full-size pickup and SUVs in half makes that a lot easier.
So are range-extended EVs with 100 mile range the electrified vehicle Americans are waiting for? If they're demanding big vehicles, towing capacity, and long-distance travel away from cities and interstates — e.g. exactly the segments hardest to satisfy with a pure EV — the answer might be yes.
Editor’s note: A previous version of this article used “personal vehicle miles traveled” instead of trips taken in personal vehicles. It’s been updated.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob and Jesse talk with Michael Grunwald, author of the new book We Are Eating the Earth.
Food is a huge climate problem. It’s responsible for somewhere between a quarter and a third of global greenhouse gas emissions, but it concerns a much smaller share of global climate policy. And what policy does exist is often … pretty bad.
On this week’s episode of Shift Key, Rob and Jesse talk with Michael Grunwald, the author of the new book We Are Eating the Earth. It’s a book about land as much as it’s a book about food — because no matter how much energy abundance we ultimately achieve, we’re stuck with the amount of land we’ve got.
Grunwald is a giant of climate journalism and a Heatmap contributor, and he has previously written books about the Florida everglades and the Obama recovery act. Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: How did writing the book change how you, yourself, approached food — or you, yourself, eat? Do you find yourself eating less meat now? Do you find yourself eating less dairy?
Michael Grunwald: I cut out beef pretty early in my reporting. It became really obvious early on that beef is the baddie. I mean, if you’re a vegan, that’s amazing. That’s the best thing you can do from a climate perspective. If you’re vegetarian, that’s also great. But it turns out that cutting out beef is about as good as going vegetarian because vegetarians tend to eat more dairy, and cows are really the problem.
Beef is like, use 10 times more land and generate 10 times more emissions than chicken or pork. And yeah, chicken or pork are worse than beans and lentils. But I, like many people are weak. I’m a hypocrite. I feel like this stuff, it’s sort of like organized religion — you have to find the level of hypocrisy that you’re comfortable with. And I couldn’t justify continuing to eat beef while writing a book about how beef is really the problem, and we need to eat less beef and better beef.
But look, you know, our ancestors started eating meat 2 million years ago, and we’re really, I think, kind of hardwired to eat it. That said, I have stuck to it. I write in the book about how I did a bunch of reporting on cattle ranches in Brazil, and I spent two weeks sort of trying to think about how we could have better beef. And I did fall off the wagon during those two weeks because like, steak is delicious. People told me that, you know, Oh, if you’re still eating chicken and pork, after a month, you won’t even miss beef. And they lied. I still miss beef.
But look, I do think — and we can talk about this — I know in the climate world it’s become kind of uncool to talk about individual action. There’s this whole spate of stories about like, you know, I’m in the climate movement and I don’t care if you recycle, or veganism isn’t gonna save the world. But I honestly think, first of all, emissions are us. JBS and Donald Trump and McDonald’s are not forcing us to eat all this beef. These are decisions we make. Second of all, that if we do take this seriously as a climate crisis — I mean, it’s true. Policy is going to matter more. Corporate behavior is going to matter a lot. But individual emissions matter, too. And I don’t like the idea of people saying, like, Yeah, this is a horrible crisis, but also your emissions don’t matter.
I guess I understand enviros don’t want to sound like scolds. They used to have a bad reputation. But honestly, I think … well, now I think their reputation is for ineffectual rather than scoldy. And I think I liked it better when they were scoldy.
Mentioned:
Preorder We Are Eating the Earth
The real war on coal, by Michael Grunwald
The Senate GOP’s seismic overhaul of clean energy tax credits
Music for Shift Key is by Adam Kromelow.
And it only gets worse from here.
Hot and humid weather stretching from Maine to Missouri is causing havoc for grid operators: blackouts, brownouts, emergency authorizations to exceed environmental restrictions, and high prices.
But in terms of what is on the grid and what is demanded of it, this may be the easiest summer for a long time.
That’s because demands on the grid are growing at the same time the resources powering it are changing. Between broad-based electrification, manufacturing additions, and especially data center construction, electricity load growth is forecast to grow several percent a year through at least the end of the decade. At the same time, aging plants reliant on oil, gas, and coal are being retired (although planned retirements are slowing down), while new resources, largely solar and batteries, are often stuck in long interconnection queues — and, when they do come online, offer unique challenges to grid operators when demand is high.
For the previous 20 years, load growth has been relatively steady, Abe Silverman, a research scholar at Johns Hopkins, explained to me. “What’s different is that load is trending up,” he said. “When you’re buying and making arrangements for the summer, you have to aim a bit higher.”
Nowhere is the combined and uneven development of the grid’s supply and demand more evident than in PJM Interconnection, the country’s largest electricity market, spanning from Washington, D.C. to Chicago. The grid now has to serve new load in Virginia’s “data center alley,” while aggressive public policy promoting renewables in states such as Maryland and New Jersey has made planning more complicated thanks to the different energy generation and economic profiles of wind, solar, and batteries compared to gas and coal.
PJM hit peak load on Monday of just over 161,000 megawatts, within kissing distance of its all-time record of 165,500 megawatts and far north of last year’s high demand of 152,700, with load hitting at least 158,000 megawatts on Tuesday. Forecast high load this year was around 154,000 megawatts. Earlier this spring, PJM warned that for the first time, “available generation capacity may fall short of required reserves in an extreme planning scenario that would result in an all-time PJM peak load of more than 166,000 megawatts.”
While that extreme demand has not been seen on the grid during this present heat wave, we’re still early in the year. Typically, PJM’s demand peaks in July or even August; according to the consulting firm ICF, the last June peak was in 2014, while demand last year peaked in July. On Monday, real time prices got just over $3,000 a megawatt, and reached just over $1,800 on Tuesday.
“This is a big test. A lot of capacity has retired since 2006 and the resource mix has changed some,” Connor Waldoch, head of strategy at GridStatus, told me. While exact data on the resource mix over the past 20 years isn’t available, Waldoch said that many of the fossil fuel plants on the grid — including those that help set the price of electricity — are quite old.
PJM’s operators have issued a “maximum generation alert” that will extend to Wednesday, warning generators and transmission owners to defer or cancel maintenance so that “units stay online and continue to produce energy that is needed.”
PJM also issued a load management alert, a warning that PJM may call upon some 8,000 megawatts of electricity users who have been paid in advance to reduce demand when the grid calls for it. Already, some large users of electricity in Virginia have reduced their power demand as part of the program. There are historically around one or two uses of demand response per year in each of the electricity market’s 21 zones.
“Demand response is a real hero,” Silverman said.
Elsewhere in the hot zone, thousands of customers of the New York Independent Systems Operator lost or saw reduced power on Monday, along with over 100,000 customers affected by voltage reductions. On Tuesday, NYISO issued an “energy watch” meaning that “operating reserves are expected to be lower than normal,” and asking customers to reduce their power consumption.
Further north, oil and coal made up 10% of the fuel mix in ISO New England by Monday night, according to GridStatus data. The region has greatly expanded behind-the-meter solar generation since 2010, which as of 2 p.m. Monday was generating over 21% of the region’s power. But the grid as a whole hasn’t been able to keep up, thanks to a nationally anomalous shortage of gas capacity and still-insufficient battery storage. As the sun faded, so too did New England’s renewable generation.
“You don’t see coal very often in the New England fuel mix,” Waldoch told me. In fact, there is only one remaining coal plant in New England, which can typically power around 440,000 homes — though that’s based on normal electricity usage. On days like the past few, it may power far fewer.
Moving into Tuesday, Secretary of Energy Chris Wright invoked emergency authorities to allow Duke Energy in the Carolinas to run certain of its units “at their maximum generation output levels due to ongoing extreme weather conditions and to preserve the reliability of bulk electric power system.”
The strained grid and high prices come as grid operators question how effectively their current and planned generation capacity can meet future demand. These questions have become especially pressing in PJM, which last year shelled out billions of dollars in payments to largely fossil fuel generators in what’s known as a capacity auction. That’s already translating to higher costs for consumers — in some cases as high as 20%. But even that could be nothing compared to what’s coming.
“If you take the current conditions that PJM is dealing with right now and you add tens of gigawatts of data to center demand, they would be in trouble,” Pieter Mul, an energy and infrastructure advisor at PA Consulting, told me.
Right now, Mul said, PJM can muddle through. “It is all hands on deck. Our prices are quite high. They’ve invoked some various emergency conditions.” But that’s before all those data centers are even online. “It’s a 2026, ’27, and beyond question,” Mul said.
Today, however, “it’s mostly just very hot weather.”
The state’s senior senator, Thom Tillis, has been vocal about the need to maintain clean energy tax credits.
The majority of voters in North Carolina want Congress to leave the Inflation Reduction Act well enough alone, a new poll from Data for Progress finds.
The survey, which asked North Carolina voters specifically about the clean energy and climate provisions in the bill, presented respondents with a choice between two statements: “The IRA should be repealed by Congress” and “The IRA should be kept in place by Congress.” (“Don’t know” was also an option.)
The responses from voters broke down predictably along party lines, with 71% of Democrats preferring to keep the IRA in place compared to just 31% of Republicans, with half of independent voters in favor of keeping the climate law. Overall, half of North Carolina voters surveyed wanted the IRA to stick around, compared to 37% who’d rather see it go — a significant spread for a state that, prior to the passage of the climate law, was home to little in the way of clean energy development.
But North Carolina now has a lot to lose with the potential repeal of the Inflation Reduction Act, as my colleague Emily Pontecorvo has pointed out. The IRA brought more than 17,000 jobs to the state, per Climate Power, along with $20 billion in investment spread out over 34 clean energy projects. Electric vehicle and charging manufacturers in particular have flocked to the state, with Toyota investing $13.9 billion in its Liberty EV battery manufacturing facility, which opened this past April.
North Carolina Senator Thom Tillis was one of the four co-authors of a letter sent to Majority Leader John Thune in April advocating for the preservation of the law. Together, they wrote that gutting the IRA’s tax credits “would create uncertainty, jeopardizing capital allocation, long-term project planning, and job creation in the energy sector and across our broader economy.” It seems that the majority of North Carolina voters are aligned with their senator — which is lucky for him, as he’s up for reelection in 2026.