You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Repairs are hard when you need them.
Hansjörg Gemmingen drove his Tesla Model S past the 1-million-mile mark last summer and he’s still going. The world record-holder for electric mileage hopes to soon pass 2 million kilometers (about 1.25 million miles). His EV didn’t reach this eye-popping total on its original equipment, though. InsideEVs notes his Model S P85 is on at least its second battery and eighth electric motor.
Most EV owners won’t travel the equivalent of two round trips to the moon. Yet Gemmingen’s experience may tell us something about how long electric vehicles could last, how repairable they are, and what it will take to keep them rolling for decades.
EVs are simple — mechanically, at least. Set aside a Tesla’s complex, proprietary software, and its hardware boils down to a big battery, motors, and other electric components, and about 20 moving parts. Compare that to a typical gas car, which is a maddening amalgamation of pistons, belts, and around 2,000 other moving parts waiting to go awry. Electric vehicles’ simplicity may bestow extra longevity. Car and Driver finds a new EV is expected to average about 50% more miles than a new gas car (300,000 vs. 200,000 miles).
Car owners have always faced hard questions about when it’s time to stop sinking money into a vehicle, especially when another major repair may be right around the corner. “There’s a cost of keeping the car on the road, and eventually the costs of maintaining the vehicle are going to be greater than the costs of replacing it. And so at that point, somebody’s going to retire it or part with it,” says Hanjro Ambrose, a vehicle electrification expert and researcher at the National Center for Sustainable Transportation at the University of California, Davis.
With an electric vehicle, the calculus could be subtly different. With fewer things to go wrong, repairs might be less frequent but also more expensive, particularly if a battery needs to be replaced. Fixes might also be more annoying because so few mechanic shops are ready to service EVs.
The battery is the big question, since it contributes so much to the cost and vitality of an electric vehicle. CEO Elon Musk has said Tesla’s older batteries are rated to last for 300,000 to 500,000 miles. (It would make sense, then, that Gemmingen had to replace his at least once on the road to a million miles.) If that longevity holds up, then owners could replace parts that might go bad at 100,000 or 200,000 miles — say, the electric capacitors or motors — with the confidence their investment will pay off. And, if the hype is to be believed, new EV batteries coming down the pipeline could last for a million miles of driving. It would take a normal person the better part of a century to drive that far. A million-mile battery could mean a car that lasts a lifetime.
Maybe. Despite such promises, the batteries in most new EVs are warrantied only up to about 100,000 miles. If the battery fails at any time after that, the driver is in a tough spot. Car-sized lithium-ion batteries remain notoriously expensive — it may cost $20,000 or more to replace an EV’s kaput battery pack, which happened to some Tesla Model S early adopters because of a manufacturing issue. In certain cases, it may be possible to repair a single defective cell rather than an entire battery, but that’s still an expensive fix and a tough pill to swallow for a car that’s already old.
Now, most EV batteries won’t randomly die — Ambrose estimates that less than 1 percent will suffer such a catastrophic failure. But all of them will age. Most battery warranties only guarantee the battery pack won’t fade beyond a certain percentage of its original capacity by the 100,000-mile mark (70 percent, in Telsa’s case). As a result, a driver still using the original battery at 200,000 miles or more will probably find that their car’s range has degraded significantly. “If you were barely hitting 200 miles to start, those reductions in range after 10 years might be pretty significant,” Ambrose says. “So much so that your vehicle might not be very useful for your normal commute.”
Still, if a modern EV can keep even half its original range, it will remain more than good enough for the short and medium-sized trips that make up the bulk of everyday driving. Many owners could conceivably keep their aging cars on the road for decades with occasional fixes. But another problem emerges: Who’s going to do the repairs? The professional mechanics qualified to work on EVs remain scarce. Pete Gruber, owner of EV-focused Gruber Motors in Phoenix, Arizona, has said that vocational schools are still churning out mechanics trained solely for internal combustion vehicles. When he wants EV mechanics for his shop, he often has to train them himself.
Today’s electric cars aren’t exactly DIY-friendly, either. Even before the EV revolution, modern cars were becoming complicated enough to deter the weekend garage mechanic. This may not be a bad thing, since few have the electrical engineering expertise to safely tinker with an EV. But many new electric vehicles are black boxes that require proprietary technology to diagnose and fix, discouraging owners from considering repair shops outside of the automaker’s ecosystem. Just last week Tesla faced a new class-action lawsuit alleging the automaker effectively makes drivers bring their cars to Tesla shops.
In addition, Ambrose says, EV manufacturers are moving towards integrated manufacturing — for example, where the battery is part of the frame and thus more difficult to replace. “It might make it cheaper to make EVs in general, and make better EVs,” he says. “At the same time it’s going to make it harder to repair a vehicle, right? Because if you think about it, it’s just like now in modern laptops, everything’s glued together. I can’t take anything apart anymore.”
If it sounds like the planned obsolescence of smartphones and other tech is coming to EVs, you wouldn’t be wrong. What the industry needs to be more sustainable may be the opposite — a car repairable and modular enough that a determined owner could make it last forever.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Using more electricity when it’s cheap can pay dividends later.
One of the best arguments for electric vehicles is the promise of lower costs for the owner. Yes, EVs cost more upfront than comparable gas-powered cars, but electric cars are cheaper to fuel and should require less routine maintenance, too. (Say goodbye to the 3,000-mile oil change.)
What about the societal scale, though? As the number of EVs on the road continues to rise, more analysts are putting forth the argument that EV ownership could lead to lower energy bills for everyone, even the people who don’t buy them.
The idea may be counterintuitive, given the prevailing narrative about voracious appetite for electricity. EVs do require a lot of energy. Electricity demand for EVs in the U.S. jumped 50% from 2023 to 2024 alone as more Americans bought electric, and the research group Ev.energy says demand could triple by 2030. Studies suggest that replacing every internal combustion vehicle in the country with an EV would eat up as much as 29% of American electricity.
Meanwhile, the grid is struggling to keep up — it is, after all, much more difficult to add more megawatts to the capacity of our power system than it is to put a few more EVs on the road. The obvious inference would then seem to be that a battery-powered car fleet could cause an energy crunch and spike in prices.
A new report from Ev.energy, however, argues that if we got smarter about how and when we charge our cars, their presence could actually cut costs for the average American by 10%. The gains could be even better if EVs reach their true potential as a way to give the grid a unique kind of flexibility and resilience.
Compare an electric car to a data center, the other application painted as a ticking time bomb for electricity prices. Worries about the energy-gobbling habits of AI-powering servers are well-founded, given their 24/7 appetite. An EV, however, needs to charge only once in a while. In fact, most people don’t need to charge every day, given the range of modern EVs and the driving habits of the typical American.
As we've covered before, it’s when you charge that matters. Optimizing EV charging can be a helpful way to ease pressure on the power grid and align EV charging with the availability of clean energy.
Here in California, which has far and away the most EVs in America, TV commercials remind us to use less energy between 4 p.m. and 9 p.m., when the state is dealing with rising residential energy use just as solar power is tapering off for the day. It would cause a grid crisis if every EV owner charged as soon as they got home from work. Having EV owners charge their cars overnight, a period of low demand, helps ease the pressure. So does charging during midday, when California sometimes has more solar energy than it knows what to do with.
When EVs charge in this mindful manner, using energy during times of day when it’s cheap for utilities to provide it, data suggests they can effectively push down electricity prices for everyone. Says one recent report from Synapse Energy: “In California, EVs have increased utility revenues more than they have increased utility costs, leading to downward pressure on electric rates for EV-owners and non-EV owners alike.” As the NRDC points out, California has revenue decoupling in place for its utilities, so “any additional revenue in excess of what was anticipated is returned to all utility customers — not just EV drivers — in the form of lower rates.”
Those rosy figures depend upon drivers following this model and charging during off-peak hours, of course. But with time-of-use rates giving them the financial motivation to charge overnight rather than in the early evening, it’s not an outrageous presumption.
And there’s something else that differentiates EVs from other applications that consume lots of electricity: Thanks to their ability to store a large number of kilowatt-hours over a lengthy period of time, electric vehicles can give back. EVs can be a cornerstone of the virtual power plant model because the cars — those equipped with bidirectional charging capabilities, at least — could feed the energy in their batteries back onto the grid to prevent blackouts, for example. In Australia, the Electric Vehicle Council recently crunched the numbers to argue in favor of incentivizing residents to install vehicle-to-grid infrastructure. Their math indicates Australia would reap more than the government invests because these connected EV would cut everyone’s electricity price.
It’s getting more expensive for the individual to own an EV — the federal tax credit for buying one disappears at month’s end, and punitive yearly fees for EV ownership are coming. Yet it seems that driving electric might be doing your neighbors a favor, and not just by clearing the air.
The energy sector — including oil and gas — and manufacturing took some heavy hits in the latest jobs report.
We got a much better sense of what the American labor market is doing today. And the news was not good.
The economy added only 22,000 jobs last month, far fewer than economists had predicted, according to a new release from the Bureau of Labor Statistics. The new data also shows that the economy gained slightly more jobs in July than we thought at the time, but that it actually lost 13,000 jobs in June — making that month the first since 2020 to see a true decline in U.S. employment.
The unemployment rate now stands at 4.3%, one tenth of a percent higher than it was last month. All in all, the American labor market has been frozen since President Trump declared “Liberation Day” and announced a bevy of new tariffs in April.
On the one hand, some aspects of that job loss shouldn’t be a surprise. As we’ve covered at Heatmap, the Trump administration has spent the past few months attacking the wind, solar, and electric vehicle industries. It has yanked subsidies from new electricity generation, rewritten rules on the fly, and waged an all-out regulatory war on offshore wind farms. Electricity costs are rising nationwide, constraining essentially all power-dependent industries except artificial intelligence.
In short: The news hasn’t been good for the transition industries. But what’s notable in this report is that the job declines are not limited to these green industries. The first eight months of Donald Trump’s presidency have been more and more damaging for the blue collar fields and heavy industries that he promised to help.
For instance: Mining, quarrying, and oil extraction lost 6,000 jobs in August. These losses were led by the oil and gas industry, as well as mining support companies. Other industries — such as coal mining firms — saw essentially no growth or very slightly declines.
More cuts are likely to come soon for the fossil fuel industry. The oil giant ConocoPhillips says it will lay off about a quarter of its roughly 13,000-person workforce before the year is out. The oilfield services company Halliburton has also been shedding workers in recent weeks, according to Reuters. The West Texas benchmark oil price has lost nearly $10 since the year began, and is now hovering around $62. That’s roughly the average breakeven price for drilling new wells in the Permian Basin.
The manufacturing industry has lost 78,000 jobs since the year began. In the past month, it shed jobs almost as fast as the federal government, which has deliberately culled its workforce, as the economic analyst Mike Konczal observed.
This manufacturing weakness is also showing up in corporate earnings. John Deere, the American farm equipment maker, has seen its income degrade through the year. It estimates that Trump’s steel and aluminum tariffs will cost the company $600 million in 2025, and it recently laid off several hundred workers in the Midwest.
Even industries that have previously shown some resilience — and that benefited from the AI boom — have started to stall out a bit. The utility industry lost about 1,000 jobs last month, on a seasonally adjusted basis, according to the new data. (At the same time, the number of non-managerial utility workers slightly increased.) The utility sector has still gained more than 6,000 jobs compared to a year ago.
A few months ago, I quipped that you could call President Trump “Degrowth Donald” because his tax and trade policies seemed intent on raising prices and killing the carbon-intensive sectors of the American economy. (Of course, Trump was doing plenty that radical climate activists didn’t want to see, too, and his anti-renewable campaign has only gotten worse.) Now we’re seeing the president’s anti-growth policies bear fruit. It was a joke then. Now it’s just sad.
Trump’s enthusiasm for the space has proved contagious — building on what Biden started.
It’s become a well-known adage in energy circles that “critical minerals are the new oil.” As the world pushes — haltingly but persistently — toward decarbonization and electrification, minerals such as lithium, nickel, and copper have only risen in their strategic importance.
These elements are geographically concentrated, largely in spots with weighty implications for geopolitics and national security — lithium largely in South America and Australia, copper in South America, nickel in Indonesia, cobalt in the Democratic Republic of the Congo, and graphite in China. They’re also subject to volatile price swings and dependent on vast infrastructure to get them out of the ground. But without them, there are no batteries, no magnets, no photovoltaic cells, no semiconductors, no electrical wiring. It is no surprise, then, that it’s already been a big year for investment.
Sector-wide data is scarce, but the announcements are plentiful. Some of the biggest wins so far this year include the AI minerals discovery company Kobold, which closed a colossal $537 million funding round, software-driven mining developer Mariana Minerals landing $85 million in investment, rare earth magnet startup Vulcan Minerals raising $65 million, and minerals recycling company Cyclic Materials announcing plans for a commercial plant in Canada.
“The good investments are still the good investments,” Joe Goodman, co-founder and managing partner at the firm VoLo Earth Ventures, told me. “But I think the return opportunities are larger now.” VoLo’s primary bets include Magrathea, which has an electrolysis-based process to produce pure magnesium from seawater and brines and is reportedly in discussions to form a $100 million partnership for a commercial-scale demonstration plant, as well as Nth Cycle, which recovers and refines critical minerals from sources such as industrial waste and low-grade ores and is well into its first full year of commercial operations.
Much of this activity has been catalyzed by the Trump administration’s enthusiasm for critical minerals. The president has issued executive orders aimed at increasing and expediting domestic minerals production in the name of national defense, and a few weeks ago, announced its intent to issue nearly $1 billion in funding aimed at scaling every stage of the critical minerals supply chain, from mining and processing to manufacturing. As Energy Secretary Chris Wright said at the time, “For too long, the United States has relied on foreign actors to supply and process the critical materials that are essential to modern life and our national security.”
Ironically, the Trump administration is building on a foundation laid by former President Biden as part of his administration’s efforts to decarbonize the economy and expedite the energy transition. In 2022, Biden invoked the Defense Production Act to give the federal government more leeway to support domestic extraction, refining, and recycling of minerals. It also invested billions of dollars from the previous year’s Bipartisan Infrastructure Law to secure a “Made In America supply chain for critical minerals.” These initiatives helped catalyze $120 billion in private sector investments, the administration said.
While they were “motivated by radically different ideologies,” Goodman told me, the message is the same: “We care a lot about our minerals.” As he put it, “The last two administrations could not have been better orchestrated to send that message to public markets.”
Ultimately, political motivations matter far less than cash. In that vein, many companies and venture capitalists are now aligning with the current administration’s priorities. As the venture firm Andreessen Horowitz noted in an article titled “It’s Time to Mine: Securing Critical Minerals,” an F-35 fighter jet requires 920 pounds of rare earth elements, a Navy missile destroyer needs 5,200 pounds, and a nuclear-powered submarine take a whopping 9,200 pounds. Rare earths — a group of metals that form a key subset of critical minerals — are crucial components of the high-performance magnets, precision electronics, and sensors these defense systems rely on.
The military is also certainly interested in energy storage systems, including novel battery chemistries with potential to be more efficient and cost effective than the status quo. This just so happens to be the realm of many a lucrative startup, from Form Energy’s iron-air batteries to Lyten’s bet on lithium-sulfur and Peak Energy’s sodium-ion chemistry.
The Army has also gone all in on microgrids, frequently building installations that rely on solar plus storage. And batteries for use in drones, cargo planes and tactical vehicles are often simply the most practical option, given that they can operate in near silence and reduce vulnerabilities associated with refueling. “It’s much easier to get electricity into contested logistics than it is to get hydrocarbons,” Duncan Turner, a general partner at the venture capital firm SOSV, told me.
Turner has overseen the firm’s investments in minerals companies across the supply chain, a number of which focus on the extraction or refining of just one or a few minerals. For example, SOSV’s portfolio company Still Bright is developing an electrochemical process to extract copper from both high-grade ores as well as mining waste, replacing traditional copper smelting methods. The minerals recycling company XEra Energy is initially focused on reclaiming nickel from ore concentrates and used batteries, though it plans to expand into other battery materials, as well, while the metal recycling company Biometallica is developing a process to recover palladium, platinum, and rhodium from e-waste.
These startups could theoretically use their tech to go after a whole host of minerals, but Turner explained that many find the most lucrative strategy is to fine tune their processes for certain minerals in particular. “That is just a telltale sign of maturity in the market,” he told me, as companies identify their sweet spot and carve out a profitable niche.
Clea Kolster, the head of science at Lowercarbon Capital, was bullish on the potential for critical minerals investments well before the Trump administration shifted the conversation toward their role in the defense sector. “Our view was always that demand for these minerals was just going to increase,” she told me. “This administration has certainly provided a boon and validator for our thesis, but these investments were made on the basis that these would render metal production cheaper and more accessible.”
Lowercarbon was an early investor in the well-capitalized startup Lilac Solutions, first backing the company’s pursuit of a more efficient and sustainable method of lithium brine extraction in early 2020. Since then, Lilac has raised hundreds of millions in additional funding rounds — which Lowercarbon has led — and is now seeking additional capital as it plans for its first commercial lithium production plant in Utah. Lilac isn’t the firm’s only lithium bet — it’s also backing Lithios, a company developing an electrochemical method for separating lithium from brines, and Novalith, which is working on a carbon-negative process for extracting lithium from hard rock without the use of environmentally damaging acids.
Kolster admitted that in Lowercarbon’s early days, the firm “didn’t fully appreciate how significant those additional narratives would become beyond decarbonization,” pointing to critical minerals’ newly prominent role not just in defense, but also in the AI arms race. After all, no new transmission lines, transformers, gear to turn circuits on and off, or other critical grid components can be built or scaled to support the rising electricity demands of data centers without critical minerals.
Goodman told me that some generalist investors have yet to take note of this, however. “There’s large pockets of the investment community who feel like climate is out of the rotation,” he said.
“So in a way we’re experiencing a better pricing opportunity right now, access to higher quality deals.”
From here on out, he predicts we’ll see a steady stream of announcements signaling that the U.S. has secured yet another link in the minerals supply chain, which will be crucial to counter China’s global influence. “I think annually you’ll be seeing the US raise the flag and declare success on another mineral,” Goodman told me. “It might be two years after we raise the flag that a facility is actually operational. But there's going to be a cadence to us taking back our supply chain.”