You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
C’mon Ford. Don’t let me down.
Automakers sit at the towering heights of global capitalism. Nearly every important industry or commodity — steel, rubber, chemicals, semiconductors, minerals, and, of course, oil — feeds into car-making. Car companies receive so much government support that their brands often come to symbolize the state itself: Volkswagen, Toyota, and Ford are arguably more tied up with their countries’ national histories than, say, currywurst, sushi, or cheeseburgers.
Undertaking the construction of a wholly new car is such an expensive and arduous challenge that multiple automakers will often collaborate on it, creating a “platform” that involves a shared chassis and a set of interlocking components.
So it would be folly — if not outright delusion — to look at one of these companies and tell them that they should make a car for no reason other than that you want them to. Surely Ford Motor Company has better things to do than read a column and decide to shift its product line accordingly.
But that is what I’m going to do.
Ford should take its compact Maverick pickup truck — the smallest truck in their fleet — and release it as a plug-in hybrid. Here are the seven reasons why.
I like little trucks. I realize this is a character deficiency, and a somewhat unusual vice for my demographic: I’m a city-dwelling climate-change reporter who has no particular love for the canyon-face monsters that make up most modern pickup lines. But it’s hopefully a forgivable one.
Forty years ago, if you wanted a compact pickup, you could have bought the trusty little Ford Ranger, a 15-foot bear cub of a truck that weighed a mere ton and could haul up to 1,600 pounds. The Ranger was a revolution, signaling that American automakers weren’t content to cede the compact pickup market to Japanese brands like Mazda and Toyota.
U.S. National Highway Traffic Safety Administration via Wikimedia Commons.
Then compact pickups began to vanish. Toyota’s sprightly Tacoma, once a tail-wagger of a utility vehicle, slowly became super-sized. Ford stopped making the Ranger in 2012. By the middle of the 2010s, essentially no small trucks were available on the American market
Recently, compacts have started to come back. Ford brought back the Ranger, although the new model is as sleek and functional as a linebacker. Hyundai has released the Santa Cruz, the closest thing in America to the venerable Australian ute. Then in 2021, Ford started making the Maverick. At 16-feet long and 3,600 pounds, it’s bulkier and heavier — but not much bigger — than the chipper Rangers of yore. The Maverick is so popular that Ford had to stop taking orders for it last year. And while the Mav is currently offered as a hybrid … Ford could do better.
I take it as a given that Ford will eventually release an all-electric Maverick. But in the meantime, a plug-in hybrid would be potentially more useful. Here’s why.
A plug-in hybrid electric vehicle, or PHEV, is just what it sounds like: a car or truck that has a gas tank and a battery that gets a little bit of range — maybe 30 miles. That larger battery differentiates a PHEV from a conventional hybrid, like the Prius (or the current Maverick hybrid), whose battery can only propel the car shorter distances or regenerate energy during braking.
PHEVs are more expensive than hybrids, and they have a reputation for being, well, the jazz choirs of power trains: By trying to do too much at once, they don’t do anything well.
Theoretically, you can use the gas tank in a PHEV as a backup power source, making short errands using only the battery. But a recent study from Transport & Environment, a European think tank, found that some PHEVs fell short of their advertised electric range, and therefore emitted five to seven times as much CO₂ in cities as claimed. And because of the weight of their batteries, PHEVs also require more gasoline than conventional hybrids.
But for all their downsides, PHEVs remain the best way for city-dwellers like me who don’t have EV chargers at home to take part in the EV revolution. I also only drive a few times a month — probably not often enough to justify locking up precious (and still scarce) EV metals in a vehicle that will mostly sit around on the street. Most of my trips are to the grocery store, which has charging in the parking lot. For a certain kind of consumer — i.e., me, the city-dwelling compact-pickup lover — a PHEV is ideal for right now.
According to MotorTrend, someone spotted a Ford Maverick last year with all-wheel drive and a PHEV power train. So it’s out there. It might be sitting in a Batcave-style basement somewhere in Michigan, but someone has done it.
“There’s no current need for a PHEV,” Mike Levine, a Ford spokesman, told me in an email, when I told him I was writing this story.
The “Maverick hybrid is incredibly efficient (40 mpg city) and affordable. The EPA estimates that Maverick hybrid’s total annual fuel cost is just $1,500,” he said. On top of that, Ford only sells one PHEV at the moment: a Ford Escape variant that goes for about $40,000. The Maverick, by comparison, starts at about $22,500.
Let’s stipulate a few things. The first is that even if the United States aggressively ramps up the rollout of electric vehicles, gasoline — which is a fossil fuel! — will be available for a long time. The Biden administration hopes that EVs will make up 50% of new car sales in 2030 and 66% of new sales in 2032. That means that gas-burning cars will by definition make up half of the new car fleet in 2030 and one-third of the fleet in 2032. Under the EPA’s current proposal, most new heavy-duty trucks sold in those years will burn gasoline or diesel, too.
A rollout that quick may be delusional — you can make a plausible case that the EV transition will go faster or slower than the government believes. But if we assume that it’s a plausible base case, then we can also conclude that gas-burning cars will remain on the road well into the late 2040s. They might be costly to run and face extremely high fees in some places; driving one may incur some social stigma, like smoking indoors today; gasoline itself may even become a specialty rural fuel. But without a mandatory federal buy-back program of internal-combustion cars, it will probably be no rarer to see a gas car in the year 2050 than it is to see, say, a Subaru Baja today.
And that will be bad. Fossil fuels cause climate change. We should aim to eliminate them from society as soon as possible. But if you are alive in the 2040s, God willing, then you probably won’t be running to the Wal-mazon Mart in a gas car. Most vehicle miles traveled in the year 2050 probably won’t involve gasoline or diesel.
But it’s plausible that you, you Aging Millennial, may — you just may — have a gas-powered truck in your garage, one that you almost never use but that reminds you of your younger, freer days. One that mostly sits there, smiling idly, til you take it out to give the grandkids a ride around the farm or haul the occasional stump. A trusty, plastic-cladded friend. A golden retriever of a vehicle.
A plug-in hybrid Ford Maverick.
Can you help your friend move with a Prius Prime? Can you carry some flat-packed bookshelves home from an Ikea run? Can you carry an unused mattress to the dump? Don’t answer that because you actually can do all three things with a Prius. But it would be way more fun to do it with a truck.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Why the new “reasoning” models might gobble up more electricity — at least in the short term
What happens when artificial intelligence takes some time to think?
The newest set of models from OpenAI, o1-mini and o1-preview, exhibit more “reasoning” than existing large language models and associated interfaces, which spit out answers to prompts almost instantaneously.
Instead, the new model will sometimes “think” for as long as a minute or two. “Through training, they learn to refine their thinking process, try different strategies, and recognize their mistakes,” OpenAI announced in a blog post last week. The company said these models perform better than their existing ones on some tasks, especially related to math and science. “This is a significant advancement and represents a new level of AI capability,” the company said.
But is it also a significant advancement in energy usage?
In the short run at least, almost certainly, as spending more time “thinking” and generating more text will require more computing power. As Erik Johannes Husom, a researcher at SINTEF Digital, a Norwegian research organization, told me, “It looks like we’re going to get another acceleration of generative AI’s carbon footprint.”
Discussion of energy use and large language models has been dominated by the gargantuan requirements for “training,” essentially running a massive set of equations through a corpus of text from the internet. This requires hardware on the scale of tens of thousands of graphical processing units and an estimated 50 gigawatt-hours of electricity to run.
Training GPT-4 cost “more than” $100 million OpenAI chief executive Sam Altman has said; the next generation models will likely cost around $1 billion, according to Anthropic chief executive Dario Amodei, a figure that might balloon to $100 billion for further generation models, according to Oracle founder Larry Ellison.
While a huge portion of these costs are hardware, the energy consumption is considerable as well. (Meta reported that when training its Llama 3 models, power would sometimes fluctuate by “tens of megawatts,” enough to power thousands of homes). It’s no wonder that OpenAI’s chief executive Sam Altman has put hundreds of millions of dollars into a fusion company.
But the models are not simply trained, they're used out in the world, generating outputs (think of what ChatGPT spits back at you). This process tends to be comparable to other common activities like streaming Netflix or using a lightbulb. This can be done with different hardware and the process is more distributed and less energy intensive.
As large language models are being developed, most computational power — and therefore most electricity — is used on training, Charlie Snell, a PhD student at University of California at Berkeley who studies artificial intelligence, told me. “For a long time training was the dominant term in computing because people weren’t using models much.” But as these models become more popular, that balance could shift.
“There will be a tipping point depending on the user load, when the total energy consumed by the inference requests is larger than the training,” said Jovan Stojkovic, a graduate student at the University of Illinois who has written about optimizing inference in large language models.
And these new reasoning models could bring that tipping point forward because of how computationally intensive they are.
“The more output a model produces, the more computations it has performed. So, long chain-of-thoughts leads to more energy consumption,” Husom of SINTEF Digital told me.
OpenAI staffers have been downright enthusiastic about the possibilities of having more time to think, seeing it as another breakthrough in artificial intelligence that could lead to subsequent breakthroughs on a range of scientific and mathematical problems. “o1 thinks for seconds, but we aim for future versions to think for hours, days, even weeks. Inference costs will be higher, but what cost would you pay for a new cancer drug? For breakthrough batteries? For a proof of the Riemann Hypothesis? AI can be more than chatbots,” OpenAI researcher Noam Brown tweeted.
But those “hours, days, even weeks” will mean more computation and “there is no doubt that the increased performance requires a lot of computation,” Husom said, along with more carbon emissions.
But Snell told me that might not be the end of the story. It’s possible that over the long term, the overall computing demands for constructing and operating large language models will remain fixed or possibly even decline.
While “the default is that as capabilities increase, demand will increase and there will be more inference,” Snell told me, “maybe we can squeeze reasoning capability into a small model ... Maybe we spend more on inference but it’s a much smaller model.”
OpenAI hints at this possibility, describing their o1-mini as “a smaller model optimized for STEM reasoning,” in contrast to other, larger models that “are pre-trained on vast datasets” and “have broad world knowledge,” which can make them “expensive and slow for real-world applications.” OpenAI is suggesting that a model can know less but think more and deliver comparable or better results to larger models — which might mean more efficient and less energy hungry large language models.
In short, thinking might use less brain power than remembering, even if you think for a very long time.
On Azerbaijan’s plans, offshore wind auctions, and solar jobs
Current conditions: Thousands of firefighters are battling raging blazes in Portugal • Shanghai could be hit by another typhoon this week • More than 18 inches of rain fell in less than 24 hours in Carolina Beach, which forecasters say is a one-in-a-thousand-year event.
Azerbaijan, the host of this year’s COP29, today put forward a list of “non-negotiated” initiatives for the November climate summit that will “supplement” the official mandated program. The action plan includes the creation of a new “Climate Finance Action Fun” that will take (voluntary) contributions from fossil fuel producing countries, a call for increasing battery storage capacity, an appeal for a global “truce” during the event, and a declaration aimed at curbing methane emissions from waste (which the Financial Times noted is “only the third most common man-made source of methane, after the energy and agricultural sectors”). The plan makes no mention of furthering efforts to phase out fossil fuels in the energy system.
The Interior Department set a date for an offshore wind energy lease sale in the Gulf of Maine, an area which the government sees as suitable for developing floating offshore wind technology. The auction will take place on October 29 and cover eight areas on the Outer Continental Shelf off Massachusetts, New Hampshire, and Maine. The area could provide 13 gigawatts of offshore wind energy, if fully developed. The Biden administration has a goal of installing 30 GW of offshore wind by 2030, and has approved about half that amount so far. The DOI’s terms and conditions for the October lease sale include “stipulations designed to promote the development of a robust domestic U.S. supply chain for floating wind.” Floating offshore wind turbines can be deployed in much deeper waters than traditional offshore projects, and could therefore unlock large areas for clean power generation. Last month the government gave the green light for researchers to study floating turbines in the Gulf of Maine.
In other wind news, BP is selling its U.S. onshore wind business, bp Wind Energy. The firm’s 10 wind farm projects have a total generating capacity of 1.3 gigawatts and analysts think they could be worth $2 billion. When it comes to renewables, the fossil fuel giant said it is focusing on investing in solar growth, and onshore wind is “not aligned” with those plans.
The number of jobs in the U.S. solar industry last year grew to 279,447, up 6% from 2022, according to a new report from the nonprofit Interstate Renewable Energy Council. Utility-scale solar added 1,888 jobs in 2023, a 6.8% increase and a nice rebound from 2022, when the utility-scale solar market recorded a loss in jobs. The report warns that we might not see the same kind of growth for solar jobs in 2024, though. Residential installations have dropped, and large utility-scale projects are struggling with grid connection. The report’s authors also note that as the industry grows, it faces a shortage of skilled workers.
Interstate Renewable Energy Council
Most employers reported that hiring qualified solar workers was difficult, especially in installation and project development. “It’s difficult because our projects are built in very rural areas where there just aren't a lot of people,” one interviewee who works at a utility-scale solar firm said. “We strive to hire as many local people as possible because we want local communities to feel the economic impact or benefit from our projects. So in some communities where we go, it is difficult to find local people that are skilled and can perform the work.”
The torrential rain that has battered central Europe is tapering off a bit, but the danger of rising water remains. “The massive amounts of rain that fell is now working its way through the river systems and we are starting to see flooding in areas that avoided the worst of the rain,” BBC meteorologist Matt Taylor explained. The Polish city of Nysa told its 44,000 residents to leave yesterday as water rose. In the Czech Republic, 70% of the town of Litovel was submerged in 3 feet of flooding. The death toll from the disaster has risen to 18. Now the forecast is calling for heavy rain in Italy. “The catastrophic rainfall hitting central Europe is exactly what scientists expect with climate change,” Joyce Kimutai, a climate scientist with Imperial College London’s Grantham Institute, toldThe Guardian.
A recent study examining the effects of London’s ultra-low emissions zone on how students get to school found that a year after the rules came into effect, many students had switched to walking, biking, or taking public transport instead of being driven in private vehicles.
Welcome to Decarbonize Your Life, Heatmap’s special report that aims to help you make decisions in your own life that are better for the climate, better for you, and better for the world we all live in. This is our attempt, in other words, to assist you in living something like a normal life while also making progress in the fight against climate change.
That means making smarter and more informed decisions about how climate change affects your life — and about how your life affects climate change. The point is not what you shouldn’t do (although there is some of that). It’s about what you should do to exert the most leverage on the global economic system and, hopefully, nudge things toward decarbonization just a little bit faster.
We certainly think we’ve hit upon a better way to think about climate action, but you don’t have to take our word for it. Keep reading here for more on how (and why) we think about decarbonizing your life — or just skip ahead to our recommendations, below.