You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
C’mon Ford. Don’t let me down.

Automakers sit at the towering heights of global capitalism. Nearly every important industry or commodity — steel, rubber, chemicals, semiconductors, minerals, and, of course, oil — feeds into car-making. Car companies receive so much government support that their brands often come to symbolize the state itself: Volkswagen, Toyota, and Ford are arguably more tied up with their countries’ national histories than, say, currywurst, sushi, or cheeseburgers.
Undertaking the construction of a wholly new car is such an expensive and arduous challenge that multiple automakers will often collaborate on it, creating a “platform” that involves a shared chassis and a set of interlocking components.
So it would be folly — if not outright delusion — to look at one of these companies and tell them that they should make a car for no reason other than that you want them to. Surely Ford Motor Company has better things to do than read a column and decide to shift its product line accordingly.
But that is what I’m going to do.
Ford should take its compact Maverick pickup truck — the smallest truck in their fleet — and release it as a plug-in hybrid. Here are the seven reasons why.
I like little trucks. I realize this is a character deficiency, and a somewhat unusual vice for my demographic: I’m a city-dwelling climate-change reporter who has no particular love for the canyon-face monsters that make up most modern pickup lines. But it’s hopefully a forgivable one.
Forty years ago, if you wanted a compact pickup, you could have bought the trusty little Ford Ranger, a 15-foot bear cub of a truck that weighed a mere ton and could haul up to 1,600 pounds. The Ranger was a revolution, signaling that American automakers weren’t content to cede the compact pickup market to Japanese brands like Mazda and Toyota.

Then compact pickups began to vanish. Toyota’s sprightly Tacoma, once a tail-wagger of a utility vehicle, slowly became super-sized. Ford stopped making the Ranger in 2012. By the middle of the 2010s, essentially no small trucks were available on the American market
Recently, compacts have started to come back. Ford brought back the Ranger, although the new model is as sleek and functional as a linebacker. Hyundai has released the Santa Cruz, the closest thing in America to the venerable Australian ute. Then in 2021, Ford started making the Maverick. At 16-feet long and 3,600 pounds, it’s bulkier and heavier — but not much bigger — than the chipper Rangers of yore. The Maverick is so popular that Ford had to stop taking orders for it last year. And while the Mav is currently offered as a hybrid … Ford could do better.
I take it as a given that Ford will eventually release an all-electric Maverick. But in the meantime, a plug-in hybrid would be potentially more useful. Here’s why.
A plug-in hybrid electric vehicle, or PHEV, is just what it sounds like: a car or truck that has a gas tank and a battery that gets a little bit of range — maybe 30 miles. That larger battery differentiates a PHEV from a conventional hybrid, like the Prius (or the current Maverick hybrid), whose battery can only propel the car shorter distances or regenerate energy during braking.
PHEVs are more expensive than hybrids, and they have a reputation for being, well, the jazz choirs of power trains: By trying to do too much at once, they don’t do anything well.
Theoretically, you can use the gas tank in a PHEV as a backup power source, making short errands using only the battery. But a recent study from Transport & Environment, a European think tank, found that some PHEVs fell short of their advertised electric range, and therefore emitted five to seven times as much CO₂ in cities as claimed. And because of the weight of their batteries, PHEVs also require more gasoline than conventional hybrids.
But for all their downsides, PHEVs remain the best way for city-dwellers like me who don’t have EV chargers at home to take part in the EV revolution. I also only drive a few times a month — probably not often enough to justify locking up precious (and still scarce) EV metals in a vehicle that will mostly sit around on the street. Most of my trips are to the grocery store, which has charging in the parking lot. For a certain kind of consumer — i.e., me, the city-dwelling compact-pickup lover — a PHEV is ideal for right now.
According to MotorTrend, someone spotted a Ford Maverick last year with all-wheel drive and a PHEV power train. So it’s out there. It might be sitting in a Batcave-style basement somewhere in Michigan, but someone has done it.
“There’s no current need for a PHEV,” Mike Levine, a Ford spokesman, told me in an email, when I told him I was writing this story.
The “Maverick hybrid is incredibly efficient (40 mpg city) and affordable. The EPA estimates that Maverick hybrid’s total annual fuel cost is just $1,500,” he said. On top of that, Ford only sells one PHEV at the moment: a Ford Escape variant that goes for about $40,000. The Maverick, by comparison, starts at about $22,500.
Let’s stipulate a few things. The first is that even if the United States aggressively ramps up the rollout of electric vehicles, gasoline — which is a fossil fuel! — will be available for a long time. The Biden administration hopes that EVs will make up 50% of new car sales in 2030 and 66% of new sales in 2032. That means that gas-burning cars will by definition make up half of the new car fleet in 2030 and one-third of the fleet in 2032. Under the EPA’s current proposal, most new heavy-duty trucks sold in those years will burn gasoline or diesel, too.
A rollout that quick may be delusional — you can make a plausible case that the EV transition will go faster or slower than the government believes. But if we assume that it’s a plausible base case, then we can also conclude that gas-burning cars will remain on the road well into the late 2040s. They might be costly to run and face extremely high fees in some places; driving one may incur some social stigma, like smoking indoors today; gasoline itself may even become a specialty rural fuel. But without a mandatory federal buy-back program of internal-combustion cars, it will probably be no rarer to see a gas car in the year 2050 than it is to see, say, a Subaru Baja today.
And that will be bad. Fossil fuels cause climate change. We should aim to eliminate them from society as soon as possible. But if you are alive in the 2040s, God willing, then you probably won’t be running to the Wal-mazon Mart in a gas car. Most vehicle miles traveled in the year 2050 probably won’t involve gasoline or diesel.
But it’s plausible that you, you Aging Millennial, may — you just may — have a gas-powered truck in your garage, one that you almost never use but that reminds you of your younger, freer days. One that mostly sits there, smiling idly, til you take it out to give the grandkids a ride around the farm or haul the occasional stump. A trusty, plastic-cladded friend. A golden retriever of a vehicle.
A plug-in hybrid Ford Maverick.
Can you help your friend move with a Prius Prime? Can you carry some flat-packed bookshelves home from an Ikea run? Can you carry an unused mattress to the dump? Don’t answer that because you actually can do all three things with a Prius. But it would be way more fun to do it with a truck.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
We knew the revived Chevrolet Bolt might have a limited run. Nobody knew it would be this limited.
General Motors began manufacturing the updated version of its small electric car late last year to begin deliveries this month. Already the news of its potential demise is here. GM says the Kansas factory that’s churning out Bolts will be repurposed to make combustion cars, including a Buick, of all things. Now, just as the arrival of the sub-$30,000 Bolt heralded a new age of more affordable electric cars, Chevy is dropping out of the race and putting its beloved little electric car on the backburner. Again.
The culprits in this case are clear. With the federal tax credit for buying EVs dead and gone, and with weakened emissions rules removing the incentive for car companies to pursue an aggressive electrification strategy, automakers are running back to the familiar embrace of fossil fuels. GM has already said it expects to lose billions as it adjusts its business strategy, curbing its EV push to meet the new reality under President Trump, where gas-burning cars remain much more profitable to build and sell.
The Bolt’s fate is the immediate fallout from that move. The Buick Envision, part of America’s army of indistinguishable gas-powered crossovers, had been built at a GM plant in China. Trump’s tariffs, however, incentivized the company to move production back to the U.S. The fact that GM repatriated the Envision at the expense of the Bolt tells you what you need to know about this moment in the U.S. auto market.
GM never promised that the Bolt would be back for good, and its return to limbo is par for the course when it comes to this plucky little car. The original Bolt EV had its problems, including a battery recall and glacial charging speeds by today’s standards. But the Bolt established GM’s place in the new EV age and found a flock of fans. At the time it was discontinued in 2023, it was the top-selling non-Tesla EV in America, selling more than 60,000 cars that year.
Fans clamored to get the car back. GM listened, and built a new version on the Ultium platform that forms the basis of its current generation of EVs. When I attended Chevy’s big reveal party for the new Bolt last year, it handed out merch reading “back by popular demand.” Yet GM always referred to the vehicle’s revival as a special run, as if not to get anyone’s hopes up that the Bolt would become a mainstay in the Chevy lineup.
Things could have been different, of course. GM has hinted at the possibility of expanding upon the Bolt with more models if the car succeeded in helping the company win the affordable EV race. Instead, the Kansas factory will turn back to combustion next year as Chevy builds some gas-powered Equinox SUVs there, moving production from Mexico after getting hammered by new tariffs. The Buick Envision, which GM has been making in China for nearly a decade, will begin Kansas production in 2028.
The Bolt’s second sudden death is a big blow to American EV lovers. Without a $7,500 tax break for buying an electric vehicle, Americans badly need more affordable options. Bolt, which starts around $29,000 in its most basic form, was set to lead a pack that would include other 2026 arrivals such as the customizable, Jeff Bezos-backed Slate truck and the reimagined third-generation Nissan Leaf. Now, you’d better act fast if you want to get behind the wheel of a Bolt.
Practically every week brings a flood of climate tech funding news and announcements — startups raising a new round, a venture capital firm closing a fresh fund, and big projects hitting (and missing) milestones. Going forward, I’ll close out each week with a roundup of some of the biggest stories that I didn’t get a chance to cover in full.
This week, we’ve got money for electric ships, next-gen geothermal, and residential electrification in Europe. Yay!
Many say battery-powered cargo ships will never make sense — that batteries are too heavy, too bulky, and would take up too much valuable space. FleetZero says it can make it work. Last Friday, the electric shipping startup raised a $43 million Series A round led by Obvious Ventures, with participation from other firms including Maersk Growth, the shipping giant’s corporate venture arm, and Breakthrough Energy Ventures. The funding will support production of the company’s hybrid and electric propulsion systems, as well as new manufacturing and R&D operations in Houston.
Ships’ bunker fuel is extremely polluting. It accounts for roughly 3% of global CO2 emissions and dirties the air with other pollutants such as sulfur and nitrogen oxides. Most players in the shipping decarbonization space want to shift to liquid fuels such as e-ammonia or e-methanol — a move that would require mulit-million-dollar engine overhauls and retrofits. FleetZero says that battery electrification will prove to be cheaper and simpler. The company is building batteries large enough to hybridize — and potentially one day fully electrify — large container ships.
As FleetZero’s CEO and co-founder Steven Henderson told my colleague Robinson Meyer on a 2024 episode of Heatmap’s Shift Key podcast, batteries are a relatively simple maritime decarbonization solution because “you can use existing infrastructure and build on it. You don’t need a new fundamental technology to do this.” And while the company has yet to provide any cost estimates for electrifying commercial shipping, as Henderson put it, “the numbers to do this are not outside the realm of possibility.”
The next-generation geothermal startup Sage Geosystems announced on Wednesday that it raised a $97 million Series B round, co-led by the renewable energy company Ormat Technologies and the growth equity firm Carbon Direct Capital. This came atop a hot week for geothermal overall. As I wrote already, the artificial intelligence-powered geothermal developer Zanskar announced a $115 million Series C round for its pursuit of AI-driven conventional geothermal, while Axios reported that the geothermal unicorn Fervo Energy has filed for an IPO.
Like Fervo, Sage uses drilling technology adapted from the oil and gas industry to create its own artificial reservoirs in hot, dry rock. The startup then pumps these fractures full of water, where it absorbs heat from the surrounding rocks before being brought to the surface as steam that’s used to generate electricity. Sage’s CEO, Cindy Taff — a former Shell executive — told Bloomberg that this latest investment will accelerate the company’s project timeline by a full year or two, allowing the company to put power on Nevada’s grid sometime in 2027.
This latest funding follows Sage’s strategic partnership with Ormat, announced last year, and could help the startup make good on its agreement with Meta to deliver up to 150 megawatts of clean electricity for the tech giant’s data centers starting in 2027.
Berlin-based startup Cloover — which helps Europeans finance home electrification upgrades — announced a $22 million Series A round on Wednesday, alongside a $1.2 billion debt facility from an unnamed “leading European bank” that it can draw on. The company, which describes itself as both the “operating system for energy independence” and the “Shopify of Energy,” aims to help homeowners ditch fossil fuels by facilitating loans to cover the upfront cost of, say, buying and installing heat pumps, rooftop solar, or home batteries — something traditional banks struggle to finance.
Cloover’s a fintech platform allows home energy installers to manage complex projects while offering loans for green upgrades to customers at the point of sale. The software’s AI-driven credit underwriting evaluates not just a customer’s credit score, but also the projected energy savings and performance of the upgrade itself, helping align the price and terms of borrowing with the anticipated economic value of the asset.
Forbes reports that Cloover has already financed roughly 2,500 home energy installations. The company says it’s profitable, generating nearly $100 million in sales last year. With this new funding, the startup plans to expand across Europe and is projecting $500 million in sales this year, anticipating an explosion in demand for distributed energy resources.
One of the oldest players in the race to commercialize fusion energy, General Fusion, has been candid about its recent funding struggles, laying off 25% of its staff last spring while publicly pleading for more cash. This Thursday, it announced a lifeline: a SPAC merger that will provide the company with up to $335 million, if all goes according to plan. Read more about the deal in our Heatmap AM newsletter.
Current conditions: The monster snow storm headed eastward could dump more than a foot of snow on New York City this weekend • An extreme heat wave in Australia is driving temperatures past 104 degrees Fahrenheit • In northwest India, Jammu and Kashmir are bracing for up to 8 inches of snow.
Last month, Fervo Energy raised another $462 million in a Series E round to finance construction of the next-generation geothermal startup’s first major power plant. Pretty soon, retail investors will be able to get in on the hype. On Thursday, Axios reported that the company had filed confidential papers with the Securities and Exchange Commission in preparation for an initial public offering. Fervo’s IPO will be a milestone for the geothermal industry. For years, the business of tapping the Earth’s molten heat for energy has remained relatively small, geographically isolated, and dominated by incumbent players such as Ormat Technologies. But Fervo set off a startup boom when it demonstrated that it could use fracking technology to access hot rocks in places that don’t have the underground reservoirs that conventional geothermal companies rely upon. In yesterday’s newsletter, I told you about how Zanskar, a startup using artificial intelligence to find more conventional resources, and Sage Geosystems, a rival next-generation company to Fervo, had raised a combined $212 million. But as my colleague Matthew Zeitlin wrote in December when Fervo raised its most recent financing round, it’s not yet clear whether the company’s “enhanced” geothermal approach is price competitive. With how quickly things are progressing, we will soon find out.
Fervo isn’t the only big IPO news. General Fusion, the Canadian fusion energy startup TechCrunch describes as “struggling,” announced plans for a $1 billion reverse merger deal to go public on the Nasdaq. The move comes almost exactly a month after President Donald Trump’s social media company, the parent firm of Truth Social, inked a deal to merge with the fusion startup TAE Technologies and create the first publicly-traded fusion company in the U.S. Analysts I spoke to about the deal called it “flabberghasting,” and warned that TAE’s technology represented a more complex and dubious approach to commercializing fusion than that taken by rival companies such as Commonwealth Fusion Systems. Still, the IPO deals highlight the growing excitement over progress on generating power from a technology long mocked as the energy source of tomorrow that always will be. As Heatmap’s Katie Brigham artfully put it in 2024, “it is finally, possibly, almost time for fusion.”
General Motors plans to move manufacturing of the next generation of its Buick Envision SUV from China to the U.S. in two years and end production of the all-electric Chevrolet Bolt. The Detroit auto giant makes just one of its four SUV models in the U.S., leaving the cars vulnerable to Trump’s tariffs. The worst hit was the Envision, which is currently built in China. Starting in 2028, the latest version of the Envision will be produced in Kansas, taking over the assembly line that is currently churning out the Bolt.
It's a blow to GM's electric vehicle line. Chevy just brought back the Bolt in response to high demand after initially canceling production in 2023, because as Andrew Moseman put it in Heatmap, it's “the cheap EV we've needed all along.” While Chevy had always framed the return as a limited run, it was not previously clear how limited that would be.
Get Heatmap AM directly in your inbox every morning:
The Department of Energy said Thursday its newly rebranded Office of Energy Dominance Finance, formerly the Loan Programs Office, is “restructuring, revising, or eliminating more than $83 billion in Green New Scam loans and conditional commitments.” The move comes after “an exhaustive first-year review” of the $104 billion in principal loan obligations the Biden administration shelled out, including $85 billion the Trump administration accused of being “rushed out the door in the final months after Election Day.” In a statement, Secretary of Energy Chris Wright said the changes are meant to “ensure the responsible investment of taxpayer dollars.” While it’s not yet clear which projects are affected, the agency said the EDF eliminated about $9.5 billion in support for wind and solar projects and redirected that funding to natural gas and nuclear energy. But as Heatmap’s Emily Pontecorvo noted last night, the Energy Department hasn’t yet said which loans are set to be canceled as part of the latest cuts. The announcement may include loans that have already been canceled or restructured.
Sign up to receive Heatmap AM in your inbox every morning:
If you know anything about surging electricity demand, you’re likely to finger a single culprit: data centers. But worldwide, air conditioning dwarfs data centers as a demand driver. And in California, electric vehicles are on pace to edge out data centers as a bigger driver of peak demand on the grid. That’s according to a new report from the California Energy Commission. Just look at this chart:

As the Golden State tries to get a grip on its electricity system, Representative Ro Khanna, the progressive Silicon Valley congressman often discussed as a potential 2028 presidential candidate, has doubled down on his calls to break up the state’s largest utility. On Thursday, Khanna posted on X that PG&E “should be broken up and owned by customers, not shareholders. They are ripping off Californians by buying off politicians in Sacramento.” The Democrat has been calling for PG&E’s demise since at least 2019, when the utility was on the hook for billions of dollars in damages from a wildfire sparked by its equipment. But the idea hasn’t exactly caught on.
New energy technologies such as batteries, solar panels, and wind turbines are driving demand for minerals and spurring a controversial push for new mines on virgin lands. But a new study by researchers at the University of Queensland’s Sustainable Minerals Institute found that a production boom is already underway at existing mines. The peer-reviewed paper, which is the first comprehensive global analysis of brownfield mining expansion, found that existing mines are growing in size and scale. Just because the mines are already there doesn’t mean the new production doesn’t come with some social cost. Nearly 78% of the 366 mines analyzed in the study “are located in areas facing multiple high-risk socioeconomic conditions, including weak governance, poor corruption control, and limited press freedom,” the study found.
The Department of the Interior has a new coal mascot. On Thursday, the agency posted an animated picture of a cartoonish, rosy-cheeked, chicken nugget-shaped lump of coal clad in a yellow hardhat and construction gear. His name? Coalie. The idea isn’t original. Australia’s coal-mining trade group rolled out an almost identical mascot a few years ago — same anthropomorphic lump of coal, same yellow attire. The only difference? His name was Hector, and he wore glasses.