Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

The Startup Trying to Put Geothermal Heat Pumps in America’s Homes

Rob and Jesse hang with Dig Energy co-founder and CEO Dulcie Madden.

Geothermal energy.
Heatmap Illustration/Getty Images

Simply operating America’s buildings uses more than a third of the country’s energy. A major chunk of that is temperature control — keeping the indoors cool in the summer and warm in the winter. Heating eats into families’ budgets and burns a tremendous amount of fuel oil and natural gas. But what if we could heat and cool buildings more efficiently, cleanly, and cheaply?

On this week’s episode of Shift Key, Rob and Jesse talk to Dulcie Madden, the founder and CEO of Dig Energy, a New Hampshire-based startup that is trying to lower the cost of digging geothermal wells scaled to serve a single structure. Dig makes small rigs that can drill boreholes for ground source heat pumps — a technology that uses the bedrock’s ambient temperature to heat and cool homes and businesses while requiring unbelievably low amounts of energy. Once groundsource wells get built, they consume far less energy than gas furnaces, air conditioners, or even air-dependent heat pumps.

Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is an adviser to Dig Energy.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Jesse Jenkins: We’ve been throwing a few different terms around here to describe this. We talked about geothermal heating and cooling, ground source heat pumps, geoexchange. There’s a little bit of ambiguity here in the language people used to talk about these things. What’s your favorite way to talk about this product and why?

Dulcie Madden: Ugh.

Jenkins: Or is this just an endless debate that is not resolved?

Madden: It is a great question. It’s a big debate. When I think of geoexchange, just so everyone knows, it’s really about, like, are you able to basically create a larger array, potentially, across buildings, more like exchanging heating and cooling, like both point source and — I think about it more in the context of Princeton, where it’s also across buildings, right? And that starts to move into what some people call a thermal energy network. And so there’s some work there.

There is a lot of back and forth between geothermal heat pump and ground source heat pump, and a lot of people will use them interchangeably. I think that there is technically a differentiation, but I don’t know if there’s a didactic, like, This is what it is. It’s just … you have to be interchangeable.

Jenkins: Yeah, I’m curious, I don’t know what the best marketing term is, what people actually resonate with beyond the technical crowd. I was describing what you guys were doing when you closed your seed series round on X or BlueSky, and somebody jumped into the replies. That’s not geothermal energy, it’s ground source heat pump. And it’s like, okay. And I guess the argument is that, because it’s basically just using it as a source for heat exchange in the heat pump operation as opposed to extracting heating out of the ground — which you can do. I mean, you can just do direct heating from geothermal.

Madden: Right.

Jenkins: Deep geothermal drilling, as well. It’s something that Eavor, which is an Alberta-based deep geothermal company that I advise, as well, is working on their first commercial project in Bavaria. That’s gonna go into a district heating system. So they’re going produce a little bit of power, but a lot of that is just direct heat. But again, they’re drilling, five, six kilometers deep and pulling out heat at high temperatures. And so it’s because it’s kind of back and forth, you’re using this kind of buffer for both heating and cooling. I think that’s why people might push back on the idea that it’s geothermal. But you’re using the heat in the ground.

Mentioned:

Dig Energy

TechCrunch: “Geothermal is too expensive, but Dig Energy’s impossibly small drill rig might fix that”

Princeton University’s Geo-Exchange System

Jesse’s downshift; Rob’s downshift.

This episode of Shift Key is sponsored by …

Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.

A warmer world is here. Now what? Listen to Shocked, from the University of Chicago’s Institute for Climate and Sustainable Growth, and hear journalist Amy Harder and economist Michael Greenstone share new ways of thinking about climate change and cutting-edge solutions. Find it here.

Music for Shift Key is by Adam Kromelow.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

Climate Tech Pivots to Europe

With policy chaos and disappearing subsidies in the U.S., suddenly the continent is looking like a great place to build.

A suitcase full of clean energy.
Heatmap Illustration/Getty Images

Europe has long outpaced the U.S. in setting ambitious climate targets. Since the late 2000s, EU member states have enacted both a continent-wide carbon pricing scheme as well as legally binding renewable energy goals — measures that have grown increasingly ambitious over time and now extend across most sectors of the economy.

So of course domestic climate tech companies facing funding and regulatory struggles are now looking to the EU to deploy some of their first projects. “This is about money,” Po Bronson, a managing director at the deep tech venture firm SOSV told me. “This is about lifelines. It’s about where you can build.” Last year, Bronson launched a new Ireland-based fund to support advanced biomanufacturing and decarbonization startups open to co-locating in the country as they scale into the European market. Thus far, the fund has invested in companies working to make emissions-free fertilizers, sustainable aviation fuel, and biofuel for heavy industry.

Keep reading...Show less
Green
AM Briefing

Belém Begins

On New York’s gas, Southwest power lines, and a solar bankruptcy

COP30.
Heatmap Illustration/Getty Images

Current conditions: The Philippines is facing yet another deadly cyclone as Super Typhoon Fung-wong makes landfall just days after Typhoon Kalmaegi • Northern Great Lakes states are preparing for as much as six inches of snow • Heavy rainfall is triggering flash floods in Uganda.


THE TOP FIVE

1. UN climate talks officially kick off

The United Nations’ annual climate conference officially started in Belém, Brazil, just a few hours ago. The 30th Conference of the Parties to the UN Framework Convention on Climate Change comes days after the close of the Leaders Summit, which I reported on last week, and takes place against the backdrop of the United States’ withdrawal from the Paris Agreement and a general pullback of worldwide ambitions for decarbonization. It will be the first COP in years to take place without a significant American presence, although more than 100 U.S. officials — including the governor of Wisconsin and the mayor of Phoenix — are traveling to Brazil for the event. But the Trump administration opted against sending a high-level official delegation.

Keep reading...Show less
Blue
Climate Tech

Quino Raises $10 Million to Build Flow Batteries in India

The company is betting its unique vanadium-free electrolyte will make it cost-competitive with lithium-ion.

An Indian flag and a battery.
Heatmap Illustration/Getty Images

In a year marked by the rise and fall of battery companies in the U.S., one Bay Area startup thinks it can break through with a twist on a well-established technology: flow batteries. Unlike lithium-ion cells, flow batteries store liquid electrolytes in external tanks. While the system is bulkier and traditionally costlier than lithium-ion, it also offers significantly longer cycle life, the ability for long-duration energy storage, and a virtually impeccable safety profile.

Now this startup, Quino Energy, says it’s developed an electrolyte chemistry that will allow it to compete with lithium-ion on cost while retaining all the typical benefits of flow batteries. While flow batteries have already achieved relatively widespread adoption in the Chinese market, Quino is looking to India for its initial deployments. Today, the company announced that it’s raised $10 million from the Hyderabad-based sustainable energy company Atri Energy Transitions to demonstrate and scale its tech in the country.

Keep reading...Show less
Green