Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Politics

The Climate Calculation that Started a Political Firestorm

Climate math breaks Albany.

The Earth with an Atmosphere of mathematical symbols.
Heatmap Illustration/Getty Images

A fight broke out in New York this week over a small calculation with big implications for the state’s climate policy.

The trouble started when a group of lawmakers, including Democratic Governor Kathy Hochul, proposed a change to the way the state accounts for the greenhouse gas methane. Her administration argued the adjustment would result in lower costs for consumers as the state transitions from fossil fuels, but a broad coalition of environmental groups were incensed, claiming it would “sabotage” New York’s climate law for the benefit of natural gas companies. Under pressure, Hochul backed down, announcing Wednesday that she wouldn’t be holding the state’s budget hostage before sorting it out.

The debate — which isn’t yet over — is an enlightening example of the high stakes of climate math, particularly the formulas used to calculate greenhouse gas emissions. And before you yawn and close this tab over having to read a story about math, give me a chance to show you how these calculations can translate into real differences in how we approach the energy transition, and our odds for avoiding the worst climate outcomes.

It may seem strange that there's more than one way to calculate greenhouse gas emissions. The dispute stems from the fact that methane is a very different beast than carbon dioxide, but when it comes to creating climate policy, we often elide those differences for the sake of simplicity.

When carbon dioxide emissions hit the atmosphere, they’re essentially permanent. The more carbon accumulates, the more it heats up the planet. Methane, on the other hand, is short-lived — it breaks down in a little over a decade. But while it’s around, it traps a lot more heat than carbon dioxide, like wrapping the quilt of CO2 in a second, goose-down duvet. As the methane in the atmosphere decays, it’s like that duvet is constantly losing feathers. If emissions decline, the blanket will thin out and eventually go away.

So while the warming power of carbon dioxide depends entirely on the total amount released, the effects of methane depend on the rate at which it is emitted.

Despite these key differences, the two pollutants often get lumped together into a common metric, like the Environmental Protection Agency’s estimate that the U.S. emitted almost 6 billion metric tons of “CO2 equivalent” in 2020, or the Biden administration’s goal of a 50-52% reduction in greenhouse gas emissions by 2030. To arrive at those numbers, scientists convert methane into carbon dioxide using a formula called global warming potential, or GWP, which basically asks how many tons of carbon dioxide it would take to warm the planet as much as one ton of methane.

The problem is, there’s not one answer. Because of methane’s short but powerful life span, there’s another variable at work in the calculation: time. Over 20 years, one metric ton of methane has a similar effect to about 80 metric tons of carbon, but over 100 years, it’s more akin to 25 metric tons of carbon. The federal government, as well as most U.S. states and much of the rest of the world, take the long view, accounting for methane emissions over 100 years. But scientists say it’s an arbitrary choice.

“There's no single timescale that's clearly most appropriate,” said Drew Shindell, an earth science professor at Duke University and an expert on methane.

Scientists have been arguing about the problems with using global warming potential formulas for years, so it’s somewhat surprising that so many governments have taken this consequential choice for granted.

New York’s climate law, which passed in 2019, is unique in that it explicitly requires a 20-year accounting of methane. When the law was being crafted, the state’s environmental community argued this would more accurately capture the consequences of emissions in the near term. Since methane can cook the planet quickly, it could push the climate past 1.5 degrees of warming, risking irreversible impacts. But encouraging steeper cuts to methane over the next few decades could actually cool the planet, buying slightly more time to reduce carbon emissions.

The Hochul administration has proposed aligning New York with the status quo and switching the state to 100-year accounting. This would have tangible repercussions for New York’s climate planning. For one, it would make the state look like it’s further along in achieving its climate goals, when in reality nothing has changed. The nonprofit outlet New York Focus estimates that under the current methane accounting method, the state must cut emissions by about 134 million metric tons this decade, but the 100-year method would change that number to 86 million.

It could also shift the state’s priorities. Under the current system, the largest source of emissions in New York is its buildings, most of which rely on natural gas and other fossil fuels for heating and cooking. Methane is the primary component of natural gas, and it leaks out of wells and pipelines, all the way to homes, where it can also leak out of boilers and stoves. That fact has dominated New York’s climate discussion over the past two years. It led the Climate Action Council, an appointed group of government officials, scientists, advocates, and industry leaders tasked with drawing up a roadmap to achieve the state’s emission targets, to conclude that one to two million homes should be electrified by 2030, followed by the large majority of buildings statewide by 2050.

But under a 100-year accounting system, buildings wouldn’t look like such an urgent problem. Methane emissions related to the residential use of natural gas equaled about 200,000 metric tons of carbon dioxide equivalent in 2020 under the 20-year scheme, according to state data. Using the 100-year formula, that number would drop to 60,000. Suddenly, transportation would look like New York’s number one climate culprit, which could lead regulators to turn more of their attention to boosting electric vehicles, improving public transit, and decarbonizing trucking.

Is that really the worst outcome? If it truly did result in steeper cuts to transportation emissions, that could mean lower temperatures in the long term, because less carbon would get lodged in the atmosphere. “Any reductions of methane we make today only really affects people who are alive today,” said Zeke Hausfather, a climate scientist at Berkeley Earth. “Whereas any emissions of CO2 we have today affect, you know, dozens of generations to come. And so trading off between those two is sort of a thorny, ethical question.”

But that result is by no means guaranteed. When I ran the idea by Liz Moran, a New York policy advocate for Earthjustice, she argued that the transportation sector is harder to address so those emission reductions may not materialize. Moran added that giving more weight to methane has enabled the state to make strides in environmental justice, for example by leading to decisions to reject polluting power plants. “This would have some very tangible and immediate impacts to communities where we're already starting to make some progress,” she said.

While some New York environmental groups have claimed that using GWP 100 is “outdated science,” Shindell disagreed with that characterization. “I think we've learned more about the limitations of GWP 100,” he said. “I think you can make an argument that it's not very aligned with what most countries are talking about now: net-zero by 2050.”

The use of 100-year accounting doesn’t have to mean that policymakers ignore methane’s near-term impacts. While California uses this metric for its overall emissions goals, it also has a separate, specific target to reduce methane. Though in the case of New York, with the Hochul administration’s explicit intention to cut costs, that's not yet on the table and it would surely prompt another political fight.

Who said climate math had to be boring?

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

All the Nuclear Workers Are Building Data Centers Now

There has been no new nuclear construction in the U.S. since Vogtle, but the workers are still plenty busy.

A hardhat on AI.
Heatmap Illustration/Getty Images

The Trump administration wants to have 10 new large nuclear reactors under construction by 2030 — an ambitious goal under any circumstances. It looks downright zany, though, when you consider that the workforce that should be driving steel into the ground, pouring concrete, and laying down wires for nuclear plants is instead building and linking up data centers.

This isn’t how it was supposed to be. Thousands of people, from construction laborers to pipefitters to electricians, worked on the two new reactors at the Plant Vogtle in Georgia, which were intended to be the start of a sequence of projects, erecting new Westinghouse AP1000 reactors across Georgia and South Carolina. Instead, years of delays and cost overruns resulted in two long-delayed reactors 35 miles southeast of Augusta, Georgia — and nothing else.

Keep reading...Show less
Blue
Q&A

How California Is Fighting the Battery Backlash

A conversation with Dustin Mulvaney of San Jose State University

Dustin Mulvaney.
Heatmap Illustration

This week’s conversation is a follow up with Dustin Mulvaney, a professor of environmental studies at San Jose State University. As you may recall we spoke with Mulvaney in the immediate aftermath of the Moss Landing battery fire disaster, which occurred near his university’s campus. Mulvaney told us the blaze created a true-blue PR crisis for the energy storage industry in California and predicted it would cause a wave of local moratoria on development. Eight months after our conversation, it’s clear as day how right he was. So I wanted to check back in with him to see how the state’s development landscape looks now and what the future may hold with the Moss Landing dust settled.

Help my readers get a state of play – where are we now in terms of the post-Moss Landing resistance landscape?

Keep reading...Show less
Yellow
Hotspots

A Tough Week for Wind Power and Batteries — But a Good One for Solar

The week’s most important fights around renewable energy.

The United States.
Heatmap Illustration/Getty Images

1. Nantucket, Massachusetts – A federal court for the first time has granted the Trump administration legal permission to rescind permits given to renewable energy projects.

  • This week District Judge Tanya Chutkan – an Obama appointee – ruled that Trump’s Bureau of Ocean Energy Management has the legal latitude to request the withdrawal of permits previously issued to offshore wind projects. Chutkan found that any “regulatory uncertainty” from rescinding a permit would be an “insubstantial” hardship and not enough to stop the court from approving the government’s desires to reconsider issuing it.
  • The ruling was in a case that the Massachusetts town of Nantucket brought against the SouthCoast offshore wind project; SouthCoast developer Ocean Winds said in statements to media after the decision that it harbors “serious concerns” about the ruling but is staying committed to the project through this new layer of review.
  • But it’s important to understand this will have profound implications for other projects up and down the coastline, because the court challenges against other offshore wind projects bear a resemblance to the SouthCoast litigation. This means that project opponents could reach deals with the federal government to “voluntarily remand” permits, technically sending those documents back to the federal government for reconsideration – only for the approvals to get lost in bureaucratic limbo.
  • What I’m watching for: do opponents of land-based solar and wind projects look at this ruling and decide to go after those facilities next?

2. Harvey County, Kansas – The sleeper election result of 2025 happened in the town of Halstead, Kansas, where voters backed a moratorium on battery storage.

Keep reading...Show less
Yellow