You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Home to two million people, the Gaza Strip sits squeezed between Israel and the Mediterranean Sea on a bit of land just twice the size of Washington, D.C. Gaza is the smaller part of Palestine’s two territories; you could walk the length of its southern border with Egypt in under three hours. But land is not the only thing that’s long been in short supply in Gaza. As the war between Israel and Hamas, the Palestinian militant group that rules the region, has made clear, Gaza is also increasingly bereft of water.
Over the course of the tragic war, water infrastructure has played an unprecedented role. In the aftermath of Hamas’s massacre and kidnapping of Israeli civilians on October 7, the Israeli government took measures to halt drinking water — as well as aid, food, and electricity — from entering the Strip. First, on October 9, Israel shut off the pipelines that usually send water into Gaza and halted deliveries by truck. And while it turned back on some of the pipelines on October 15, it didn’t restart the electricity or the fuel shipments that power Gaza’s desalination and wastewater treatment plants.
Yet these harsh measures in recent weeks belie a much longer-term problem, as a deeper dive into the region’s infrastructure reveals. Palestinians in Gaza have not had access to safe or ample drinking water for decades.
“The water crisis that Gaza is facing is a chronic crisis,” Dr. Shaddad Attili, the former Palestinian minister of water and head of the Palestinian Water Authority (PWA) from 2008 to 2014, told me. “But now water is being used as a weapon. If they don’t get killed by missiles, they will die from the contaminated water that they’re using.”
The Israeli Defense Forces, the water authority in the West Bank, and COGAT, the Israeli body responsible for the government activities in the Palestinian territories, all did not reply to requests for comment by the time of publication.
There are three natural water resources that run through Israel and Palestine: the Jordan River Basin on the eastern border; the Mountain Aquifer, which runs directly through the West Bank; and the Coastal Aquifer, on which Israel is upstream and Gaza is downstream. The majority of the water comes from these three sources, but since the region is a desert geography, water is generally in short supply.
Israel acquired control over all the water that runs through the Israeli and Palestinian territories in the Six-Day War in 1967 when it seized the Gaza Strip from Egypt, the West Bank from Jordan, and the Golan Heights in the north from Syria. In November of that year, Israel introduced a military order stating that Palestinians could not construct any new water infrastructure without first obtaining a permit from the Israeli army. Israel gave, and continues to give, these permits sparingly.
Today, the water discrepancy is striking. While there are eight times more Palestinians living in the West Bank than Israeli settlers, 70% of the water output is given to the settlements, where it is largely used for farming, according to an April 2023 report on the West Bank’s water deprivation by the Israeli humanitarian organization, B’Tselem.
During the Oslo Accords in the mid-1990s, the West Bank won some rights to run their own pumping stations in select parts of the territory. Today, they still need to earn permits from the Israeli military in order to build new pumping stations. Gaza used to pump their water from the Coastal Aquifer, but developments over the past 30 years have made that water inaccessible.
Prior to this war, the water situation in Gaza was already dire. The World Health Organization said that Gaza’s water supply was unable to meet the minimum requirement for daily per capita water consumption.
Gaza has some unregulated pumping stations that pull water up from the aquifer, but they’re not a major cause of the problem. The Coastal Aquifer extends from a town called Binyamina in Northern Israel to the Sinai Desert in Egypt. Just 2% of the total aquifer passes through Gaza. Through the late 1990s, it supplied drinkable tap water to most of Gaza’s residents. While it historically has provided 95% of their freshwater, it’s unusable now for a few reasons.
First, Gaza’s population growth rate is among the highest in the world, with almost half of the population under 18 years old in 2022. High population growth means the already scarce groundwater can no longer replenish fast enough to meet demand.
But there are deeper problems with the water’s quality. Seawater seeps into the aquifer since it’s so close to the coast and untreated wastewater has polluted the aquifer for decades to a point that it’s no longer safe to drink. In 2020, a study in the journal Water said that the quality of groundwater in the Coastal Aquifer had “deteriorated rapidly,” largely due to Israeli pumping.
“At least 95% of the freshwater (from the aquifer) is either inaccessible or not drinkable,” said Jordan Fischbach, director of planning and policy research at The Water Institute and author of a report on the public health impacts of Gaza’s water crisis in 2018.
As a result, the Coastal Aquifer — the primary source of Gaza’s water — is essentially out of commission. Residents of Gaza are now left with only about 20% of their needs filled.
But those sources have also proven to be unreliable.
The first are the pipelines, which were built with funding from international humanitarian aid. The pipelines run from Israel-controlled fresh aquifers and the water is paid for by the Palestinian National Authority (PA) in the West Bank. These are the pipelines that Israel stopped sending water from following Hamas’ attack on Israeli civilians.
But even in the best of times, the pipelines only supply around 10% of the water demand in Gaza. Attili from the Palestinian National Authority said that the water is combined with some of the unsafe brackish water in order to increase volume.
The second source of water are small-scale desalination plants, which turn seawater into potable water, but they rely on electricity to run.
Usually they provide another 10% of Gaza’s water, but when Israel halted the importation of fuel and shut down electricity transmission into Gaza, these plants stopped running too.
However, even when electricity and fuel are available, over one-third of plants are not monitored, maintained, or officially regulated. “A number of construction materials, fuel and other things you would need to build and power drinking and wastewater facilities are considered ‘dual use.’” said Fischbach, meaning they could also be used to build weapons. “These are types of materials that are restricted by both Egyptian and Israeli authorities.”
A 2021 study showed that 79% of desalination plants are unlicensed and 12% of water samples tested showed dangerous contamination levels.
“Desalination is necessary to get anything even close to drinking water quality and only a fraction of [desalination plants] are actually licensed and monitored” said Fischbach. “Many of them are producing water that we would still consider below drinking water quality.”
He added that most of them don’t run to their capacity anyways because they are so energy intensive and Gaza doesn’t have enough electricity.
Gaza also gets water from water trucks controlled by humanitarian aid or delivered by the Palestinian National Authority. This water passes directly through Israeli land, which means Israel was able to easily halt deliveries in the wake of the Hamas attacks.
In recent weeks, some residents of Gaza have resorted to drinking sea water or brackish water directly from the Coastal Aquifer. Not only are these not sources of freshwater, they are also further polluted by untreated sewage running through the region.
Israel’s decision to cut electricity to Gaza also meant that the wastewater treatment plants can’t run. Treated wastewater is used for showering and other sanitation uses. But when it’s not processed through a plant, wastewater runs into the aquifer and groundwater, further polluting what’s left of their drinking sources.
While the situation is worse due to the lack of electricity from the war, Gaza has never had ample wastewater treatment plants.
“For two decades now Palestinians have been prevented from building and maintaining the infrastructures that keep wastewater out of the aquifer,” says Sophia Stamatopoulou-Robbins, a cultural anthropologist and professor at Bard College. She is the author of Waste Siege: the Life and Infrastructure of Palestine.
In the West Bank, the aquifer is deep, carrying around 340 million cubic meters of water every year, so wastewater that has been somewhat treated can be further cleaned by soil and rock as it seeps through the aquifer. But Gaza’s aquifer is very shallow — its estimated to carry only about 55 million cubic meters per year —, and therefore cannot clean the water. Instead, it needs extensive infrastructure.
“In Gaza, you would need an incredibly high sophistication of technology to permit the wastewater to go safely into the ground,” says Stamatopoulou-Robbins. “Even the kind of concrete containers that would hold wastewater are not permitted to be maintained or built.”
In addition to the plants themselves, you would need piping to connect buildings to the wastewater treatment plants, she adds. “So all of the conveyance technology and infrastructure which is expensive anywhere in the world, all of that is subject to Israeli controls and tends to be prevented.”
As is the case with desalination plants, neither Israel nor Egypt allows the necessary materials into Gaza for building wastewater treatment plants because those materials are also considered dual-use materials.
Even as Israel turned the water and electricity back on, there are questions around how many of these desalination and wastewater treatment plants have been bombed and are no longer running.
As far as logistically turning off these resources, it’s fairly straightforward. “The ability to shut off electricity transmission is quite easy,” said Fischbach. “It’s just flipping a switch — the same way with a rolling blackout. Fuel imports are also easy. Nothing is going into Gaza. As far as drinking water lines, you can just not pump that water. So the logistics are easy.”
Several reports of hygiene related diseases spreading through cramped spaces are surfacing in recent days. Doctors in Gaza are saying that patients are showing signs of disease caused by overcrowding and poor sanitation. Children are suffering from diarrhea, lung infections, and rashes.
“The desalination plants are out of service because there’s no electricity, the sewage treatment plants are out of service because there is no electricity. And because our people now take refuge in shelters, there is a hygiene problem,” said Attili. “I have gone to so many conferences where we say water is a tool for cooperation, not conflict, and they all agree, but now the international community remains silent.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
New York City may very well be the epicenter of this particular fight.
It’s official: the Moss Landing battery fire has galvanized a gigantic pipeline of opposition to energy storage systems across the country.
As I’ve chronicled extensively throughout this year, Moss Landing was a technological outlier that used outdated battery technology. But the January incident played into existing fears and anxieties across the U.S. about the dangers of large battery fires generally, latent from years of e-scooters and cellphones ablaze from faulty lithium-ion tech. Concerned residents fighting projects in their backyards have successfully seized upon the fact that there’s no known way to quickly extinguish big fires at energy storage sites, and are winning particularly in wildfire-prone areas.
How successful was Moss Landing at enlivening opponents of energy storage? Since the California disaster six months ago, more than 6 gigawatts of BESS has received opposition from activists explicitly tying their campaigns to the incident, Heatmap Pro® researcher Charlie Clynes told me in an interview earlier this month.
Matt Eisenson of Columbia University’s Sabin Center for Climate Law agreed that there’s been a spike in opposition, telling me that we are currently seeing “more instances of opposition to battery storage than we have in past years.” And while Eisenson said he couldn’t speak to the impacts of the fire specifically on that rise, he acknowledged that the disaster set “a harmful precedent” at the same time “battery storage is becoming much more present.”
“The type of fire that occurred there is unlikely to occur with modern technology, but the Moss Landing example [now] tends to come up across the country,” Eisenson said.
Some of the fresh opposition is in rural agricultural communities such as Grundy County, Illinois, which just banned energy storage systems indefinitely “until the science is settled.” But the most crucial place to watch seems to be New York City, for two reasons: One, it’s where a lot of energy storage is being developed all at once; and two, it has a hyper-saturated media market where criticism can receive more national media attention than it would in other parts of the country.
Someone who’s felt this pressure firsthand is Nick Lombardi, senior vice president of project development for battery storage company NineDot Energy. NineDot and other battery storage developers had spent years laying the groundwork in New York City to build out the energy storage necessary for the city to meet its net-zero climate goals. More recently they’ve faced crowds of protestors against a battery storage facility in Queens, and in Staten Island endured hecklers at public meetings.
“We’ve been developing projects in New York City for a few years now, and for a long time we didn’t run into opposition to our projects or really any sort of meaningful negative coverage in the press. All of that really changed about six months ago,” Lombardi said.
The battery storage developer insists that opposition to the technology is not popular and represents a fringe group. Lombardi told me that the company has more than 50 battery storage sites in development across New York City, and only faced “durable opposition” at “three or four sites.” The company also told me it has yet to receive the kind of email complaint flood that would demonstrate widespread opposition.
This is visible in the politicians who’ve picked up the anti-BESS mantle: GOP mayoral candidate Curtis Sliwa’s become a champion for the cause, but mayor Eric Adams’ “City of Yes” campaign itself would provide for the construction of these facilities. (While Democratic mayoral nominee Zohran Mamdani has not focused on BESS, it’s quite unlikely the climate hawkish democratic socialist would try to derail these projects.)
Lombardi told me he now views Moss Landing as a “catalyst” for opposition in the NYC metro area. “Suddenly there’s national headlines about what’s happening,” he told me. “There were incidents in the past that were in the news, but Moss Landing was headline news for a while, and that combined with the fact people knew it was happening in their city combined to create a new level of awareness.”
He added that six months after the blaze, it feels like developers in the city have a better handle on the situation. “We’ve spent a lot of time in reaction to that to make sure we’re organized and making sure we’re in contact with elected officials, community officials, [and] coordinated with utilities,” Lombardi said.
And more on the biggest conflicts around renewable energy projects in Kentucky, Ohio, and Maryland.
1. St. Croix County, Wisconsin - Solar opponents in this county see themselves as the front line in the fight over Trump’s “Big Beautiful” law and its repeal of Inflation Reduction Act tax credits.
2. Barren County, Kentucky - How much wood could a Wood Duck solar farm chuck if it didn’t get approved in the first place? We may be about to find out.
3. Iberia Parish, Louisiana - Another potential proxy battle over IRA tax credits is going down in Louisiana, where residents are calling to extend a solar moratorium that is about to expire so projects can’t start construction.
4. Baltimore County, Maryland – The fight over a transmission line in Maryland could have lasting impacts for renewable energy across the country.
5. Worcester County, Maryland – Elsewhere in Maryland, the MarWin offshore wind project appears to have landed in the crosshairs of Trump’s Environmental Protection Agency.
6. Clark County, Ohio - Consider me wishing Invenergy good luck getting a new solar farm permitted in Ohio.
7. Searcy County, Arkansas - An anti-wind state legislator has gone and posted a slide deck that RWE provided to county officials, ginning up fresh uproar against potential wind development.
Talking local development moratoria with Heatmap’s own Charlie Clynes.
This week’s conversation is special: I chatted with Charlie Clynes, Heatmap Pro®’s very own in-house researcher. Charlie just released a herculean project tracking all of the nation’s county-level moratoria and restrictive ordinances attacking renewable energy. The conclusion? Essentially a fifth of the country is now either closed off to solar and wind entirely or much harder to build. I decided to chat with him about the work so you could hear about why it’s an important report you should most definitely read.
The following chat was lightly edited for clarity. Let’s dive in.
Tell me about the project you embarked on here.
Heatmap’s research team set out last June to call every county in the United States that had zoning authority, and we asked them if they’ve passed ordinances to restrict renewable energy, or if they have renewable energy projects in their communities that have been opposed. There’s specific criteria we’ve used to determine if an ordinance is restrictive, but by and large, it’s pretty easy to tell once a county sends you an ordinance if it is going to restrict development or not.
The vast majority of counties responded, and this has been a process that’s allowed us to gather an extraordinary amount of data about whether counties have been restricting wind, solar and other renewables. The topline conclusion is that restrictions are much worse than previously accounted for. I mean, 605 counties now have some type of restriction on renewable energy — setbacks that make it really hard to build wind or solar, moratoriums that outright ban wind and solar. Then there’s 182 municipality laws where counties don’t have zoning jurisdiction.
We’re seeing this pretty much everywhere throughout the country. No place is safe except for states who put in laws preventing jurisdictions from passing restrictions — and even then, renewable energy companies are facing uphill battles in getting to a point in the process where the state will step in and overrule a county restriction. It’s bad.
Getting into the nitty-gritty, what has changed in the past few years? We’ve known these numbers were increasing, but what do you think accounts for the status we’re in now?
One is we’re seeing a high number of renewables coming into communities. But I think attitudes started changing too, especially in places that have been fairly saturated with renewable energy like Virginia, where solar’s been a presence for more than a decade now. There have been enough projects where people have bad experiences that color their opinion of the industry as a whole.
There’s also a few narratives that have taken shape. One is this idea solar is eating up prime farmland, or that it’ll erode the rural character of that area. Another big one is the environment, especially with wind on bird deaths, even though the number of birds killed by wind sounds big until you compare it to other sources.
There are so many developers and so many projects in so many places of the world that there are examples where either something goes wrong with a project or a developer doesn’t follow best practices. I think those have a lot more staying power in the public perception of renewable energy than the many successful projects that go without a hiccup and don’t bother people.
Are people saying no outright to renewable energy? Or is this saying yes with some form of reasonable restrictions?
It depends on where you look and how much solar there is in a community.
One thing I’ve seen in Virginia, for example, is counties setting caps on the total acreage solar can occupy, and those will be only 20 acres above the solar already built, so it’s effectively blocking solar. In places that are more sparsely populated, you tend to see restrictive setbacks that have the effect of outright banning wind — mile-long setbacks are often insurmountable for developers. Or there’ll be regulations to constrict the scale of a project quite a bit but don’t ban the technologies outright.
What in your research gives you hope?
States that have administrations determined to build out renewables have started to override these local restrictions: Michigan, Illinois, Washington, California, a few others. This is almost certainly going to have an impact.
I think the other thing is there are places in red states that have had very good experiences with renewable energy by and large. Texas, despite having the most wind generation in the nation, has not seen nearly as much opposition to wind, solar, and battery storage. It’s owing to the fact people in Texas generally are inclined to support energy projects in general and have seen wind and solar bring money into these small communities that otherwise wouldn’t get a lot of attention.