You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Scaling a fire prevention system to global levels could take decades, experts say. But what the world doesn’t have right now is time.
As anyone on the East Coast of the United States can tell you: Fire season is raging in Canada.
Home to nearly 9 percent of the world’s forests, Canada is witnessing an explosive first act to its fire season that is darkening skies across North America. Since May, flames have burned Canadian land roughly the size of Maryland. Approximately four hundred wildfires are active from east to west and more than 26,000 people displaced, according to a Canadian senior official. The fallout has choked not only Toronto, but Washington, D.C., New York City, and much of the East Coast, which is engulfed in dangerous levels of smoke.
This ongoing disaster highlights a global problem: Wildfires don’t obey national borders, yet international cooperation is woefully behind when it comes to preventing fires.
That doesn’t mean nothing is being done. According to experts, Canada is actually among the most cooperative countries in the world when it comes to wildfires. Hundreds of firefighters from the United States, Australia, New Zealand, and South Africa are already in Canada helping to quell the blazes. They’ll soon be joined by firefighters from Mexico too. But this fellowship only kicks in to suppress active ones, not to prevent them before they ignite.
Get the best of Heatmap directly in your inbox:
And once fires reach a certain potency, firefighters will be outgunned, with nothing to do except wait until the flames burn out on their own, explains Peter Moore, who is a consultant fire management specialist at the United Nations’ Food and Agriculture Organization.
“What we need to be looking at is collaboration and cooperation in analyzing what fires are doing and why they're doing it,” said Moore. “The Canadians will be in a very good position to do it, because of the way they approach things, the data they collect, and the research they’ve already done.”
The next stage of international cooperation needs to happen soon, experts warn. According to the UNEP, the world will experience 50% more wildfires by 2100. Yet governments are decades behind formalizing an international outfit to help understand the scope of this climate change-worsened problem. The world has yet to establish a universally applicable framework to not only combat present fires, but to understand and prepare for the increasingly-powerful fires that have yet to come.
“We need a very, very intense interface between science and decision making,” said Johann G. Goldammer, who is the Director of the Global Fire Monitoring Center, which he founded in 1998. “It is high time now that the theme of fire and the global environment be addressed not only by national politics, but also by international politics.”
The infrastructure required to strengthen fire prevention cooperation from country to country is a logistical nightmare: Its foundation requires financial, political, and organizational will across dozens of agencies and countless state actors, all of which face barriers in languages, cultural ideologies, and equipment compatibility.
Scaling this fire prevention system to global levels could take decades, experts say. But what the world doesn’t have right now is time. As global temperatures increase, certain parts of the world, like Canada, will keep getting warmer and drier in the spring and summer months, leading to drought and intensifying the size and damage of wildfires. Fires also release a lot of carbon into the atmosphere and damage ecosystems’ abilities to store it over time, which compounds the effects of global warming. In recent years, the immense damage done by fires in Australia, California, Greece, Chile, Turkey, and elsewhere has touched this third rail far too many times.
“When we have these increasing fire weather days, it reduces the amount of days that we have to safely do mitigation efforts — things like prescribed burns, particularly because it increases the chance of these fires burning out of control,” said Caitlyn Trudeau, who is a data analyst for Climate Central’s Climate Matters program. Without prescribed burns, forests get overcrowded and build up fuels, which increases the chance fires will be worse than ever when they do break out.
The good news is that world leaders and experts have worked together to combat pollution before. In the 1980s, the United States and Canada passed laws to quell the prevalence of acid rain, which research had shown was a direct result of human activity. By 2020, the emissions that enabled acid rain in Canada and the U.S. had decreased by as much as 92 percent. The problem has virtually disappeared.
In 2002, the ASEAN Transboundary Haze Pollution Agreement was signed by ten countries across Southeast Asia to reduce air pollution caused by smog, smoke and other haze-like detritus in the region. It has enhanced ASEAN’s motivation for greater regional cooperation on environmental policies.
Just this May, the International Wildland Fire Conference gathered in Portugal to draw up a first-of-its-kind fire governance framework. It proposes an integrated mechanism under the United Nations to implement a fire risk assessment, management, and evaluation program worldwide. Will it be officialized under the UN banner? That is still uncertain. For now, fires may continue to impact the world in ways that feel eerie, dystopian, and unprecedented.
“We’re talking about, you know, millions and millions of people being impacted by fires that are far away from them. Fires that they’re not even able to see. And that’s really scary,” said Climate Central’s Trudeau on the fires the world has had in recent years. “The good thing is we know what’s happening, we know what’s causing it, and we know how to solve it.”
Read more about the wildfire smoke engulfing the eastern United States:
The Smoke Will Get Worse Before It Gets Better
The East Coast’s Wildfire Smoke Is On Par With the West’s Worst Days
How to Prepare for Wildfire Smoke, According to Doctors at Harvard
Wildfire Smoke Is a Wheezy Throwback for New York City
The East Coast Has Been Smokier Than the West Coast This Year
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Geothermal is getting closer to the big time. Last week, Fervo Energy — arguably the country’s leading enhanced geothermal company — announced that its Utah demonstration project had achieved record production capacity. The new approach termed “enhanced geothermal,” which borrows drilling techniques and expertise from the oil and gas industry, seems poised to become a big player on America’s clean, 24/7 power grid of the future.
Why is geothermal so hot? How soon could it appear on the grid — and why does it have advantages that other zero-carbon technologies don’t? On this week’s episode of Shift Key, Rob and Jesse speak with a practitioner and an expert in the world of enhanced geothermal. Sarah Jewett is the vice president of strategy at Fervo Energy, which she joined after several years in the oil and gas industry. Wilson Ricks is a doctoral student of mechanical and aerospace engineering at Princeton University, where he studies macro-energy systems modeling. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: I just wanted to hit a different note here, which is, Sarah, you’ve alluded a few times to your past in the oil and gas industry. I think this is true across Fervo, is that of course, the technologies we’re discussing here are fracking derived. What has your background in the oil and gas industry and hydrocarbons taught you that you think about at Fervo now, and developing geothermal as a resource?
Sarah Jewett: There are so many things. I mean, I’m thinking about my time in the oil and gas industry daily. And you’re exactly right, I think today about 60% of Fervo’s employees come from the oil and gas industry. And because we are only just about to start construction on our first power facility, the percentage of contractors and field workers from the oil and gas industry is much higher than 60%.
Jesse Jenkins: Right, you can’t go and hire a bunch of people with geothermal experience when there is no large-scale geothermal industry to pull from.
Jewett: That’s right. That’s right. And so the oil and gas industry, I think, has taught us, so many different types of things. I mean, we can’t really exist without thinking about the history of the oil and gas industry — even, you know, Wilson and I are sort of comparing our learning rates to learning rates observed in various different oil and gas basins by different operators, so you can see a lot of prior technological pathways.
I mean, first off, we’re just using off the shelf technology that has been proven and tested in the oil and gas industry over the last 25 years, which has been, really, the reason why geothermal is able to have this big new unlock, because we’re using all of this off the shelf technology that now exists. It’s not like the early 2000s, where there was a single bit we could have tried. Now there are a ton of different bits that are available to us that we can try and say, how is this working? How is this working? How’s this working?
So I think, from a technological perspective, it’s helpful. And then from just an industry that has set a solid example it’s been really helpful, and that can be leveraged in a number of different ways. Learning rates, for example; how to set up supply chains in remote areas, for example; how to engage with and interact with communities. I think we’ve seen examples of oil and gas doing that well and doing it poorly. And I’ve gotten to observe firsthand the oil and gas industry doing it well and doing it poorly.
And so I’ve gotten to learn a lot about how we need to treat those around us, explain to them what it is that we’re doing, how open we need to be. And I think that has been immensely helpful as we’ve crafted the role that we’re going to play in these communities at large.
Wilson Ricks: I think it’s also interesting to talk about the connection to the oil and gas industry from the perspective of the political economy of the energy transition, specifically because you hear policymakers talk all the time about retraining workers from these legacy industries that, if we’re serious about decarbonizing, will unavoidably have to contract — and, you know, getting those people involved in clean energy, in these new industries.
And often that’s taking drillers and retraining some kind of very different job — or coal miners — into battery manufacturers. This is almost exactly one to one. Like Sarah said, there’s additional expertise and experience that you need to get really good at doing this in the geothermal context. But for the most part, you are taking the exact same skills and just reapplying them, and so it allows for both a potentially very smooth transition of workforces, and also it allows for scale-up of enhanced geothermal to proceed much more smoothly than it potentially would if you had to kind of train an entire workforce from scratch to just do this.
This episode of Shift Key is sponsored by …
Watershed’s climate data engine helps companies measure and reduce their emissions, turning the data they already have into an audit-ready carbon footprint backed by the latest climate science. Get the sustainability data you need in weeks, not months. Learn more at watershed.com.
As a global leader in PV and ESS solutions, Sungrow invests heavily in research and development, constantly pushing the boundaries of solar and battery inverter technology. Discover why Sungrow is the essential component of the clean energy transition by visiting sungrowpower.com.
Antenna Group helps you connect with customers, policymakers, investors, and strategic partners to influence markets and accelerate adoption. Visit antennagroup.com to learn more.
Music for Shift Key is by Adam Kromelow.
Why the new “reasoning” models might gobble up more electricity — at least in the short term
What happens when artificial intelligence takes some time to think?
The newest set of models from OpenAI, o1-mini and o1-preview, exhibit more “reasoning” than existing large language models and associated interfaces, which spit out answers to prompts almost instantaneously.
Instead, the new model will sometimes “think” for as long as a minute or two. “Through training, they learn to refine their thinking process, try different strategies, and recognize their mistakes,” OpenAI announced in a blog post last week. The company said these models perform better than their existing ones on some tasks, especially related to math and science. “This is a significant advancement and represents a new level of AI capability,” the company said.
But is it also a significant advancement in energy usage?
In the short run at least, almost certainly, as spending more time “thinking” and generating more text will require more computing power. As Erik Johannes Husom, a researcher at SINTEF Digital, a Norwegian research organization, told me, “It looks like we’re going to get another acceleration of generative AI’s carbon footprint.”
Discussion of energy use and large language models has been dominated by the gargantuan requirements for “training,” essentially running a massive set of equations through a corpus of text from the internet. This requires hardware on the scale of tens of thousands of graphical processing units and an estimated 50 gigawatt-hours of electricity to run.
Training GPT-4 cost “more than” $100 million OpenAI chief executive Sam Altman has said; the next generation models will likely cost around $1 billion, according to Anthropic chief executive Dario Amodei, a figure that might balloon to $100 billion for further generation models, according to Oracle founder Larry Ellison.
While a huge portion of these costs are hardware, the energy consumption is considerable as well. (Meta reported that when training its Llama 3 models, power would sometimes fluctuate by “tens of megawatts,” enough to power thousands of homes). It’s no wonder that OpenAI’s chief executive Sam Altman has put hundreds of millions of dollars into a fusion company.
But the models are not simply trained, they're used out in the world, generating outputs (think of what ChatGPT spits back at you). This process tends to be comparable to other common activities like streaming Netflix or using a lightbulb. This can be done with different hardware and the process is more distributed and less energy intensive.
As large language models are being developed, most computational power — and therefore most electricity — is used on training, Charlie Snell, a PhD student at University of California at Berkeley who studies artificial intelligence, told me. “For a long time training was the dominant term in computing because people weren’t using models much.” But as these models become more popular, that balance could shift.
“There will be a tipping point depending on the user load, when the total energy consumed by the inference requests is larger than the training,” said Jovan Stojkovic, a graduate student at the University of Illinois who has written about optimizing inference in large language models.
And these new reasoning models could bring that tipping point forward because of how computationally intensive they are.
“The more output a model produces, the more computations it has performed. So, long chain-of-thoughts leads to more energy consumption,” Husom of SINTEF Digital told me.
OpenAI staffers have been downright enthusiastic about the possibilities of having more time to think, seeing it as another breakthrough in artificial intelligence that could lead to subsequent breakthroughs on a range of scientific and mathematical problems. “o1 thinks for seconds, but we aim for future versions to think for hours, days, even weeks. Inference costs will be higher, but what cost would you pay for a new cancer drug? For breakthrough batteries? For a proof of the Riemann Hypothesis? AI can be more than chatbots,” OpenAI researcher Noam Brown tweeted.
But those “hours, days, even weeks” will mean more computation and “there is no doubt that the increased performance requires a lot of computation,” Husom said, along with more carbon emissions.
But Snell told me that might not be the end of the story. It’s possible that over the long term, the overall computing demands for constructing and operating large language models will remain fixed or possibly even decline.
While “the default is that as capabilities increase, demand will increase and there will be more inference,” Snell told me, “maybe we can squeeze reasoning capability into a small model ... Maybe we spend more on inference but it’s a much smaller model.”
OpenAI hints at this possibility, describing their o1-mini as “a smaller model optimized for STEM reasoning,” in contrast to other, larger models that “are pre-trained on vast datasets” and “have broad world knowledge,” which can make them “expensive and slow for real-world applications.” OpenAI is suggesting that a model can know less but think more and deliver comparable or better results to larger models — which might mean more efficient and less energy hungry large language models.
In short, thinking might use less brain power than remembering, even if you think for a very long time.
On Azerbaijan’s plans, offshore wind auctions, and solar jobs
Current conditions: Thousands of firefighters are battling raging blazes in Portugal • Shanghai could be hit by another typhoon this week • More than 18 inches of rain fell in less than 24 hours in Carolina Beach, which forecasters say is a one-in-a-thousand-year event.
Azerbaijan, the host of this year’s COP29, today put forward a list of “non-negotiated” initiatives for the November climate summit that will “supplement” the official mandated program. The action plan includes the creation of a new “Climate Finance Action Fun” that will take (voluntary) contributions from fossil fuel producing countries, a call for increasing battery storage capacity, an appeal for a global “truce” during the event, and a declaration aimed at curbing methane emissions from waste (which the Financial Times noted is “only the third most common man-made source of methane, after the energy and agricultural sectors”). The plan makes no mention of furthering efforts to phase out fossil fuels in the energy system.
The Interior Department set a date for an offshore wind energy lease sale in the Gulf of Maine, an area which the government sees as suitable for developing floating offshore wind technology. The auction will take place on October 29 and cover eight areas on the Outer Continental Shelf off Massachusetts, New Hampshire, and Maine. The area could provide 13 gigawatts of offshore wind energy, if fully developed. The Biden administration has a goal of installing 30 GW of offshore wind by 2030, and has approved about half that amount so far. The DOI’s terms and conditions for the October lease sale include “stipulations designed to promote the development of a robust domestic U.S. supply chain for floating wind.” Floating offshore wind turbines can be deployed in much deeper waters than traditional offshore projects, and could therefore unlock large areas for clean power generation. Last month the government gave the green light for researchers to study floating turbines in the Gulf of Maine.
In other wind news, BP is selling its U.S. onshore wind business, bp Wind Energy. The firm’s 10 wind farm projects have a total generating capacity of 1.3 gigawatts and analysts think they could be worth $2 billion. When it comes to renewables, the fossil fuel giant said it is focusing on investing in solar growth, and onshore wind is “not aligned” with those plans.
The number of jobs in the U.S. solar industry last year grew to 279,447, up 6% from 2022, according to a new report from the nonprofit Interstate Renewable Energy Council. Utility-scale solar added 1,888 jobs in 2023, a 6.8% increase and a nice rebound from 2022, when the utility-scale solar market recorded a loss in jobs. The report warns that we might not see the same kind of growth for solar jobs in 2024, though. Residential installations have dropped, and large utility-scale projects are struggling with grid connection. The report’s authors also note that as the industry grows, it faces a shortage of skilled workers.
Interstate Renewable Energy Council
Most employers reported that hiring qualified solar workers was difficult, especially in installation and project development. “It’s difficult because our projects are built in very rural areas where there just aren't a lot of people,” one interviewee who works at a utility-scale solar firm said. “We strive to hire as many local people as possible because we want local communities to feel the economic impact or benefit from our projects. So in some communities where we go, it is difficult to find local people that are skilled and can perform the work.”
The torrential rain that has battered central Europe is tapering off a bit, but the danger of rising water remains. “The massive amounts of rain that fell is now working its way through the river systems and we are starting to see flooding in areas that avoided the worst of the rain,” BBC meteorologist Matt Taylor explained. The Polish city of Nysa told its 44,000 residents to leave yesterday as water rose. In the Czech Republic, 70% of the town of Litovel was submerged in 3 feet of flooding. The death toll from the disaster has risen to 18. Now the forecast is calling for heavy rain in Italy. “The catastrophic rainfall hitting central Europe is exactly what scientists expect with climate change,” Joyce Kimutai, a climate scientist with Imperial College London’s Grantham Institute, toldThe Guardian.
A recent study examining the effects of London’s ultra-low emissions zone on how students get to school found that a year after the rules came into effect, many students had switched to walking, biking, or taking public transport instead of being driven in private vehicles.