You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Just don’t confuse them with SMRs.
When politicians tell the CEO of Radiant that they love small modular reactors, he groans inwardly and just keeps smiling.
Doug Bernauer’s Radiant is not trying to make SMRs. His company — a VC-backed startup currently in the pre-application phase with the Nuclear Regulatory Commission — is designing a portable nuclear microreactor, which is intended to replace diesel generators. The politicians don’t always know the difference, Bernauer told me.
The SMR-microreactor confusion is common outside the world of nuclear. While they are both versions of advanced nuclear technologies not yet built in the United States (all of our nuclear power comes from big, old-fashioned plants), SMRs and microreactors have different designs, power outputs, costs, financing models, and potential use cases.
Unlike SMRs, microreactors are too small to ever become key energy players within a full-sized grid. But they could replace fossil fuels in some of the hardest to decarbonize sectors and locations in the world: mines, factories, towns in remote locations (especially Alaska and northern Canada), military bases, and (ironically) oil fields. For those customers, they could also make power supply and prices more consistent, secure, and dependable than fossil fuels, whose fluctuating prices batter industrial sectors and the residents of remote towns without discrimination.
Perhaps even more importantly, microreactors’ small size and comparatively low price could make them a gateway drug for new nuclear technologies in the U.S., helping companies and regulators build the know-how they need to lower the risk and cost for larger projects.
Heatmap Illustration/Radiant, IAEA, Getty Images
The big problem with this idea? No functional commercial nuclear microreactor actually exists. Industry experts cannot say with confidence that they know what the technological hurdles are going to be, how to solve them, or what it’s going to cost to address them.
“My crystal ball is broken,” John Parsons, an economist researching risk in energy at the Massachusetts Institute of Technology, said when I asked him whether he believed microreactors would make it through the technical gauntlet. “I’m hopeful. But I’m also very open-minded. I don’t know what’s going to happen. And I really believe we need a lot of shots on goal, and not all shots are going to go through,” he said.
Recent advances in both technology and regulation indicate that in the next few years, we should have some answers.
Private companies are expecting to conduct their first tests in about two years, and they are in conversations with potential customers. Radiant is hoping to test at the Idaho National Laboratory in 2026; Westinghouse and Ultra Safe Nuclear Corporation have contracts to test microreactors there as well. BWX Technologies is currently procuring the parts for a demonstration reactor through the Department of Defense’s prototype program — called Project Pele — and plans to test in about two years; X-energy signed an expanded contract in 2023 to build a prototype for Project Pele as well. Eielson Air Force Base in Alaska is commissioning a pilot microreactor. Schools including Pennsylvania State University and the University of Illinois have announced their interest as potential customers. Mining companies and other industry players in Alaska regularly express interest in embracing this technology.
The government is also quietly smoothing the way, removing barriers to make those tests possible. On March 4, the Nuclear Regulatory Commission released a new draft of licensing rules that will shape the future for these microreactors, and early March’s emergency spending bill included more than $2.5 billion repurposed for investment in a domestic supply chain of the type of nuclear fuel most advanced reactors will require.
“If we are truly committed as a nation to sticking to our climate goals, then we will absolutely get to a place where there are a bunch of microreactors replacing otherwise difficult to decarbonize sectors and applications,” said Kathryn Huff, the head of the office of nuclear energy at the Department of Energy.
Eric Gimon, a senior fellow at the nonprofit Energy Innovation, was a microreactor skeptic until about a month ago. His own recent research has made him far more optimistic that these microreactors might actually be technologically feasible, he told me when I reached out for an honest critique. “If they can make (the microreactors) work, it’s attractive,” he said. “There are a lot of industrial players that are going to want to buy them.”
“If your goal is to produce power at 4 cents per kilowatt hour, why would you buy any power that’s way more expensive than what you need? You do it because if that adds diversity to the portfolio and less variance, then you can get an overall portfolio that is lower cost or a lower risk for the same cost,” he told me.
Everyone I spoke to in the industry began our conversation with the same analogy: In the world of nuclear, full-size power plants are to airports what microreactors are to airplanes. Just as it's easier to build and regulate an airplane than an entire airport, in theory the microreactors should be built in a factory, regulated and licensed in the factory, and then rented out to or sold to the end user. An airport requires approvals specific to the construction site, a huge team of people employed for a long time to construct it and then another team to maintain it, and complicated financing based on the idea that the airport could be used for 50 or more years; a full-scale nuclear plant is the same. An airplane can basically be ordered online; a microreactor should be the same.
“They are sized to be similar to that kind of scope, where you could really consolidate a lot of the chemical and manufacturing oversight to a single location rather than moving thousands of people to a construction site,” Huff told me.
Microreactors should produce relatively small amounts of power (a maximum of 10-20 megawatts) and lots of heat with a tiny amount of nuclear fuel. They are usually portable, and if they aren’t portable they require a limited amount of construction or installation. Because it should not be possible to handle the fuel once it leaves the factory (most of the proposed reactor designs set the fuel deep into a dense, inaccessible matrix), these reactors wouldn’t require the same safety and security measures on site as a nuclear power plant. They’re easily operated or managed by people without nuclear expertise, and their safety design — called passive safety — should make it technically impossible for a reactor to meltdown.
“The excess reactivity is so small that you actually can’t get the reactor hot enough that you could start damaging the fuel. That’s something unique about the microreactor that would not necessarily be true for other types of nuclear,” Jeff Waksman, the program manager for the Department of Defense’s Strategic Capabilities Office, told me.
Microreactors should also cost on the order of tens of millions of dollars, not hundreds. That’s low enough that a company, university, town, or other similarly-sized entity could buy one or more of them. Because they’re cheaper than traditional nuclear, they don’t require lenders to take big risks on money committed over a very long period of time. If a mining company wanted to replace a diesel generator with one of these, they should be able to finance it in exactly the same way (a loan from the bank, for example). This makes their financial logic quite different from SMRs, which can suffer from some of the same problems as full-size nuclear power plants (see: NuScale’s recent setbacks).
“All of the things that contribute to a faster innovation cycle are true for microreactors compared to larger reactors. So you can just — build one,” said Rachel Slaybaugh, a partner at DCVC and a board member at Radiant, Fervo Energy, and Fourth Power.
Because microreactors max out at around 20 megawatts of energy, the economies of scale that eventually bring down energy prices for full-scale nuclear power can’t be replicated. While Jigar Shah, the director of the loan programs office at the DOE, speculated in a recent interview that costs might eventually go just below 10 cents per kilowatt hour, Parsons is skeptical that anyone could provide a practical cost estimate. It’s absolutely going to cost more than either large reactors or SMRs, Parsons said.
But cost comparisons to other types of nuclear technology aren’t practical, according to Slaybaugh. “You are going to be able to command a cost parity with diesel generators. It’s easy to get to a point where they make financial sense,” she said. “You can see why someone would pick one: This is not making noise, it’s not making local air pollution, you don’t have to deal with the diesel logistics complexity. You sell it at price parity, and maybe the first few customers pay a premium because they are excited about it.”
That premium price for the initial technology is the largest hurdle raised by every single person I spoke with, from the DOE to analysts and researchers to the different microreactor companies.
But there is one customer already inclined to pay a substantial premium: the Department of Defense. The U.S. military has greater resiliency and security needs than other consumers when it comes to its power supply, making the cost of microreactors more palatable. (And it doesn’t hurt that the taxpayer already foots the bill for enormous defense contracts, including for aircraft carriers and submarines powered by nuclear reactors). It’s common for technological innovations (think the internet, GPS, advanced prosthetics) to begin with the military and then expand outward to the consumer. Project Pele and the requests for proposals at Eielson Air Force Base both indicate that the pathway might be one for microreactors, according to Parsons.
For the president of BWXT Advanced Technologies, the Department of Defense’s decision to commission his company’s microreactor for Project Pele removed his last doubts that these microreactors would eventually be built. “The DOD being the first mover has extreme advantage for the country, and for eventually the commercial industry,” Joseph Miller told me. “The first mover was the barrier, and now it’s just 1,000 things that we’re working on all day every day to make it real, and there’s no gotcha out there that I see. That wasn’t the case when we were doing the design work, but now we’re making procurements to be able to assemble and deliver the reactor.”
Regardless of whether Miller’s optimism is well-founded, the experience gained in trying to make them happen is invaluable for a nuclear industry that’s been stuck in the mud for far too long.
“I've been talking with the federal government about the fact that there’s broader value in terms of getting wins on the board for the nuclear sector and getting the industry more experienced with building new things in a way that isn't quite so complicated,” Slaybaugh said. “Let’s have them build a thing that’s small and kind of cheap, and then they can go build a bigger thing that’s a little more expensive and a little more complicated. Let’s get some real reps in with microreactors.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The failure of the once-promising sodium-ion manufacturer caused a chill among industry observers. But its problems may have been more its own.
When the promising and well funded sodium-ion battery company Natron Energy announced that it was shutting down operations a few weeks ago, early post-mortems pinned its failure on the challenge of finding a viable market for this alternate battery chemistry. Some went so far as to foreclose on the possibility of manufacturing batteries in the U.S. for the time being.
But that’s not the takeaway for many industry insiders — including some who are skeptical of sodium-ion’s market potential. Adrian Yao, for instance, is the founder of the lithium-ion battery company EnPower and current PhD student in materials science and engineering at Stanford. He authored a paper earlier this year outlining the many unresolved hurdles these batteries must clear to compete with lithium-iron-phosphate batteries, also known as LFP. A cheaper, more efficient variant on the standard lithium-ion chemistry, LFP has started to overtake the dominant lithium-ion chemistry in the electric vehicle sector, and is now the dominant technology for energy storage systems.
But, he told me, “Don’t let this headline conclude that battery manufacturing in the United States will never work, or that sodium-ion itself is uncompetitive. I think both those statements are naive and lack technological nuance.”
Opinions differ on the primary advantages of sodium-ion compared to lithium-ion, but one frequently cited benefit is the potential to build a U.S.-based supply chain. Sodium is cheaper and more abundant than lithium, and China hasn’t yet secured dominance in this emerging market, though it has taken an early lead. Sodium-ion batteries also perform better at lower temperatures, have the potential to be less flammable, and — under the right market conditions — could eventually become more cost-effective than lithium-ion, which is subject to more price volatility because it’s expensive to extract and concentrated in just a few places.
Yao’s paper didn’t examine Natron’s specific technology, which relied on a cathode material known as “Prussian Blue Analogue,” as the material’s chemical structure resembles that of the pigment Prussian Blue. This formula enabled the company’s batteries to discharge large bursts of power extremely quickly while maintaining a long cycle life, making it promising for a niche — but crucial — domestic market: data center backup power.
Natron’s batteries were designed to bridge the brief gap between a power outage and a generator coming online. Today, that role is often served by lead-acid batteries, which are cheap but bulky, with a lower energy density and shorter cycle life than sodium-ion. Thus, Yao saw this market — though far smaller than that of grid-scale energy storage — as a “technologically pragmatic” opportunity for the company.
“It’s almost like a supercapacitor, not a battery,” one executive in the sodium-ion battery space who wished to remain anonymous told me of Natron’s battery. Supercapacitors are energy storage devices that — like Natron’s tech — can release large amounts of power practically immediately, but store far less total energy than batteries.
“The thing that has been disappointing about the whole story is that people talk about Natron and their products and their journey as if it’s relevant at all to the sodium-ion grid scale storage space,” the executive told me. The grid-scale market, they said, is where most companies are looking to deploy sodium-ion batteries today. “What happened to Natron, I think, is very specific to Natron.”
But what exactly did happen to the once-promising startup, which raised over $363 million in private investment from big name backers such as Khosla Ventures and Prelude Ventures? What we know for sure is that it ran out of money, canceling plans to build a $1.4 billion battery manufacturing facility in North Carolina. The company was waiting on certification from an independent safety body, which would have unleashed $25 million in booked orders, but was forced to fold before that approval came through.
Perhaps seeing the writing on the wall, Natron’s founder, Colin Wessells, stepped down as CEO last December and left the company altogether in June.
“I got bored,” Wessels told The Information of his initial decision to relinquish the CEO role. “I found as I was spending all my time on fundraising and stockholder and board management that it wasn’t all that much fun.”
It’s also worth noting, however, that according to publicly available data, the investor makeup of Natron appears to have changed significantly between the company’s $35 million funding round in 2020 and its subsequent $58 million raise in 2021, which could indicate qualms among early backers about the direction of the company going back years. That said, not all information about who invested and when is publicly known. I reached out to both Wessels and Natron’s PR team for comment but did not receive a reply.
The company submitted a WARN notice — a requirement from employers prior to mass layoffs or plant closures — to the Michigan Department of Labor and Economic Opportunity on August 28. It explained that while Natron had explored various funding avenues including follow-on investment from existing shareholders, a Series B equity round, and debt financing, none of these materialized, leaving the company unable “to cover the required additional working capital and operational expenses of the business.”
Yao told me that the startup could have simply been a victim of bad timing. “While in some ways I think the AI boom was perfect timing for Natron, I also think it might have been a couple years too early — not because it’s not needed, but because of bandwidth,” he explained. “My guess is that the biggest thing on hyperscalers’ minds are currently still just getting connected to the grid, keeping up with continuous improvements to power efficiency, and how to actually operate in an energy efficient manner.” Perhaps in this environment, hyperscalers simply viewed deploying new battery tech for a niche application as too risky, Yao hypothesized, though he doesn’t have personal knowledge of the company’s partnerships or commercial activity.
The sodium-ion executive also thought timing might have been part of the problem. “He had a good team, and the circumstances were just really tough because he was so early,” they said. Wessells founded Natron in 2012, based on his PhD research at Stanford. “Maybe they were too early, and five years from now would have been a better fit,” the executive said. “But, you know, who’s to say?”
The executive also considers it telling that Natron only had $25 million in contracts, calling this “a drop in the bucket” relative to the potential they see for sodium-ion technology in the grid-scale market. While Natron wasn’t chasing the big bucks associated with this larger market opportunity, other domestic sodium-based battery companies such as Inlyte Energy and Peak Energy are looking to deploy grid-scale systems, as are Chinese battery companies such as BYD and HiNa Battery.
But it’s certainly true that manufacturing this tech in the U.S. won’t be easy. While Chinese companies benefit from state support that can prop up the emergent sodium-ion storage industry whether it’s cost-competitive or not, sodium-ion storage companies in the U.S. will need to go head-to-head with LFP batteries on price if they want to gain significant market share. And while a few years ago experts were predicting a lithium shortage, these days, the price of lithium is about 90% off its record high, making it a struggle for sodium-ion systems to match the cost of lithium-ion.
Sodium-ion chemistry still offers certain advantages that could make it a good option in particular geographies, however. It performs better in low-temperature conditions, where lithium-ion suffers notable performance degradation. And — at least in Natron’s case — it offers superior thermal stability, meaning it’s less likely to catch fire.
Some even argue that sodium-ion can still be a cost-effective option once manufacturing ramps up due to the ubiquity of sodium, plus additional savings throughout the batteries’ useful life. Peak Energy, for example, expects its battery systems to be more expensive upfront but cheaper over their entire lifetime, having designed a passive cooling system that eliminates the need for traditional temperature control components such as pumps and fans.
Ultimately, though, Yao thinks U.S. companies should be considering sodium-ion as a “low-temperature, high-power counterpart” — not a replacement — for LFP batteries. That’s how the Chinese battery giants are approaching it, he said, whereas he thinks the U.S. market remains fixated on framing the two technologies as competitors.
“I think the safe assumption is that China will come to dominate sodium-ion battery production,” Yao told me. “They already are far ahead of us.” But that doesn’t mean it’s impossible to build out a domestic supply chain — or at least that it’s not worth trying. “We need to execute with technologically pragmatic solutions and target beachhead markets capable of tolerating cost premiums before we can play in the big leagues of EVs or [battery energy storage systems],” he said.
And that, he affirmed, is exactly what Natron was trying to do. RIP.
They may not refuel as quickly as gas cars, but it’s getting faster all the time to recharge an electric car.
A family of four pulls their Hyundai Ioniq 5 into a roadside stop, plugs in, and sits down to order some food. By the time it arrives, they realize their EV has added enough charge that they can continue their journey. Instead of eating a leisurely meal, they get their grub to go and jump back in the car.
The message of this ad, which ran incessantly on some of my streaming services this summer, is a telling evolution in how EVs are marketed. The game-changing feature is not power or range, but rather charging speed, which gets the EV driver back on the road quickly rather than forcing them to find new and creative ways to kill time until the battery is ready. Marketing now frequently highlights an electric car’s ability to add a whole lot of miles in just 15 to 20 minutes of charge time.
Charging speed might be a particularly effective selling point for convincing a wary public. EVs are superior to gasoline vehicles in a host of ways, from instantaneous torque to lower fuel costs to energy efficiency. The one thing they can’t match is the pump-and-go pace of petroleum — the way combustion cars can add enough fuel in a minute or two to carry them for hundreds of miles. But as more EVs on the market can charge at faster speeds, even this distinction is beginning to disappear.
In the first years of the EV race, the focus tended to fall on battery range, and for good reason. A decade ago, many models could travel just 125 or 150 miles on a charge. Between the sparseness of early charging infrastructure and the way some EVs underperform their stated range numbers at highway speeds, those models were not useful for anything other than short hauls.
By the time I got my Tesla in 2019, things were better, but still not ideal. My Model 3’s 240 miles of max range, along with the expansion of the brand’s Supercharger network, made it possible to road-trip in the EV. Still, I pushed the battery to its limits as we crossed worryingly long gaps between charging stations in the wide open expanses of the American West. Close calls burned into my mind a hyper-awareness of range, which is why I encourage EV shoppers to pay extra for a bigger battery with additional range if they can afford it. You just had to make it there; how fast the car charged once you arrived was a secondary concern. But these days, we may be reaching a point at which how fast your EV charges is more important than how far it goes on a charge.
For one thing, the charging map is filling up. Even with an anti-EV American government, more chargers are being built all the time. This growth is beginning to eliminate charging deserts in urban areas and cut the number of very long gaps between stations out on the highway. The more of them come online, the less range anxiety EV drivers have about reaching the next plug.
Super-fast charging is a huge lifestyle convenience for people who cannot charge at home, a group that could represent the next big segment of Americans to electrify. Speed was no big deal for the prototypical early adopter who charged in their driveway or garage; the battery recharged slowly overnight to be ready to go in the morning. But for apartment-dwellers who rely on public infrastructure, speed can be the difference between getting a week’s worth of miles in 15 to 20 minutes and sitting around a charging station for the better part of an hour.
Crucially, an improvement in charging speed makes a long EV journey feel more like the driving rhythm of old. No, battery-powered vehicles still can’t get back on the road in five minutes or less. But many of the newer models can travel, say, three hours before needing to charge for a reasonable amount of time — which is about as long as most people would want to drive without a break, anyway.
An impressive burst of technological improvement is making all this possible. Early EVs like the original Chevy Bolt could accept a maximum of around 50 kilowatts of charge, and so that was how much many of the early DC fast charging stations would dispense. By comparison, Tesla in the past few years pushed Supercharger speed to 250 kilowatts, then 325. Third-party charging companies like Electrify America and EVgo have reached 350 kilowatts with some plugs. The result is that lots of current EVs can take on 10 or more miles of driving range per minute under ideal conditions.
It helps, too, that the ranges of EVs have been steadily improving. What those car commercials don’t mention is that the charging rate falls off dramatically after the battery is half full; you might add miles at lightning speed up to 50% of charge, but as it approaches capacity it begins to crawl. If you have a car with 350 miles of range, then, you probably can put on 175 miles in a heartbeat. (Efficiency counts for a lot, too. The more miles per kilowatt-hour your car can get, the farther it can go on 15 minutes of charge.)
Yet here again is an area where the West is falling behind China’s disruptive EV industry. That country has rolled out “megawatt” charging that would fill up half the battery in just four minutes, a pace that would make the difference between a gasoline pit stop and a charging stop feel negligible. This level of innovation isn’t coming to America anytime soon. But with automakers and charging companies focused on getting faster, the gap between electric and gas will continue to close.
On the need for geoengineering, Britain’s retreat, and Biden’s energy chief
Current conditions: Hurricane Gabrielle has strengthened into a Category 4 storm in the Atlantic, bringing hurricane conditions to the Azores before losing wind intensity over Europe • Heavy rains are whipping the eastern U.S. • Typhoon Ragasa downed more than 10,000 trees in Yangjiang, in southern China, before moving on toward Vietnam.
The White House Office of Management and Budget directed federal agencies to prepare to reduce personnel during a potential government shutdown, targeting employees who work for programs that are not legally required to continue, Politico reported Wednesday, citing a memo from the agency.
As Heatmap’s Jeva Lange warned in May, the Trump administration’s cuts to the federal civil service mean “it may never be the same again,” which could have serious consequences for the government’s response to an unpredictable disaster such as a tsunami. Already the administration has hollowed out entire teams, such as the one in charge of carbon removal policy, as our colleague Katie Brigham wrote in February, shortly after the president took office. And Latitude Media reported on Wednesday, the Department of Energy has issued a $50 million request for proposals from outside counsel to help with the day-to-day work of the agency.
At the Heatmap House event at New York Climate Week on Wednesday, Senate Minority Leader Chuck Schumer kicked things off by calling out President Donald Trump’s efforts to “kill solar, wind, batteries, EVs and all climate friendly technologies while propping up fossil fuels, Big Oil, and polluting technologies that hurt our communities and our growth.” The born and raised Brooklynite praised his home state. “New York remains the climate leader,” he said, but warned that the current administration was pushing to roll back the progress the state had made.
Yet as Heatmap’s Charu Sinha wrote in her recap of the event, “many of the panelists remained cautiously optimistic about the future of decarbonization in the U.S.” Climate tech investors Tom Steyer and Dawn Lippert charted a path forward for decarbonization technology even in an antagonistic political environment, while PG&E’s Carla Peterman made a case for how data centers could eventually lower energy costs. You can read about all these talks and more here.
Nearly 100 scientists, including President Joe Biden’s chief climate science adviser, signed onto a letter Wednesday endorsing more federal research into geoengineering, the broad category of technologies to mitigate the effects of climate change that includes the controversial proposal to inject sulfur dioxide into the atmosphere to reflect the sun’s heat back into space. In an open letter, the researchers said “it is very unlikely that current” climate goals “will keep the global mean temperature below the Paris Agreement target” of 1.5 degrees Celsius above pre-industrial averages. The world has already warmed by more than 1 degree Celsius.
Earlier this month, a paper in the peer-reviewed journal Frontiers argued against even researching technologies that could temporarily cool the planet while humanity worked to cut planet-heating emissions. But Phil Duffy, Biden’s former climate adviser, said in a statement to Heatmap that the paper “opposes research … that might help protect or restore the polar regions.” He went on via email, “As the climate crisis accelerates, we all agree that we need to rapidly scale up mitigation efforts. But the stakes are too high not to also investigate other possible solutions.”
President Trump and Prime Minister Keir Starmer. Leon Neal/Getty Images
UK Prime Minister Keir Starmer plans to skip the United Nations annual climate summit in Brazil in November, the Financial Times reported on Wednesday. He will do so despite criticizing his predecessor Rishi Sunak a few years ago for a “failure of leadership” after the conservative leader declined to attend the annual confab. One leader in the ruling Labour party said there was a “big fight inside the government” between officials pushing Starmer to attend the event those “wanting him to focus on domestic issues.”
Polls show approval for Starmer among the lowest of any leaders in the West. But he has recently pushed for more clean energy, including signing onto a series of nuclear power deals with the U.S.
The Tennessee Valley Authority has assumed the role of the nation’s testbed for new nuclear fission technologies, agreeing to build what are likely to be the nation’s first small modular reactors, including the debut fourth-generation units that use a coolant other than water. Now the federally-owned utility is getting into fusion. On Wednesday, the TVA inked a deal with fusion startup Type One Energy to develop a 350-megawatt plant “using the company’s stellarator fusion technology.” The deal, first brokered last week but reported Tuesday in World Nuclear News, promises to deploy the technology “once it is commercially ready.” It also follows the announcement just a few days ago of a major offtake agreement for fusion leader Commonwealth Fusion Systems, which will sell $1 billion of electricity to oil giant Eni.
Climate change is good news for foreign fish. A new study in Nature found that warming rivers have brought about the introduction of new invasive species. This, the researchers wrote, shows “an increase in biodiversity associated with improvement of water in many European rivers since the late twentieth century.”