You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
It’s useful for more than just decarbonization.

Now that President Donald Trump has been officially inaugurated and issued his barrage of executive orders celebrating fossil fuels and shelving climate technologies such as wind energy and electric vehicles, climate tech startups are in a pickle. Federal funding can play a critical role in helping companies scale up and build out first-of-a-kind projects and facilities. So how to work with a government hostile to one of these startups’ core value propositions: aiding in the energy transition?
Talk of clean tech and electrification may be out of vogue, but its utility is not. The potential of many of these companies goes beyond mitigating climate change and into the realm of energy security and resilience — something the Department of Defense is well aware of.
The White House’s climate webpage has gone dark; the Department of Defense’s climate resilience portal lasted a little longer, but that’s now down, too. Once upon a time, though, the site read, “The changing climate is one of many threat multipliers to National Security, which adds complexity to Department of Defense decisions.” That’s a major reason why this agency can’t stop, won’t stop funding climate technologies. Another reason is that many technologies that happen to be good for the planet might also simply be the best tool for the job, meaning the DOD need not utter the word “climate” at all when justifying its decision to deploy new solutions.
“The Defense Department, so far in our experience, has framed things largely in terms of alternative benefits that our technology can have, such as fuel supply chain redundancy and reliability,” Ted McKlveen, co-founder and CEO of the hydrogen storage company Verne, told me. Verne received a $250,000 Small Business Innovation Research grant from the Army last May to work on the development of hydrogen vehicles.
Cindy Taff, CEO of the next-generation geothermal startup Sage Geosystems, told me something similar. “What the military likes to talk about is energy resilience,” she said, though she has heard the DOD tout the climate benefits of her company’s tech, too. Sage currently has multiple DOD engagements, including feasibility studies with both the Army and Navy and a $1.9 million grant to build a demonstration project for the Air Force.
That’s not to say it’s clear what the Department of Defense’s funding priorities under Trump will be. When I contacted the DOD in mid-December to request an interview for this story, a spokesperson initially told me they would help connect me to the right person. But as Trump’s inauguration drew nearer, I got a message saying the agency would have to hold off until it got more guidance, as “it remains to be seen in the next few weeks what direction the new administration is going.”
Regardless of how the priorities shake out, practically every climate-focused company and venture capitalist I talk to emphasizes that their companies will only succeed if they can make or invest in products that can compete on economics and/or quality alone, sans government support. That was true even before a second Trump turn in the White House started to look like an inevitability, and this new administration will at least partially reveal which companies can do that. But while everybody aims to be independent of federal support, they might not actually need to say goodbye to that funding stream, so long as they can tout their economic and performance benefits to the right customers.
Take Pyka, for example. When Michael Norcia co-founded the autonomous electric aircraft company in 2017, the ultimate goal was to design a passenger plane. “We want that to be our legacy, but we were also very, very realistic about the challenges associated with actually doing that,” he told me. So when the DOD took an interest in the company’s commercial cargo planes and their potential ability to deliver supplies in contested environments, the startup jumped at the opportunity, delivering its first aircraft to AFWERX, the innovation arm of the Department of the Air Force, early last year. Interest from such a lucrative government customer helped the company to close its $40 million Series B round in September.
Of course, the decarbonization benefits of electrifying military cargo delivery would be huge. But unsurprisingly, Norcia told me that the DOD primarily frames the opportunity in terms of the capabilities of all-electric or hybrid-electric planes, which could take a variety of fuels, operate quietly, and give off minimal heat, making them more difficult to detect via thermal imaging. Plus, the more equipment is electrified the better, “in terms of having them be able to operate in a highly contested environment, where moving fuel around maybe is not feasible,” Norcia explained. Not to mention the fact that if a manned aircraft is shot down, people die, meaning that in a counterfactual sense, Pyka’s tech is saving lives.
Verne’s North Star is also decarbonization. And given that the military is the world’s largest oil consumer, McKlveen was excited to partner with the Army to put its hydrogen storage tech to use in medium and heavy-duty vehicles. The company stores hydrogen (ideally green hydrogen, produced via renewables-powered electrolysis) at high density as a cold, compressed gas, making it possible to build hydrogen vehicles with greater range and lower cost than has traditionally been done. Similar to Pyka, the Army is enthused that these vehicles would be difficult for adversaries to detect, as they’re quiet and give off little heat. Likewise, McKlveen told me that hydrogen power could replace the Army’s notoriously noisy generators.
While Verne has also partnered with the Department of Energy and its R&D arm, ARPA-E, McKlveen said that working with the DOD has been unique in a few ways. “The key difference is the DOD is a customer and a grant provider. So they can say both what their needs are as a potential customer and represent a potential customer,” he explained. This, along with the agency’s clear, phased approach that it puts companies through, helps bring a level of transparency to the whole process, from pilot to full-fledged military implementation, that McKlveen appreciates.
And lest we forget, “they also have a very large budget,” he told me. For fiscal year 2025, the DOD has requested $849.8 billion, while the DOE, by comparison, has requested a mere $51.4 billion.
“I find military people to be get-it-done type of people,” Taff of Sage Geosystems told me. “So I think that helps to create a sense of urgency and also push things along a lot faster than you would see with maybe other organizations.” Sage uses drilling technologies adopted from the oil and gas industry to access heat for clean electricity production across a wide variety of geographies. This is an especially attractive option for the DOD as the majority of geothermal infrastructure is underground, and thus well protected from attack. And unlike other renewables, this tech can provide 24/7 energy no matter the weather conditions. So it’s no surprise that the military is pouring money into this sector, pursuing partnerships with other big names in the geothermal space such as Fervo Energy and Eavor.
Electric planes, hydrogen, and geothermal all felt intuitively justifiable to me from a defense standpoint, but I was more surprised to learn that the DOD has gotten into the alternative proteins, a.k.a. “fake meat”, industry. Though meat substitutes won’t power tankers or keep the lights on, the Defense Department’s $1.4 million grant to The Better Meat Co. is intended to strengthen the American supply chain. China’s Ministry of Agriculture and Rural Affairs views lab-grown meat as critical to its five-year agricultural plan. “So we don’t want to have the United States be importing clean protein in the way that we’re currently dependent on Asia for our semiconductors and photovoltaics,” Paul Shapiro, the company’s CEO, told me.
The Better Meat Co. produces a protein called Rhiza that’s derived from microscopic fungi, which it then sells as an ingredient to other companies to make either 100% animal-free meat or a meat blend. “This isn’t an alternative protein program. It’s a domestic biomanufacturing program,” Shapiro told me when I asked if military funding for meat substitutes could be at risk under Trump. Looking at some of the other companies that got grants through the same program, he said, “it’s literally like bio manufacturing things for military planes and jet lubricants and chemical catalysts for bullets.” That is, probably not Republican targets for defunding. “It’s clearly solely about wanting the U.S. to be a leader in biomanufacturing for the products that the world is going to depend on in the future.”
The DOD also sees promise in numerous other clean energy technologies, including nuclear microreactors for their portability and ability to provide off-grid energy in remote locations and alternate battery chemistries that could help the U.S. move away from a dependence on Chinese-produced lithium-ion batteries.
But despite the deep well of funding and pragmatic approach to deployment that the Department of Defense offers, agreeing to work with the DOD isn’t always an obvious choice. Many fear their company’s tech could be used in ways and in wars that they oppose. In 2018, for example, thousands of Google employees signed a letter opposing the company’s participation in Project Maven, a partnership with the Pentagon that uses artificial intelligence to improve the accuracy of drone strikes. Supporters of the project said it would lead to fewer civilian deaths, while protestors argued that Google “should not be in the business of war.” Google did not renew the contract. More recently, employees at Microsoft, Google, and Amazon have signed petitions opposing their company’s provision of cloud computing and AI services to the Israeli government.
Norcia noted that most, but not all of his employees were neutral to positive when it came to working with the Air Force, while “for a small minority of the company, it unfortunately was not something that they really wanted to devote their life to.” While he understands that perspective, Norcia does believe that Pyka’s work with the DOD is a net positive for the world. “If you assume wars are going to keep happening — which, unfortunately, I think is the reality — I’d rather have it be the case that they’re more of a robot war than a human war,” he told me. And at the end of the day, passenger planes are still the goal.
As for his team at Verne, McKlveen told me everybody was on board. “The Defense Department has led to some of the biggest innovations of the last century, whether that’s the internet or GPS. And our team knows that.” Plus, even if the DOD doesn’t talk much about the climate benefits of sustainability-focused tech, that doesn’t negate them. A 2019 study revealed that the Pentagon purchases an average of 100 million barrels of oil per year, so from that perspective, “it’s hard to find a bigger customer that we can address,” McKlveen told me.
Norcia agreed. “I think the gains of your impact get turned way up if you’re doing work with the DOD,” he said, “as opposed to, you know, building an app that makes something incrementally more efficient or more addictive.”
Editor’s note: This story has been updated to reflect that DOD’s climate resilience portal has been taken down.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
NineDot Energy’s nine-fiigure bet on New York City is a huge sign from the marketplace.
Battery storage is moving full steam ahead in the Big Apple under new Mayor Zohran Mamdani.
NineDot Energy, the city’s largest battery storage developer, just raised more than $430 million in debt financing for 28 projects across the metro area, bringing the company’s overall project pipeline to more than 60 battery storage facilities across every borough except Manhattan. It’s a huge sign from the marketplace that investors remain confident the flashpoints in recent years over individual battery projects in New York City may fail to halt development overall. In an interview with me on Tuesday, NineDot CEO David Arfin said as much. “The last administration, the Adams administration, was very supportive of the transition to clean energy. We expect the Mamdani administration to be similar.”
It’s a big deal given that a year ago, the Moss Landing battery fire in California sparked a wave of fresh battery restrictions at the local level. We’ve been able to track at least seven battery storage fights in the boroughs so far, but we wouldn’t be surprised if the number was even higher. In other words, risk remains evident all over the place.
Asked where the fears over battery storage are heading, Arfin said it's “really hard to tell.”
“As we create more facts on the ground and have more operating batteries in New York, people will gain confidence or have less fear over how these systems operate and the positive nature of them,” he told me. “Infrastructure projects will introduce concern and reasonably so – people should know what’s going on there, what has been done to protect public safety. We share that concern. So I think the future is very bright for being able to build the cleaner infrastructure of the future, but it's not a straightforward path.”
In terms of new policy threats for development, local lawmakers are trying to create new setback requirements and bond rules. Sam Pirozzolo, a Staten Island area assemblyman, has been one of the local politicians most vocally opposed to battery storage without new regulations in place, citing how close projects can be to residences, because it's all happening in a city.
“If I was the CEO of NineDot I would probably be doing the same thing they’re doing now, and that is making sure my company is profitable,” Pirozzolo told me, explaining that in private conversations with the company, he’s made it clear his stance is that Staten Islanders “take the liability and no profit – you’re going to give money to the city of New York but not Staten Island.”
But onlookers also view the NineDot debt financing as a vote of confidence and believe the Mamdani administration may be better able to tackle the various little bouts of hysterics happening today over battery storage. Former mayor Eric Adams did have the City of Yes policy, which allowed for streamlined permitting. However, he didn’t use his pulpit to assuage battery fears. The hope is that the new mayor will use his ample charisma to deftly dispatch these flares.
“I’d be shocked if the administration wasn’t supportive,” said Jonathan Cohen, policy director for NY SEIA, stating Mamdani “has proven to be one of the most effective messengers in New York City politics in a long time and I think his success shows that for at least the majority of folks who turned out in the election, he is a trusted voice. It is an exercise that he has the tools to make this argument.”
City Hall couldn’t be reached for comment on this story. But it’s worth noting the likeliest pathway to any fresh action will come from the city council, then upwards. Hearings on potential legislation around battery storage siting only began late last year. In those hearings, it appears policymakers are erring on the side of safety instead of blanket restrictions.
The week’s most notable updates on conflicts around renewable energy and data centers.
1. Wasco County, Oregon – They used to fight the Rajneeshees, and now they’re fighting a solar farm.
2. Worcester County, Maryland – The legal fight over the primary Maryland offshore wind project just turned in an incredibly ugly direction for offshore projects generally.
3. Manitowoc County, Wisconsin – Towns are starting to pressure counties to ban data centers, galvanizing support for wider moratoria in a fashion similar to what we’ve seen with solar and wind power.
4. Pinal County, Arizona – This county’s commission rejected a 8,122-acre solar farm unanimously this week, only months after the same officials approved multiple data centers.
.
A conversation with Adib Nasle, CEO of Xendee Corporation
Today’s Q&A is with Adib Nasle, CEO of Xendee Corporation. Xendee is a microgrid software company that advises large power users on how best to distribute energy over small-scale localized power projects. It’s been working with a lot with data centers as of late, trying to provide algorithmic solutions to alleviate some of the electricity pressures involved with such projects.
I wanted to speak with Nasle because I’ve wondered whether there are other ways to reduce data center impacts on local communities besides BYO power. Specifically, I wanted to know whether a more flexible and dynamic approach to balancing large loads on the grid could help reckon with the cost concerns driving opposition to data centers.
Our conversation is abridged and edited slightly for clarity.
So first of all, tell me about your company.
We’re a software company focused on addressing the end-to-end needs of power systems – microgrids. It’s focused on building the economic case for bringing your own power while operating these systems to make sure they’re delivering the benefits that were promised. It’s to make sure the power gap is filled as quickly as possible for the data center, while at the same time bringing the flexibility any business case needs to be able to expand, understand, and adopt technologies while taking advantage of grid opportunities, as well. It speaks to multiple stakeholders: technical stakeholders, financial stakeholders, policy stakeholders, and the owner and operator of a data center.
At what point do you enter the project planning process?
From the very beginning. There’s a site. It needs power. Maybe there is no power available, or the power available from the grid is very limited. How do we fill that gap in a way that has a business case tied to it? Whatever objective the customer has is what we serve, whether it’s cost savings or supply chain issues around lead times, and then the resiliency or emissions goals an organization has as well.
It’s about dealing with the gap between what you need to run your chips and what the utility can give you today. These data center things almost always have back-up systems and are familiar with putting power on site. It must now be continuous. We helped them design that.
With our algorithm, you tell it what the site is, what the load requirements are, and what the technologies you’re interested in are. It designs the optimal power system. What do we need? How much money is it going to take and how long?
The algorithm helps deliver on those cost savings, deliverables, and so forth. It’s a decision support system to get to a solution very, very quickly and with a high level of confidence.
How does a microgrid reduce impacts to the surrounding community?
The data center obviously wants to power as quickly and cheaply as possible. That’s the objective of that facility. At the same time, when you start bringing generation assets in, there are a few things that’ll impact the local community. Usually we have carbon monoxide systems in our homes and it warns us, right? Emissions from these assets become important and there’s a need to introduce technologies in a way that introduces that power gap and the air quality need. Our software helps address the emissions component and the cost component. And there are technologies that are silent. Batteries, technology components that are noise compliant.
From a policy perspective and a fairness perspective, a microgrid – on-site power plant you can put right next to the data center – helps unburden the local grid at a cost of upgrades that has no value to ratepayers other than just meeting the needs of one big customer. That one big customer can produce and store their own power and ratepayers don’t see a massive increase in their costs. It solves a few problems.
What are data centers most focused on right now when it comes to energy use, and how do you help?
I think they’re very focused on the timeframe and how quickly they can get that power gap filled, those permits in.
At the end of the day the conversation is about the utility’s relationship with the community as opposed to the data center’s relationship with the utility. Everything’s being driven by timelines and those timelines are inherently leaning towards on-site power solutions and microgrids.
More and more of these data center operators and owners are going off-grid. They’ll plug into the grid with what’s available but they’re not going to wait.
Do you feel like using a microgrid makes people more supportive of a data center?
Whether the microgrid is serving a hospital or a campus or a data center, it’s an energy system. From a community perspective, if it’s designed carefully and they’re addressing the environmental impact, the microgrid can actually provide shock absorbers to the system. It can be a localized generation source that can bring strength and stability to that local, regional grid when it needs help. This ability to take yourself out of the equation as a big load and run autonomously to heal itself or stabilize from whatever shock it's dealing with, that’s a big benefit to the local community.