You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
People without air conditioning fare better during blackouts. Here’s why.
I am, in the summer, the human equivalent of a slightly overcooked noodle.
This is especially true in a coastal city like Washington, D.C., where I live. The heat and humidity seep into my bones and I attain a semi-liquid state in which, despite my enthusiasm for hiking and kayaking and swimming and all those other good summer activities, I find myself craving exactly one thing every time I go outside: Air conditioning.
Air conditioners, for better or worse, have become our default solution for extreme heat. When concrete and steel construction replaced regional architecture around the world, air conditioners — where people could afford them — awkwardly, imperfectly filled the spaces left behind by missing local design and materials that would have otherwise helped cope with the weather. And as the world gets hotter, ACs are growing more and more popular: In India, where I mostly grew up without an AC, sales of ACs have skyrocketed over the past decade from three million units in 2013 to an expected 9.7 million this year.
But there is, of course, a catch. As vernacular architecture disappears, so too does vernacular knowledge; many of us, bowing to our cooling-machine gods, have forgotten how to deal with the heat.
Air conditioning has an odd side effect: It makes us dependent. In a 2021 study from Georgia Tech’s Urban Climate Lab, which modeled indoor heat across Atlanta, Phoenix, and Detroit during heat waves, researchers found that people without air conditioning would fare better during a blackout because they’d be more likely to take other measures to help deal with the heat. These are simple moves, like drinking more water and using curtains to keep their rooms dark and cool, whereas people with air conditioning might put too much faith in their appliances — and be entirely unprepared for those appliances to stop working.
“I think a combined blackout and heat wave is the most deadly climate risk we’re confronting right now,” said Brian Stone Jr., director of the Urban Climate Lab and a Professor in the School of City and Regional Planning at Georgia Tech. “A blackout situation really kind of inverts the traditional risk pyramid. If you don’t have air conditioning in your house, you probably have greater heat resilience. Those of us who have air conditioning whenever we want it are going to be more susceptible.”
Heat waves put extreme stress on power grids, and blackouts are increasingly common as summers get hotter. If more people buy more air conditioners without any work being done to shore up the grid (and, believe me, the grid badly needs shoring up), that extra stress could lead to quicker, more common grid failures. It’s unfortunately easy to imagine just how dangerous a grid failure can be: A major blackout during a heat wave would be the inverse of the Texas blackout during the winter of 2021, when hundreds of Texans died of hypothermia in their own homes.
For someone in a house without an air conditioner, a blackout during a heat wave probably wouldn’t affect the temperature inside much; someone who does have one, however, will inevitably find their house heating up beyond a point they were prepared for. As Rebecca Leber pointed out in Vox, early-season heat waves are dangerous because our bodies aren’t prepared for the heat. The sudden loss of air conditioning for someone used to it is dangerous for the same reason.
Our built environment, like a natural ecosystem, is the sum total of many pieces fitting together, and not all of them fit perfectly. Air conditioners are the perfect example: They aren’t universally good at cooling our buildings down, especially if those buildings weren’t built with air conditioning in mind — they often lack proper insulation, for example, which means cooled air will escape a room quickly. That means air conditioners will have to work harder to cool the air, which both further heats up the air outside and places more stress on the grid. When the built ecosystem fails, its human inhabitants inevitably suffer.
Last week, I wrote about a study out of Portland, Oregon, that measured how hot the units in three public-housing developments got during the summer of 2022. To the surprise of the researchers conducting that study, the units with air conditioners were not much cooler than those that didn’t have them. There were a few reasons for this: first, running an air conditioner is expensive, and residents with air conditioners would often turn the temperature up to save on electricity costs. Second, the buildings weren’t designed for air conditioning, so the apartments couldn’t retain cooled air very well.
Third, and most importantly, the residents who didn’t have air conditioners were both more cognizant of heat dangers and more likely to take other steps to cool their spaces down; they retained, in other words, a sort of vernacular knowledge of how to deal with the heat.
“The residents who don’t have air conditioners go to great lengths to keep their homes cool,” said Dana Hellman, a program manager at CAPA Strategies, the climate consultancy that ran the Portland study for the city. “For example, they made DIY insulation for their windows or kept all their lights off or their curtains closed all day long. It’s burdensome, but it might be leveling the field a little bit.”
Which isn’t to say that air conditioners should be abandoned wholesale. If indoor temperatures rise too much, everyone is at risk of heat stroke. Many cities, including Portland, operate cooling centers for residents to go to during extreme heat events. But none of those cities mandate that those centers have some sort of backup power option, and even if they did there aren’t nearly enough centers to serve every resident.
As with climate change more broadly, there are obvious equity issues here: The people who are most likely to use cooling centers are the people who are most likely vulnerable in other ways, as well. More well-off residents can afford to pay for an air conditioner, its associated costs, and possibly also a backup generator to help them ride out a heat wave in the comfort of their own homes; many cooling centers are understaffed and under-resourced, which raises safety concerns for residents who then have to choose whether to stay home or potentially put themselves at risk for the sake of finding relief from the heat.
So what should we do as the world continues to heat up?
We can start with the long, hard task of adapting the grid to keep us safe during heat waves, a fix that Stone points out is decades overdue. “Back in the 90s, the idea was that we’d be successful in reducing global emissions and wouldn’t need to adapt [to global warming],” Stone said. “If we had acknowledged to ourselves that it was going to be a 20 to 50 year project just to start adapting, we might have been more attuned to the fact that the electrical grid is a life support system for us when it is too hot outside to be healthy. But that’s been a slow realization.”
In Portland, the housing authority has a program to provide public housing residents with free air conditioners. But there are other forms of adaptation, too: Stone and his colleagues found that cool roofs, which reflect more sunlight than traditional roofs, can lower ambient temperatures by 1 to 1.5 degrees Celsius. Urban tree cover, which throws potentially life-saving shade onto houses and roads alike, can also go a long way towards cooling things down.
Most important, however, is actually going to be changing the way we interact with heat. Education — getting people to take heat waves as seriously as, say, a hurricane or wildfire — is just as important as modifying our built environment. Perhaps we'll all, as Morgan Meaker wrote in Wired last year, take a leaf out of the Spanish playbook and adopt the siesta (an idea that I personally endorse), or learn to live in the dark caves of our curtain-darkened apartments in the peak of summer.
I may even start turning up my AC to let my body acclimatize to its natural state of noodle. Whatever the solution, heat must re-enter our vernacular: not just as something we mechanically force out of our homes, but as something we figure out how to live with.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Wind and solar are out. Clean, firm power is in.
The Senate Finance committee published its highly anticipated tax proposal for Trump’s One Big, Beautiful Bill on Monday night, including a new plan to revise the nation’s clean energy tax credits.
Senate Republicans widened the aperture slightly compared to the House version of the bill, extending tax credits for geothermal energy, batteries, and hydropower, and preserving “transferability” — a crucial rule that allows companies to sell their tax credits for cash — for years to come.
But the text would still slash many of the signature programs of the Inflation Reduction Act. It would be particularly damaging for Republicans’ goals of creating a domestic mining industry, because it kills incentives for refining critical minerals while yanking away subsidies for the electric cars and wind turbines that might use those minerals.
Consumer tax credits for energy efficiency upgrades, including heat pumps, would still be terminated, as would credits for homeowners to lease or purchase rooftop solar. The Senate bill also cuts a tax deduction for energy efficiency upgrades in commercial buildings one year after the bill’s passage, which was not in the House version.
There was no mercy for the IRA’s tax credit to produce clean hydrogen, despite a last-minute appeal from more than 250 organizations in early June. That policy would still be terminated this year.
Here’s a rundown of the rest of the major changes.
Like the House bill, the Senate’s proposal would terminate tax credits for new, used, and leased electric vehicles. But while the House had extended the program by one year for automakers that had yet to sell 200,000 eligible vehicles, the Senate version would simply end the program in 180 days — or roughly six months — after the bill’s passage.
Depending on when the bill is passed, the Senate version could work out better for some experienced EV automakers, such as Tesla and General Motors. These automakers are set to lose their eligibility for tax credits on December 31 under the House text. But the Senate bill’s 180-day period could allow them to eke out another month or so of eligibility — especially if congressional negotiations over the One Big, Beautiful Bill Act go late into the summer.
Newer EV automakers, such as Rivian or Lucid, come out worse under the Senate text as compared to the House bill since they haven’t sold as many vehicles.
Homeowners interested in electric vehicle chargers would get a longer runway than the House had proposed — but a much shorter one than is on the books right now. Under current law, homeowners can claim the charger tax credit through 2032. The Senate version would terminate the 30% tax credit for installing a home charger one year after the bill is enacted.
The Inflation Reduction Act achieved massive greenhouse gas reductions by including a set of new “technology-neutral” tax credits that subsidized any new power plant as long as it didn’t emit carbon dioxide. Under current law, these new tax credits will remain effective and on the books for decades to come — expiring only when emissions from the country’s power sector fall about 95% below their all-time high.
The Republican reconciliation bills have dismantled these provisions. The House text proposed immediately winding down tax credits for all clean energy sources — except nuclear — and allowed just a 60-day “grace period” for new projects to start construction to claim the credits. Even then, new power plants would have to enter service by 2028 to qualify.
Senate Republicans have countered with a plan that is designed to maintain support for every electricity source that isn’t wind and solar. The GOP Senate caucus favors technologies that can provide power on demand around the clock — such as geothermal, nuclear, hydropower, and batteries — but technically the Senate text allows any zero-carbon, non-solar, non-wind source to qualify for the clean electricity tax credits for the next decade.
The Senate draft erases the provision in the Inflation Reduction Act that would have kept these tax credits in place until the entire United States power sector reduces its emissions. Instead, it adopts the IRA’s alternate phase-out period, with the tax credits beginning to wind down for projects that start construction in 2034.
Tax credits for wind and solar, however, would begin to phase down for projects that start construction next year, and terminate after 2027, with one big exception.
An odd addendum to the wind and solar phase-out would exempt projects that are at least 1 gigawatt, are at least partially on federal land, and have already received a “right-of-way grant or lease” from the Bureau of Land Management as of June 16. It’s unclear which, if any, projects would be helped by this provision. According to the BLM website, it has not granted a right-of-way to any projects that are 1 gigawatt or larger except for the Lava Ridge wind farm, which has been canceled. If the Senate changes the date, however, the Esmeralda 7 solar farm in Nevada may benefit, as the project is more than 6 gigawatts, and is in the final stages of its environmental review.
The Senate text would not do anything to change the eligibility timeline for existing nuclear plants to claim a tax credit, called 45U, designed to keep them solvent. It would keep the schedule written into the Inflation Reduction Act, which has the credit terminating at the end of 2031. It would, however, impose new foreign sourcing restrictions on nuclear fuel, forbidding existing power plants from claiming the tax credit if their fuel comes from Russia, China, Iran, or North Korea. (It makes an exception for power companies that signed a long-term contract to buy foreign fuel before 2023.) The United States formally banned the import of nuclear fuel from Russia last year.
The Inflation Reduction Act subsidized the production of certain clean energy equipment — including solar panels, wind turbines, inverters, and batteries — as well as some of their subcomponents. Under current law, those tax credits will begin to phase out by 25% increments in 2030, so companies can claim 75% of the credit in 2030, 50% in 2031, and zero in 2033.
The IRA also created a new permanent tax credit that covered 10% of the cost of refining or recycling critical minerals.
The new Senate text changes these phase-out deadlines, often for the worse. First, as in the House bill, wind turbines and their subcomponents would no longer qualify for the tax credit starting in 2028. Second, the tax credit for critical minerals would start phasing out in 2031. Under the new calendar, companies would be able to claim 75% of this credit in 2031, 50% in 2032, and zero in 2034.
In practice, this means that the Senate GOP text would end the IRA’s permanent tax credit for producing many critical minerals, which would damage the financial projects of many mineral processing and refining projects. Other types of equipment remain on the Inflation Reduction Act’s original phase-out schedule.
The new Senate text also slightly expands the type of battery components that qualify for the credit. And — in a potentially significant change for some companies — it forbids companies from stacking tax credits for their vertically integrated production process starting in 2027.
While the House did not touch the tax credit for carbon sequestration, the Senate has put forward a key change favored by many proponents of the technology. Under current law, project operators get the highest-value credit if they simply inject captured carbon underground for no other purpose than to keep it out of the atmosphere. Smaller amounts are available for projects that use captured CO2 to nudge more oil out of the ground, also known as “enhanced oil recovery,” or if they use the CO2 in products like cement.
Under the Senate proposal, all carbon sequestration projects, no matter the nature of the carbon storage, would qualify for the same amount.
The biggest clean energy killer in the House-passed bill was a strict sourcing rule for the tax credits that would disqualify projects that use any component, subcomponent or mineral from China. As Heatmap’s Matthew Zeitlin wrote last week, the rules appeared “unworkable” to many companies because they seemingly disqualified projects even if they used a relatively small amount of an otherwise irrelevant Chinese-sourced material — such as a spare bolt or a gram of steel.
Under the House bill, manufacturers would also not be allowed to license a Chinese company’s technology. This measure appeared to directly target Ford, which has proposed manufacturing electric vehicle batteries using technology licensed from the Chinese firm CATL, one of the world’s best producers of EV batteries.
The Senate proposal changes the House provision by adding a complicated new set of definitions about what might qualify as a federal entity of concern. It also introduces a new “safe harbor” formula describing the amount of Chinese-sourced material that can keep a project from receiving a tax credit. We’re still figuring out how these new rules work together, and we’ll update this article as we understand them better.
The House bill also would have severely curtailed a crucial component of the tax credit program called transferability, which allowed developers that couldn’t take full advantage of the subsidies to sell their credits for cash to other companies. The text stripped this option from the tax credits for clean manufacturing (45X), carbon sequestration (45Q), and clean fuels (45Z) beginning in 2028. Without transferability, most carbon sequestration projects will struggle to pencil out, my colleague Katie Brigham reported.
The Senate proposal would restore transferability for the duration of all remaining tax credits.
But it throws another wrench in plans to scale up nuclear, geothermal, and other large capital-intensive projects, because it restricts zero-carbon power plants’ ability to use modified accelerated cost recovery to fund their projects.
Trump just quasi-nationalized U.S. Steel. That could help climate policy later.
The government is getting into the steel business. The deal between Japan’s Nippon Steel and U.S. Steel, long held off by the Biden administration due to national security and economic concerns, may finally happen, and the government will have a seat at the table. And some progressives are smarting over the fact that a Republican did it first.
On Friday, Nippon Steel and U.S. Steel announced “that President Trump has approved the Companies’ historic partnership,” which would include $11 billion in new investments and “a Golden Share to be issued to the U.S. Government” as well as “commitments” that include “domestic production” and “trade matters.”
The New York Times reported that this “Golden Share” would give the president, including Trump’s successors, the ability to appoint or veto some of the company’s directors, and require the government to sign off on a wide range of corporate decisions, like moving production overseas or idling or closing plants or the procurement of raw materials.
The Trump administration will likely use its oversight to encourage domestic production of steel, in tandem with its tariffs on steel imports. The unique arrangement “will massively expand access to domestically produced steel,” Secretary of Commerce Howard Lutnick wrote on X.
While neither the administration nor the two companies involved in the deal have mentioned decarbonizing steel — and in fact existing steel decarbonization programs have floundered in the first months of the Trump’s second term — it is this government oversight of steel production that could, with a different administration, help steer the steel industry into greener pastures.
A future president could wield a golden share to encourage or require the significant capital investments necessary to decarbonize some of U.S. Steel’s production, investments that the Biden administration had trouble catalyzing even with direct government financial support.
And considering that steel makes up for some 7% of global emissions, decarbonization is a necessary — if costly — step to substantially reducing global emissions.
“It’s honestly embarrassing that Republicans beat us to actually implementing a golden share or something like it,” Alex Jacquez, who worked on industrial policy for the National Economic Council in the Biden White House, told me.
When the steel giant Cleveland Cliffs first hinted that it would not go forward with $500 million worth of federal grants to help build a hydrogen-powered mill, it cited “fears that there won’t be buyers for the lower-carbon product,” thanks to a 40% price gap with traditional steel, Ilmi Granoff wrote for Heatmap., This tracked what steel producers and buyers were telling the Biden administration as it tried to convene the industry to see what it needed to go green.
“The largest issue by far in advancing green steel production in the U.S. is demand. It’s still not price competitive and not worth capital investment upgrades, given where the market is right now and without stable demand from customers who are going to pay a premium for the product,” Jacquez said. “There’s no case to make to shareholders for why you’re investing.”
When the Roosevelt Institute looked at barriers to transition to clean steel, specifically a Cleveland-Cliffs project, among familiar community concerns like what it would mean for steel employment, there was “corporate inertia and focus on short-term shareholder value over long-term public value and competitiveness.”
While the Trump administration sees shareholder demands leading to insufficient domestic production of any steel, a future administration could be a counterweight to investors not wanting to make green steel investments.
Shareholder reticence is a “huge obstacle,” one of the report’s authors Isabel Estevez, co-executive director of the industrial policy think tank I3T, told me.
“Of course investors are not going to green light investments that don’t produce the same returns as doing nothing or doing something else would do,” Jacquez said.
And when green steel projects have gotten canceled, in the U.S. and abroad, it’s been dismal shareholder returns that are often the explicit or implicit justification, as well as the high cost of producing green hydrogen necessary to fuel green steel operations. “We are not only pushing the boundaries of what is technologically feasible with this project. We are also currently pushing the boundaries of economic viability. Or, as it stands today: beyond it,” the chief executive of ThyssenKrupp told the North Rhine-Westphalia parliament, according to Hydrogen Insight.
And the resulting Trump administration retrenchment from the Biden administration’s climate policy has made the environment even less friendly for green steel.
Earlier this month Cleveland-Cliffs scrapped the hydrogen-fuel steel project and said instead it would try to extend its existing coal-fueled blast furnace. And the Swedish company SSAB earlier this year withdrew from a prospective project in Mississippi.
Would these outcomes be any different with a “golden share”? When the Roosevelt Institute looked at steel decarbonization even full-on nationalization was considered as one of the “sticks” that could push along decarbonization (many steel companies globally are either state-owned or have some state investment). The golden share, at least as reported, will seem to put the government in the driver’s seat of a major player of the steel industry, while still maintaining its private ownership structure.
“Assuming the nature of the golden share allows the public sector to make certain requirements about the way that profits are used, it could be very valuable for encouraging U.S. Steel to use their profits to make important investments,” Estevez told me.
On Israel and Iran, G7, and clean-energy jobs
Current conditions: Fairbanks will “cool” to 85 degrees Fahrenheit on Monday after NOAA issued the first heat advisory in Alaska’s history over the weekend • Nashville’s total rainfall for the year is 33.25 inches, making it the city’s wettest since 1979 • It could hit 124 degrees Fahrenheit in Ar Rabiyah, Kuwait, today, potentially setting a new hottest temperature of June so far.
An Israeli strike on the Shahran oil depot in Tehran.Stringer/Getty Images
Oil analysts and investors are bracing for further escalation after Israel and Iran’s attacks on each other’s energy infrastructure this weekend. On Saturday, Iran reported that Israel had struck its natural gas processing facility near the South Pars field, as well the main fuel depot in Tehran — targets that “suggest Israel is attempting to weaken and disrupt Iran’s domestic gas and fuel supply chains to cause shortages, rather than pursuing the country’s oil and gas production or exports, which would rock the markets,” the Financial Times writes. Iran responded on Saturday by hitting an Israeli refinery and damaging pipelines north of Tel Aviv. Israel preemptively cut off the natural-gas flow from its oil fields in case those pipelines become additional targets, with Egypt and Jordan reporting they’ve already seen disruptions to their supplies as a result, The Wall Street Journal reports.
Iran has the second-largest natural gas reserves and the fourth-largest crude oil reserves in the world, and is the third-largest producer in the Organization of the Petroleum Exporting Countries. The country has also threatened to close the Strait of Hormuz, a major transit route for a third of the world’s oil, although many analysts are skeptical of such a threat, given that it would also cut off Iran’s own export route to its biggest customer, China, Bloomberg reports. While some analysts expect President Trump to call on OPEC+ to increase its production capacity if the global oil supply is disrupted, “it’s unclear whether the Organization of the Petroleum Exporting Countries could offset a severe and prolonged outage in Iran, which pumps around 3.4 million barrels a day,” Bloomberg adds. Brent crude rose 5.5% to $78.32 a barrel at the start of trading on Monday morning, after gaining 7% on Friday — the most in three years.
The Group of Seven summit begins today in western Alberta, but in a break with precedent, climate policy will not be on the agenda. Canada, France, Italy, Japan, Germany, and Britain will reportedly take pains to avoid “riling” President Trump at the meeting in Kananaskis, The Washington Post reports, while Bloomberg notes that “other G7 leaders won’t even try for a statement of unity on matters such as Ukraine or climate change.” Since 1975, the group has “dedicated an average of 5% of its declarations to climate change at each summit,” The Global Governance Project reports, and it has made “496 climate commitments, taking 6% of the total on all subjects.” But despite the hesitancy to contradict the U.S., certain climate policies will be “integrated into the agenda, a senior government official told a briefing this week, pointing to an effort to improve the international joint response to the growing global forest fire threat,” per the BBC.
The Republican budget bill could potentially threaten 2 million jobs, a new report by BlueGreen Alliance found. In addition to 300,000 direct manufacturing jobs that may be lost if the GOP follows through on eliminating the corresponding tax credits, the report also found that a million indirect jobs (like “supply chain jobs, providing parts for auto or clean energy manufacturing”) and 643,000 induced jobs (like “restaurant workers, store clerks, and the other types of jobs you’d see when an area increases in population or has more money to spend”) are also at risk of evaporating, Electrek notes. Georgia alone could lose 258,000 jobs. “Every bit of data shows clearly that repealing these credits will hurt working Americans,” Ted Fertik, the vice president of manufacturing and industrial policy at BlueGreen Alliance, said in a statement. “We hope the Senate will see reason and reverse these damaging provisions.”
The European Commission, which is set to propose a cut-off date for the European Union’s imports of Russian gas, will not propose similar limits on the nation’s nuclear fuel, Reuters reported Monday. Russia currently supplies the bloc with 38% of its enriched uranium and 23% of its raw uranium, and five EU countries use Russian-designed reactors intended to run on Russian fuel. “The question about nuclear is, of course, complicated, because we need to be very sure that we are not putting countries in a situation where they do not have the security of supply,” EU energy commissioner Dan Jorgensen said. Though the announcement was a reversal from the Commission’s statement in June that it would target Russian enriched uranium, Jorgensen added that “we’re working as fast as we can to also make that a part of the proposal.”
In case you missed it, late last week Meta announced a deal with XGS Energy to add 150 megawatts of geothermal electricity in New Mexico to help the company power its local expansion into artificial intelligence. XGS specifically uses a closed-loop system to prevent water from escaping as it extracts geothermal energy from the rock, which is “especially crucial in a drought-prone state like New Mexico,” The Verge writes. The goal is for the facility to be operational by 2030.
Though the deal between Meta and XGS is no larger than a separate geothermal deal the tech company struck with Sage Geosystems last year, the proposal would still “represent about 4% of total U.S. geothermal production,” Reuters reports. Meta also announced a nuclear agreement with Constellation Energy earlier this month. My colleague Matthew Zeitlin has more on the tech clean-power buying spree, which you can read about here.
The world’s biggest sand battery is now operating in the small municipality of Pornainen, Finland. The nearly 50-foot wide, 43-foot-tall tank is filled with sand that is capable of storing 1 megawatt of thermal power from excess solar and wind electricity, and which can be used to meet one month of Pornainen’s heat demands in the summer or a week of its demands in the winter, per its owner, Polar Night Energy.