You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
We know dangerously little about how hot it’s getting inside.
If the last few weeks are any indication, this summer is going to be a scorcher.
In Spain and Portugal, April temperatures reached record highs. A heat wave swept through Asia, killing dozens on the Indian subcontinent; temperatures in the region hovered around 110 degrees Fahrenheit for days. The United States saw records break throughout the Northeast and Midwest, with temperatures into the 90s.
And that’s just how hot it was outside. Inside is a completely different story — one we know far less about.
Heat is the deadliest extreme weather phenomenon in the United States, and when the outside world is boiling, the advice is often pretty simple: get inside. But the majority of heat-related deaths happen indoors, and, unlike the satellites and weather stations that can measure outdoor temperature, we have very little data on just how hot our homes are getting.
That’s a major blindspot. Without knowing exactly how hot buildings are getting, lawmakers have little, if any, data to rely on when it comes to crafting policies around indoor heat. A WHO report from 2018, which lays out a strong recommendation for a minimum heat threshold of 18 degrees Celsius (about 64 degrees Fahrenheit), simply suggests that, when it comes to heat, “strategies to protect populations from excess indoor heat should be developed and implemented.”
“Humans spend the majority of their time indoors, and we have entire building stocks across our cities where we haven’t taken into account what the weather systems around those buildings are going to look like,” said Vivek Shandas, a professor at Portland State University who studies heat in urban environments and advisor to CAPA Strategies, a climate data consultancy. Regional architecture gave way to cheap steel and concrete around the country, and the result has been residents being put at risk by the very nature of their homes.
A new study from the city of Portland, Oregon, one of the first of its kind, goes a little way towards closing the indoor temperature data gap. In the wake of an intense, deadly heat wave that killed 123 Oregonians in June 2021 — locals called it a heat dome, for the hot air mass that parked itself over the region for days — the Portland Bureau of Emergency Management (PBEM) commissioned CAPA Strategies to find out just how hot the homes of the city’s residents were getting. In particular, they looked at three properties managed by Home Forward, the city’s housing authority, which had each seen resident deaths from heat-related illnesses.
The setup was simple: Residents volunteered to have temperature sensors placed in their units — usually away from an air conditioner, if they had one. The sensors then monitored indoor temperatures over the summer of 2022, which while not quite as hot as 2021’s heat dome, still brought intense heat to the region. If indoor temperatures got above 80, 85, or 90 degrees Fahrenheit, residents got an alert that would, ideally, nudge them into taking action to protect themselves from heatstroke.
And the apartments did get hot, though not quite as hot as the outside world: Interior temperatures maxed out in the low to mid-90s on 100-degree days, and every apartment in the study tipped over 80 degrees on multiple days. Units in two of the residences, which were built with concrete, stayed hot for longer even as nighttime temperatures fell outside. (Units in the third residence, which was built out of wood, were far better at cooling down.)
That kind of heat is striking: Prolonged exposure to temperatures that high can be dangerously hot, especially for elderly people or anyone with a medical condition that makes them susceptible to heat, though none of the residents who participated in the study suffered any serious medical impacts.
To get an idea of how that indoor heat affected residents in less life-threatening ways, the researchers also periodically sat down with them to conduct surveys and workshops. They found that residents experienced some sort of heat stress — difficulty sleeping, headaches, or even just heightened irritability — throughout the summer, not just during heat waves.
“It was disheartening to see how much heat stress many building residents are putting up with all the time,” said Jonna Papaefthimiou, who was the city’s chief resiliency officer at the time of the study and recently left for the same role at the state level. The residents of the Home Forward buildings dealt with particular obstacles that might not have been present in other houses, like a lack of mesh screens that discouraged residents from opening their windows at night for fear of intruders, whether insect or human. “There were a lot of barriers for people to just do basic things to cool off,” Papaefthimiou told me.
But they also tried to take care of each other, she said. Many of the residents signed up for the study out of a desire to help their neighbors and better understand heat risks in their building, including a person whose apartment had previously been the home of one of the victims of the 2021 heat dome. Mutual aid is a simple, if underappreciated, climate-adaptation practice, and this kind of community involvement can save lives: Over the course of the study, the researchers found that residents were eager to learn how to check in on and help each other during heat waves.
While there’s certainly a lot of work that governments need to do to help their citizens deal with extreme heat, Papaefthimiou thinks this desire to help is an encouraging sign. “Neighbors helping each other does not represent a failure of government to me. It actually means that something's going well in the community as a whole,” she told me.
For the most part, cities across the country have dealt with heat by letting developers and residents throw air conditioning at the problem. It’s an effective, if blunt, tool — the best one we have in a heat wave, really — but it’s by no means perfect. Air conditioners are energy-hungry, which makes them expensive to run, often out of reach for lower-income residents, and vulnerable to black outs when everyone turns them on. They also struggle to cool buildings on particularly hot days. That’s especially true if they’re, say, window AC units in buildings that were never designed with cooling in mind, as is the case with many cities in the northeast.
Most of the buildings in Portland were built for a different climate than the one that exists today and will need to be retrofitted to adapt for a changing climate, Papaefthimiou told me. This is true of cities across the country, and each one will be forced to reckon with an associated host of questions as a result, from what the best approach to retrofitting is (passive cooling might be a better investment than air conditioning in some instances, for example) to whether that process will end up pricing people out of the places they live in now.
The Portland indoor heat report includes a number of recommendations for what the city’s government can do to help its citizens, from the short-term (distributing things like thermal curtains and magnetic window screens) to the medium- and long-term (retrofitting buildings with central AC or providing professional insulation services). But the study is limited — only 53 residential units participated over three months — and researchers at CAPA are hoping to secure funding from Multnomah County, which was one of the partners of this year’s report, to conduct a second study later this year.
More study is needed either way, and not just in Portland: The more information we have about how extreme heat affects people who are trying to shelter from it, the better prepared we are to make policies that can mitigate it. Some activists, for example, are calling for cities to institute summer maximum heat thresholds similar to how many northeastern cities mandate minimum temperatures in the winter — something that the Arizona cities of Phoenix and Tempe have already implemented. But every city, and even every building in every city, is different, and data collection will be key to moving from a one-size-fits-all policy of air conditioning to more targeted, productive solutions that take into account the way people interact with the buildings they live in.
“I tend to think that often what we're doing is throwing lots of money at things that we intuitively believe will work,” Shandas told me. “But what we think works may not always be the thing that works well. People inhabit spaces in very different ways, and I think we need to get a better handle on designing for their behaviors instead of throwing a bunch of money at our assumptions.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A conversation with VDE Americas CEO Brian Grenko.
This week’s Q&A is about hail. Last week, we explained how and why hail storm damage in Texas may have helped galvanize opposition to renewable energy there. So I decided to reach out to Brian Grenko, CEO of renewables engineering advisory firm VDE Americas, to talk about how developers can make sure their projects are not only resistant to hail but also prevent that sort of pushback.
The following conversation has been lightly edited for clarity.
Hiya Brian. So why’d you get into the hail issue?
Obviously solar panels are made with glass that can allow the sunlight to come through. People have to remember that when you install a project, you’re financing it for 35 to 40 years. While the odds of you getting significant hail in California or Arizona are low, it happens a lot throughout the country. And if you think about some of these large projects, they may be in the middle of nowhere, but they are taking hundreds if not thousands of acres of land in some cases. So the chances of them encountering large hail over that lifespan is pretty significant.
We partnered with one of the country’s foremost experts on hail and developed a really interesting technology that can digest radar data and tell folks if they’re developing a project what the [likelihood] will be if there’s significant hail.
Solar panels can withstand one-inch hail – a golfball size – but once you get over two inches, that’s when hail starts breaking solar panels. So it’s important to understand, first and foremost, if you’re developing a project, you need to know the frequency of those events. Once you know that, you need to start thinking about how to design a system to mitigate that risk.
The government agencies that look over land use, how do they handle this particular issue? Are there regulations in place to deal with hail risk?
The regulatory aspects still to consider are about land use. There are authorities with jurisdiction at the federal, state, and local level. Usually, it starts with the local level and with a use permit – a conditional use permit. The developer goes in front of the township or the city or the county, whoever has jurisdiction of wherever the property is going to go. That’s where it gets political.
To answer your question about hail, I don’t know if any of the [authority having jurisdictions] really care about hail. There are folks out there that don’t like solar because it’s an eyesore. I respect that – I don’t agree with that, per se, but I understand and appreciate it. There’s folks with an agenda that just don’t want solar.
So okay, how can developers approach hail risk in a way that makes communities more comfortable?
The bad news is that solar panels use a lot of glass. They take up a lot of land. If you have hail dropping from the sky, that’s a risk.
The good news is that you can design a system to be resilient to that. Even in places like Texas, where you get large hail, preparing can mean the difference between a project that is destroyed and a project that isn’t. We did a case study about a project in the East Texas area called Fighting Jays that had catastrophic damage. We’re very familiar with the area, we work with a lot of clients, and we found three other projects within a five-mile radius that all had minimal damage. That simple decision [to be ready for when storms hit] can make the complete difference.
And more of the week’s big fights around renewable energy.
1. Long Island, New York – We saw the face of the resistance to the war on renewable energy in the Big Apple this week, as protestors rallied in support of offshore wind for a change.
2. Elsewhere on Long Island – The city of Glen Cove is on the verge of being the next New York City-area community with a battery storage ban, discussing this week whether to ban BESS for at least one year amid fire fears.
3. Garrett County, Maryland – Fight readers tell me they’d like to hear a piece of good news for once, so here’s this: A 300-megawatt solar project proposed by REV Solar in rural Maryland appears to be moving forward without a hitch.
4. Stark County, Ohio – The Ohio Public Siting Board rejected Samsung C&T’s Stark Solar project, citing “consistent opposition to the project from each of the local government entities and their impacted constituents.”
5. Ingham County, Michigan – GOP lawmakers in the Michigan State Capitol are advancing legislation to undo the state’s permitting primacy law, which allows developers to evade municipalities that deny projects on unreasonable grounds. It’s unlikely the legislation will become law.
6. Churchill County, Nevada – Commissioners have upheld the special use permit for the Redwood Materials battery storage project we told you about last week.
Long Islanders, meanwhile, are showing up in support of offshore wind, and more in this week’s edition of The Fight.
Local renewables restrictions are on the rise in the Hawkeye State – and it might have something to do with carbon pipelines.
Iowa’s known as a renewables growth area, producing more wind energy than any other state and offering ample acreage for utility-scale solar development. This has happened despite the fact that Iowa, like Ohio, is home to many large agricultural facilities – a trait that has often fomented conflict over specific projects. Iowa has defied this logic in part because the state was very early to renewables, enacting a state portfolio standard in 1983, signed into law by a Republican governor.
But something else is now on the rise: Counties are passing anti-renewables moratoria and ordinances restricting solar and wind energy development. We analyzed Heatmap Pro data on local laws and found a rise in local restrictions starting in 2021, leading to nearly 20 of the state’s 99 counties – about one fifth – having some form of restrictive ordinance on solar, wind or battery storage.
What is sparking this hostility? Some of it might be counties following the partisan trend, as renewable energy has struggled in hyper-conservative spots in the U.S. But it may also have to do with an outsized focus on land use rights and energy development that emerged from the conflict over carbon pipelines, which has intensified opposition to any usage of eminent domain for energy development.
The central node of this tension is the Summit Carbon Solutions CO2 pipeline. As we explained in a previous edition of The Fight, the carbon transportation network would cross five states, and has galvanized rural opposition against it. Last November, I predicted the Summit pipeline would have an easier time under Trump because of his circle’s support for oil and gas, as well as the placement of former North Dakota Governor Doug Burgum as interior secretary, as Burgum was a major Summit supporter.
Admittedly, this prediction has turned out to be incorrect – but it had nothing to do with Trump. Instead, Summit is now stalled because grassroots opposition to the pipeline quickly mobilized to pressure regulators in states the pipeline is proposed to traverse. They’re aiming to deny the company permits and lobbying state legislatures to pass bills banning the use of eminent domain for carbon pipelines. One of those states is South Dakota, where the governor last month signed an eminent domain ban for CO2 pipelines. On Thursday, South Dakota regulators denied key permits for the pipeline for the third time in a row.
Another place where the Summit opposition is working furiously: Iowa, where opposition to the CO2 pipeline network is so intense that it became an issue in the 2020 presidential primary. Regulators in the state have been more willing to greenlight permits for the project, but grassroots activists have pressured many counties into some form of opposition.
The same counties with CO2 pipeline moratoria have enacted bans or land use restrictions on developing various forms of renewables, too. Like Kossuth County, which passed a resolution decrying the use of eminent domain to construct the Summit pipeline – and then three months later enacted a moratorium on utility-scale solar.
I asked Jessica Manzour, a conservation program associate with Sierra Club fighting the Summit pipeline, about this phenomenon earlier this week. She told me that some counties are opposing CO2 pipelines and then suddenly tacking on or pivoting to renewables next. In other cases, counties with a burgeoning opposition to renewables take up the pipeline cause, too. In either case, this general frustration with energy companies developing large plots of land is kicking up dust in places that previously may have had a much lower opposition risk.
“We painted a roadmap with this Summit fight,” said Jess Manzour, a campaigner with Sierra Club involved in organizing opposition to the pipeline at the grassroots level, who said zealous anti-renewables activists and officials are in some cases lumping these items together under a broad umbrella. ”I don’t know if it’s the people pushing for these ordinances, rather than people taking advantage of the situation.”