You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
We know dangerously little about how hot it’s getting inside.

If the last few weeks are any indication, this summer is going to be a scorcher.
In Spain and Portugal, April temperatures reached record highs. A heat wave swept through Asia, killing dozens on the Indian subcontinent; temperatures in the region hovered around 110 degrees Fahrenheit for days. The United States saw records break throughout the Northeast and Midwest, with temperatures into the 90s.
And that’s just how hot it was outside. Inside is a completely different story — one we know far less about.
Heat is the deadliest extreme weather phenomenon in the United States, and when the outside world is boiling, the advice is often pretty simple: get inside. But the majority of heat-related deaths happen indoors, and, unlike the satellites and weather stations that can measure outdoor temperature, we have very little data on just how hot our homes are getting.
That’s a major blindspot. Without knowing exactly how hot buildings are getting, lawmakers have little, if any, data to rely on when it comes to crafting policies around indoor heat. A WHO report from 2018, which lays out a strong recommendation for a minimum heat threshold of 18 degrees Celsius (about 64 degrees Fahrenheit), simply suggests that, when it comes to heat, “strategies to protect populations from excess indoor heat should be developed and implemented.”
“Humans spend the majority of their time indoors, and we have entire building stocks across our cities where we haven’t taken into account what the weather systems around those buildings are going to look like,” said Vivek Shandas, a professor at Portland State University who studies heat in urban environments and advisor to CAPA Strategies, a climate data consultancy. Regional architecture gave way to cheap steel and concrete around the country, and the result has been residents being put at risk by the very nature of their homes.
A new study from the city of Portland, Oregon, one of the first of its kind, goes a little way towards closing the indoor temperature data gap. In the wake of an intense, deadly heat wave that killed 123 Oregonians in June 2021 — locals called it a heat dome, for the hot air mass that parked itself over the region for days — the Portland Bureau of Emergency Management (PBEM) commissioned CAPA Strategies to find out just how hot the homes of the city’s residents were getting. In particular, they looked at three properties managed by Home Forward, the city’s housing authority, which had each seen resident deaths from heat-related illnesses.
The setup was simple: Residents volunteered to have temperature sensors placed in their units — usually away from an air conditioner, if they had one. The sensors then monitored indoor temperatures over the summer of 2022, which while not quite as hot as 2021’s heat dome, still brought intense heat to the region. If indoor temperatures got above 80, 85, or 90 degrees Fahrenheit, residents got an alert that would, ideally, nudge them into taking action to protect themselves from heatstroke.
And the apartments did get hot, though not quite as hot as the outside world: Interior temperatures maxed out in the low to mid-90s on 100-degree days, and every apartment in the study tipped over 80 degrees on multiple days. Units in two of the residences, which were built with concrete, stayed hot for longer even as nighttime temperatures fell outside. (Units in the third residence, which was built out of wood, were far better at cooling down.)
That kind of heat is striking: Prolonged exposure to temperatures that high can be dangerously hot, especially for elderly people or anyone with a medical condition that makes them susceptible to heat, though none of the residents who participated in the study suffered any serious medical impacts.
To get an idea of how that indoor heat affected residents in less life-threatening ways, the researchers also periodically sat down with them to conduct surveys and workshops. They found that residents experienced some sort of heat stress — difficulty sleeping, headaches, or even just heightened irritability — throughout the summer, not just during heat waves.
“It was disheartening to see how much heat stress many building residents are putting up with all the time,” said Jonna Papaefthimiou, who was the city’s chief resiliency officer at the time of the study and recently left for the same role at the state level. The residents of the Home Forward buildings dealt with particular obstacles that might not have been present in other houses, like a lack of mesh screens that discouraged residents from opening their windows at night for fear of intruders, whether insect or human. “There were a lot of barriers for people to just do basic things to cool off,” Papaefthimiou told me.
But they also tried to take care of each other, she said. Many of the residents signed up for the study out of a desire to help their neighbors and better understand heat risks in their building, including a person whose apartment had previously been the home of one of the victims of the 2021 heat dome. Mutual aid is a simple, if underappreciated, climate-adaptation practice, and this kind of community involvement can save lives: Over the course of the study, the researchers found that residents were eager to learn how to check in on and help each other during heat waves.
While there’s certainly a lot of work that governments need to do to help their citizens deal with extreme heat, Papaefthimiou thinks this desire to help is an encouraging sign. “Neighbors helping each other does not represent a failure of government to me. It actually means that something's going well in the community as a whole,” she told me.
For the most part, cities across the country have dealt with heat by letting developers and residents throw air conditioning at the problem. It’s an effective, if blunt, tool — the best one we have in a heat wave, really — but it’s by no means perfect. Air conditioners are energy-hungry, which makes them expensive to run, often out of reach for lower-income residents, and vulnerable to black outs when everyone turns them on. They also struggle to cool buildings on particularly hot days. That’s especially true if they’re, say, window AC units in buildings that were never designed with cooling in mind, as is the case with many cities in the northeast.
Most of the buildings in Portland were built for a different climate than the one that exists today and will need to be retrofitted to adapt for a changing climate, Papaefthimiou told me. This is true of cities across the country, and each one will be forced to reckon with an associated host of questions as a result, from what the best approach to retrofitting is (passive cooling might be a better investment than air conditioning in some instances, for example) to whether that process will end up pricing people out of the places they live in now.
The Portland indoor heat report includes a number of recommendations for what the city’s government can do to help its citizens, from the short-term (distributing things like thermal curtains and magnetic window screens) to the medium- and long-term (retrofitting buildings with central AC or providing professional insulation services). But the study is limited — only 53 residential units participated over three months — and researchers at CAPA are hoping to secure funding from Multnomah County, which was one of the partners of this year’s report, to conduct a second study later this year.
More study is needed either way, and not just in Portland: The more information we have about how extreme heat affects people who are trying to shelter from it, the better prepared we are to make policies that can mitigate it. Some activists, for example, are calling for cities to institute summer maximum heat thresholds similar to how many northeastern cities mandate minimum temperatures in the winter — something that the Arizona cities of Phoenix and Tempe have already implemented. But every city, and even every building in every city, is different, and data collection will be key to moving from a one-size-fits-all policy of air conditioning to more targeted, productive solutions that take into account the way people interact with the buildings they live in.
“I tend to think that often what we're doing is throwing lots of money at things that we intuitively believe will work,” Shandas told me. “But what we think works may not always be the thing that works well. People inhabit spaces in very different ways, and I think we need to get a better handle on designing for their behaviors instead of throwing a bunch of money at our assumptions.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
In some ways, fossil fuels make snowstorms like the one currently bearing down on the U.S. even more dangerous.
The relationship between fossil fuels and severe weather is often presented as a cause-and-effect: Burning coal, oil, and gas for heat and energy forces carbon molecules into a reaction with oxygen in the air to form carbon dioxide, which in turn traps heat in the atmosphere and gradually warms our planet. That imbalance, in many cases, makes the weather more extreme.
But this relationship also goes the other way: We use fossil fuels to make ourselves more comfortable — and in some cases, keep us alive — during extreme weather events. Our dependence on oil and gas creates a grim ouroboros: As those events get more extreme, we need more fuel.
This weekend, some 200 million Americans will be cranking up the thermostats in their natural-gas-heated homes, firing up their propane generators, or hitting icy roads in their combustion-engine cars as a major winter storm brings record-low temperatures to 35 states, knocks out power, and grinds air travel to a halt.
Climate change deniers love to use major winter storms as “proof” that global warming isn’t real. But in the case of this weekend’s polar vortex, there is evidence that Arctic warming is responsible for the record cold temperature projections across the United States.
“In the Arctic, in the winter, the ocean is much, much warmer than the atmosphere,” Judah Cohen, a climatologist at MIT and the author of a 2021 paper linking Arctic variability to extreme weather in the U.S., told me. Sea ice acts as an insulating layer separating the warmer ocean water from the frigid air. But as it melts — as it is doing every month of the year — “all of this heat can now be extracted out of the ocean.” The reduced temperature difference between the ocean and atmosphere creates wavy high-pressure ridges and low-pressure troughs that are favorable to the formation of polar vortices, which can funnel extreme cold air down over North America, as they seemingly did over Texas in 2021’s Winter Storm Uri, when 246 people died.
The exact mechanisms and interactions of this phenomenon are still up for debate. “I am in the minority that argues that there is causal link between a warm Arctic and cold continents,” Cohen added to me via email. “Most others argue that it is a coincidental relationship.” Still, scientists generally agree that extreme cold events will persist in a warming world; they’ll just become rarer.
Cold kills more people in the United States than heat, but curiously, warmer winters aren’t likely to significantly reduce these seasonal deaths. That’s because about half of the cases of excess mortality in winter are from cardiovascular diseases, which are, by nature, “highly seasonal,” Kristie Ebi, a professor of global health at the University of Washington, told me. “Since people began studying these, there are more of them in the winter than there are in the summer.” Researchers still aren’t sure why that is — though since the 1940s, we’ve known that people’s blood pressure, cholesterol, and even blood viscosity go up during the colder and darker months, perhaps due to changes in diet or exercise. That also appears to be the case regardless of climate or temperature, holding true whether you’re in Yellowknife or Miami.
In other words, “if seasonal factors other than temperature are mainly responsible for winter excess mortality, then climate warming might have little benefit,” Patrick Kinney, the director of Columbia University’s Climate and Health Program, wrote in Environmental Research Letters back in 2015. Extreme heat-related deaths, by contrast, have no ceiling, meaning global warming will result in more temperature-related deaths than it will prevent.
Our anthropogenically warmer winters could even prove to be more deadly in certain ways. Dana Tobin is a researcher at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder who studies how weather affects traffic accidents. She’s found that driving in freezing rain is more dangerous than driving in snow “because of the ice glaze that it can produce on surfaces, especially those that are untreated,” she told me. As winters become warmer, there will, counterintuitively, be more ice on roads in many places, since freezing rain requires a bit of warm air before it hits the ground and becomes black ice.
Researchers working in Scandinavia have similarly found that as the atmosphere warms and more days hover around freezing, “there is a higher risk of icy conditions … which may lead to a predisposition to falls and road traffic accidents.” (As I’ve previously reported, milder winters might also make us even more depressed than very cold ones.)
There is something slightly karmic about the fact that cars become increasingly unsafe as the planet, warmed by their emissions, becomes more hazardous. But this connection gets even bleaker when carbon monoxide poisoning is factored in.
On Thursday, the North American Electric Reliability Corporation issued a statement warning that “much of North America is at an elevated risk of having insufficient energy supplies to meet demand in extreme operating conditions,” including “advancing winter weatherization of power plants and fuel acquisition to enable operations during cold temperatures.” Heavy ice can also snap branches above power lines, causing local outages.
When the power goes out or the gas lines freeze, desperate people will do anything to stay warm. That includes, in tragic cases, running improperly vented generators or plugging in propane heaters indoors, which can produce odorless and colorless CO — instead of the usual water and carbon dioxide — when fossil fuels don’t burn correctly. Accidental carbon monoxide poisoning is on the rise in the United States due to the proliferation of such appliances amid increasingly frequent extreme weather events, jumping 86% between 2012 and 2022. That’s even as, worldwide, carbon monoxide poisoning is decreasing.
Snow and ice are among the most dangerous weather conditions in the U.S., and people should take warnings of “life-threatening conditions” at face value. Tobin, the traffic researcher, stressed that one of the best protections from winter weather hazards is knowledge alone. “I believe the best thing that we can do when it comes to messaging to protect drivers from hazards is to empower motorists to make educated and informed decisions for their own safety and the safety of others,” she told me.
Winter storms highlight the entangled nature of our dependence on fossil fuels. We can’t separate extreme weather events from the energy required to survive them. But the dark irony is that, as the planet becomes more volatile, the most dangerous fossil fuels might be the ones meant to keep us warm and get us back home.
The cloak-and-dagger approach is turning the business into a bogeyman.
It’s time to call it like it is: Many data center developers seem to be moving too fast to build trust in the communities where they’re siting projects.
One of the chief complaints raised by data center opponents across the country is that companies aren’t transparent about their plans, which often becomes the original sin that makes winning debates over energy or water use near-impossible. In too many cases, towns and cities neighboring a proposed data center won’t know who will wind up using the project, either because a tech giant is behind it and keeping plans secret or a real estate firm refuses to disclose to them which company it’ll be sold to.
Making matters worse, developers large and small are requiring city and county officials to be tight-lipped through non-disclosure agreements. It’s safe to say these secrecy contracts betray a basic sense of public transparency Americans expect from their elected representatives and they become a core problem that lets activists critical of the data center boom fill in gaps for the public. I mean, why trust facts and figures about energy and water if the corporations won’t be up front about their plans?
“When a developer comes in and there’s going to be a project that has a huge impact on a community and the environment – a place they call home – and you’re not getting any kind of answers, you can tell they’re not being transparent with you,” Ginny Marcille-Kerslake, an organizer for Food and Water Watch in Pennsylvania, told me in an interview this week. “There’s an automatic lack of trust there. And then that extends to their own government.”
Let’s break down an example Marcille-Kerslake pointed me to, where Talen Energy is seeking to rezone hundreds of acres of agricultural land in Montour County, Pennsylvania, for industrial facilities. Montour County is already a high risk area for any kind of energy or data center development, ranking in the 86th percentile nationally for withdrawn renewable energy projects (more than 10 solar facilities have been canceled here for various reasons). So it didn’t help when individuals living in the area began questioning if this was for Amazon Web Services, similar to other nearby Talen-powered data center projects in the area?
Officials wouldn’t – or couldn’t – say if the project was for Amazon, in part because one of the county commissioners signed a non-disclosure agreement binding them to silence. Subsequently, a Facebook video from an activist fighting the rezoning went viral, using emails he claimed were obtained through public records requests to declare Amazon “is likely behind the scenes” of the zoning request.
Amazon did not respond to my requests for comment. But this is a very familiar pattern to us now. Heatmap Pro data shows that a lack of transparency consistently ranks in the top five concerns people raise when they oppose data center projects, regardless of whether they are approved or canceled. Heatmap researcher Charlie Clynes explained to me that the issue routinely crops up in the myriad projects he’s tracked, down to the first data center ever logged into the platform – a $100 million proposal by a startup in Hood County, Oregon, that was pulled after a community uproar.
“At a high level, I have seen a lack of transparency become more of an issue. It makes people angry in a very unique way that other issues don’t. Not only will they think a project is going to be bad for a community, but you’re not even telling them, the key stakeholder, what is going on,” Clynes said. “It’s not a matter of, are data centers good or bad necessarily, but whether people feel like they’re being heard and considered. And transparency issues make that much more difficult.”
My interview with Marcille-Kerslake exemplified this situation. Her organization is opposed to the current rapid pace of data center build-out and is supporting opposition in various localities. When we spoke, her arguments felt archetypal and representative of how easily those who fight projects can turn secrecy into a cudgel. After addressing the trust issues with me, she immediately pivoted to saying that those exist because “at the root of it, this lack of transparency to the community” comes from “the fact that what they have planned, people don’t want.”
“The answer isn’t for these developers to come in and be fully transparent in what they want to do, which is what you’d see with other kinds of developments in your community. That doesn’t help them because what they’re building is not wanted.”
I’m not entirely convinced by her point, that the only reason data center developers are staying quiet is because of a likelihood of community opposition. In fairness, the tech sector has long operated with a “move fast, break things” approach, and Silicon Valley companies long worked in privacy in order to closely guard trade secrets in a competitive marketplace. I also know from my previous reporting that before AI, data center developers were simply focused on building projects with easy access to cheap energy.
However, in fairness to opponents, I’m also not convinced the industry is adequately addressing its trust deficit with the public. Last week, I asked Data Center Coalition vice president of state policy Dan Diorio if there was a set of “best practices” that his large data center trade organization is pointing to for community relations and transparency. His answer? People are certainly trying their best as they move quickly to build out infrastructure for AI, but no, there is no standard for such a thing.
“Each developer is different. Each company is different. There’s different sizes, different structures,” he said. “There’s common themes of open and public meetings, sharing information about water use in particular, helping put it in the proper context as well.”
He added: “I wouldn’t categorize that as industry best practice, [but] I think you’re seeing common themes emerge in developments around the country.”
Plus more of the week’s biggest renewable energy fights.
Cole County, Missouri – The Show Me State may be on the precipice of enacting the first state-wide solar moratorium.
Clark County, Ohio – This county has now voted to oppose Invenergy’s Sloopy Solar facility, passing a resolution of disapproval that usually has at least some influence over state regulator decision-making.
Millard County, Utah – Here we have a case of folks upset about solar projects specifically tied to large data centers.
Orange County, California – Compass Energy’s large battery project in San Juan Capistrano has finally died after a yearslong bout with local opposition.
Hillsdale County, Michigan – Here’s a new one: Two county commissioners here are stepping back from any decision on a solar project because they have signed agreements with the developer.