You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
It may or may not be a perfect climate solution, but it is an extremely simple one.
Low-tech carbon removal is all the rage these days. Whether it’s spreading crushed rocks on fields or injecting sludgy biomass underground, relatively simplistic solutions have seen a boom in funding. But there’s one cheap, nature-based method that hasn’t been able to drum up as much attention from big name climate investors: biochar.
This flaky, charcoal-like substance has been produced and used as a fertilizer for millennia, and its potential to lock up the carbon contained in organic matter is well-documented. It’s made by heating up biomass such as wood or plants in a low-oxygen environment via a process called pyrolysis, thereby sequestering up to 40% to 50% of the carbon contained within that organic matter for hundreds or (debatably — but we’ll get to that) even thousands of years. Ideally, the process utilizes waste biomass such as plant material and forest residue left over from harvesting crops or timber, which otherwise might just be burned.
The United Nations Intergovernmental Panel on Climate Change says biochar could store about 2.6 billion metric tons of CO2 per year. And by some metrics, this ancient method of carbon removal is already leagues ahead of the rest. Last year, biochar accounted for 94% of all carbon dioxide removal credits that were actually fulfilled, according to CDR.fyi, which tracks the CO2 removal market. That means that while corporate buyers are purchasing carbon credits that use an array of different removal methods, biochar has thus far dominated the market when it comes to actually making good on these purchases.
Some of the largest corporate buyers of CO2 removal credits have biochar in their portfolios. Microsoft, by far the most prominent player in this space, has bought over 200,000 tons of biochar credits — part of its quest to become carbon negative by 2050 — although that’s still a mere fraction of the over 6.6 million tons of CO2 removal the company has bought overall. JPMorgan Chase, which aims to match every ton of its operational emissions with carbon dioxide removal credits by 2030, has bought nearly 19,000 tons of biochar credits, representing about 26% of its CO2 removal portfolio.
But despite its technical maturity, biochar has yet to generate the same level of excitement or venture capital investment as more complex methods of carbon removal such as direct air capture, which garnered $142 million in investment last year. By comparison, biochar companies raised a cumulative total of $74 million in 2023. While that’s no small change, it doesn’t compare to the amount of capital VCs and other climate tech funders have poured even into other similarly elemental carbon removal technologies.
For example, Frontier, a collaborative fund for tech companies to catalyze emerging solutions in this space, recently announced a $58 million deal with Vaulted Deep, a startup that injects wet biomass from food waste to poop deep underground. And at the end of last year, Frontier inked a $57 million deal with Lithos Carbon, a company pursuing enhanced rock weathering. This involves spreading crushed up rocks onto fields, which react with the CO2 in the air to form bicarbonate; that’s eventually carried out to sea, where the carbon remains permanently sequestered on the ocean floor. In other words, it’s just an acceleration of the natural weathering process, which normally takes hundreds of thousands of years. VCs backing Lithos include mainstream names like Union Square Ventures, Greylock Ventures, and Bain Capital Ventures, while big-time climate tech VC Lowercarbon Capital led Vaulted Deep’s seed round.
The questions around biochar’s durability — that is, how long it can actually lock away carbon — are potentially unanswerable, and that’s at least partially driving investor reticence.
“Biochar falls in this very interesting middle ground - you create it, and then it is constantly degrading,” Freya Chay, program lead at CarbonPlan, a nonprofit that analyzes different carbon removal pathways, told me. She said that we just don’t have the scientific know-how “to predict, really clearly, how much is going to still be in your soil at 100 years or at 1,000 years.”
Frontier, for its part, only considers carbon removal “permanent” if it can sequester carbon for at least 1,000 years. Some studies indicate that a large proportion of biochar can achieve this, but it’s hard to definitively prove, and we’re far from a scientific consensus. Thus far the fund has steered clear of investing in biochar, noting that detailed protocols must be developed to measure its durability under a variety of soil and weather conditions.
Measurement, reporting and verification is often the downfall for nature-based solutions (see: the hoopla around bogus forest carbon credits). And while it is simple to measure how much of the carbon in biomass ends up sequestered in biochar, “it's where you draw the project boundaries in terms of where the MRV falls apart,” Annie Nichols, director of operations and project management at Pacific Biochar told me. For example, one might want to ensure that trees aren’t being cut down or crops aren’t being grown just for the purpose of creating biochar, and this often falls outside the scope of traditional measurement protocols. Pacific Biochar, for its part, sources its waste biomass from forests in high fire risk areas of California, where the excessive accumulation of woody debris poses a danger.
Pacific Biochar ranks as the world’s third largest supplier of carbon removal, with over 28,000 tons of credits delivered. Biochar “got a lot of attention before there was actually much utility,” its CEO, Josiah Hunt told me, referring to the period in the late 2000s when Al Gore was heavily hyping its benefits. In his 2009 book “Our Choice,” Gore called biochar “one of the most exciting new strategies for restoring carbon to depleted soils, and sequestering significant amounts of CO2 for 1,000 years and more.” But at that time, Hunt said, “There weren't really carbon markets ready to work with it yet.”
Prior to 2020, Pacific Biochar’s revenue relied solely on biochar fertilizer sales to farmers. It was only when the carbon credits market picked up that the company was able to scale. Today, Pacific Biochar sells most of its credits directly, as opposed to on an independent exchange, though it works with the carbon credits platform Carbonfuture to deliver credits to customers and perform the necessary verification to ensure the company’s carbon removal data is accurate.
Pacific Biochar’s credits sell for $180 per metric ton, cheaper than nearly all other removal methods and far below the weighted average of $488 for CO2 removal. That’s because producing biochar via pyrolysis requires much less energy than something like direct air capture. It’s also a more mature process than most emergent nature-based solutions such as enhanced rock weathering, meaning that comparably less money needs to be spent demonstrating that the process works as intended.
A number of biochar companies told me they think biochar has been overlooked in favor of more novel technological solutions. “There's this fixation on trying to find the high tech solution, the SaaS app that's going to solve climate change,” Thor Kallestad, CEO and cofounder of Myno Carbon, told me. By comparison, biochar can seem like a relic of an earlier era that never quite reached its potential.
Myno, founded by oil and gas veterans, is self-funding the buildout of a large-scale biochar and electricity co-generation facility in Port Angeles, Washington, which will source its fuel from the copious timber waste in Washington State. It’s still in the initial design phase, but the ultimate goal is to produce about 70,000 tons of biochar per year alongside 20 megawatts of power. That amounts to about 100,000 carbon dioxide removal credits, which Kallestad hopes to sell for less than $100 per metric ton. Ideally, he said, the plant will serve as a proof of concept that will help drive future investments.
While there haven’t yet been any major scandals in the biochar-sourcing world, the BBC ran an exposé in 2022 on a biomass-fueled power station in the UK that was logging old-growth forests to create wood pellets that were then burned for power. The company, Drax, had previously claimed that it was only sourcing sawdust and waste wood. While Drax maintains that its biomass is “sustainable and legally harvested,” further reporting indicates that as of last year, the company was still sourcing from old-growth forests. The worry is that something similar could happen with biochar production as demand ramps up.
Chay says the cost-benefit analysis for making biochar gets even thornier when taking into account the “counterfactual of how we otherwise could have used biomass.” After all, biomass can also be burned for energy, and if the emissions are captured and stored, that’s a carbon removal strategy too. And with many looking towards biomass-based fuels as a way to decarbonize industries such as aviation and shipping, demand for waste biomass appears set to increase alongside uncertainty regarding its best use case. “Zooming forward to 2050, I'm not sure there is anything such as waste biomass,” Chay told me.
But in the short-term at least, there’s enough to go around. A recent Department of Energy report noted that “available but unused” biomass such as logging and agricultural residue could contribute around 350 tons to the nation’s supply every year. That’s about as much biomass as the United States uses for bioenergy today
“Certainly biochar has a place,” Chay said. She’s not convinced that it will ever make sense to conceptualize biochar production as “permanent carbon removal” though. “Maybe we just let it be this kind of interstitial durability. We figure out how to value that while also optimizing for agricultural co-benefits.”
Investors may remain wary of a solution that occupies this hard-to-define space between short and long-term CO2 removal, but Hunt’s not too worried. “I don’t think that’s horribly detrimental,” he told me. He sees biochar’s strong performance in the carbon credits marketplace as enough to sustain the industry for now. “I do think the buying community is what drives our growth. And even if we’re not the unicorns, even if we’re just the work mules, that’s fine with me. I don’t mind being the mule of climate change action.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Give the people what they want — big, family-friendly EVs.
The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.
I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.
The L.A. show is one the major events on the yearly circuit of car shows, where the car companies traditionally reveal new models for the media and show off their whole lineups of vehicles for the public. Given that California is the EV capital of America, carmakers like to talk up their electric models here.
Hyundai’s brand partner, Kia, debuted a GT performance version of its EV9, adding more horsepower and flashy racing touches to a giant family SUV. Jeep reminded everyone of its upcoming forays into full-size and premium electric SUVs in the form of the Recon and the Wagoneer S. VW trumpeted the ID.Buzz, the long-promised electrified take on the classic VW Microbus that has finally gone on sale in America. The VW is the quirkiest of the lot, but it’s a design we’ve known about since 2017, when the concept version was revealed.
Boring isn’t the worst thing in the world. It can be a sign of a maturing industry. At auto shows of old, long before this current EV revolution, car companies would bring exotic, sci-fi concept cars to dial up the intrigue compared to the bread-and-butter, conservatively styled vehicles that actually made them gobs of money. During the early EV years, electrics were the shiny thing to show off at the car show. Now, something of the old dynamic has come to the electric sector.
Acura and Chrysler brought wild concepts to Los Angeles that were meant to signify the direction of their EVs to come. But most of the EVs in production looked far more familiar. Beyond the new hulking models from Hyundai and Kia, much of what’s on offer includes long-standing models, but in EV (Chevy Equinox and Blazer) or plug-in hybrid (Jeep Grand Cherokee and Wrangler) configurations. One of the most “interesting” EVs on the show floor was the Cybertruck, which sat quietly in a barely-staffed display of Tesla vehicles. (Elon Musk reveals his projects at separate Tesla events, a strategy more carmakers have begun to steal as a way to avoid sharing the spotlight at a car show.)
The other reason boring isn’t bad: It’s what the people want. The majority of drivers don’t buy an exotic, fun vehicle. They buy a handsome, spacious car they can afford. That last part, of course, is where the problem kicks in.
We don’t yet know the price of the Ioniq 9, but it’s likely to be in the neighborhood of Kia’s three-row electric, the EV9, which starts in the mid-$50,000s and can rise steeply from there. Stellantis’ forthcoming push into the EV market will start with not only pricey premium Jeep SUVs, but also some fun, though relatively expensive, vehicles like the heralded Ramcharger extended-range EV truck and the Dodge Charger Daytona, an attempt to apply machismo-oozing, alpha-male muscle-car marketing to an electric vehicle.
You can see the rationale. It costs a lot to build a battery big enough to power a big EV, so they’re going to be priced higher. Helpfully for the car brands, Americans have proven they will pay a premium for size and power. That’s not to say we’re entering an era of nothing but bloated EV battleships. Models such as the overpowered electric Dodge Charger and Kia EV9 GT will reveal the appetite for performance EVs. Smaller models like the revived Chevy Bolt and Kia’s EV3, already on sale overseas, are coming to America, tax credit or not.
The question for the legacy car companies is where to go from here. It takes years to bring a vehicle from idea to production, so the models on offer today were conceived in a time when big federal support for EVs was in place to buoy the industry through its transition. Now, though, the automakers have some clear uncertainty about what to say.
Chevy, having revealed new electrics like the Equinox EV elsewhere, did not hold a media conference at the L.A. show. Ford, which is having a hellacious time losing money on its EVs, used its time to talk up combustion vehicles including a new version of the palatial Expedition, one of the oversized gas-guzzlers that defined the first SUV craze of the 1990s.
If it’s true that the death of federal subsidies will send EV sales into a slump, we may see messaging from Detroit and elsewhere that feels decidedly retro, with very profitable combustion front-and-center and the all-electric future suddenly less of a talking point. Whatever happens at the federal level, EVs aren’t going away. But as they become a core part of the car business, they are going to get less exciting.
Current conditions: Parts of southwest France that were freezing last week are now experiencing record high temperatures • Forecasters are monitoring a storm system that could become Australia’s first named tropical cyclone of this season • The Colorado Rockies could get several feet of snow today and tomorrow.
This year’s Atlantic hurricane season caused an estimated $500 billion in damage and economic losses, according to AccuWeather. “For perspective, this would equate to nearly 2% of the nation’s gross domestic product,” said AccuWeather Chief Meteorologist Jon Porter. The figure accounts for long-term economic impacts including job losses, medical costs, drops in tourism, and recovery expenses. “The combination of extremely warm water temperatures, a shift toward a La Niña pattern and favorable conditions for development created the perfect storm for what AccuWeather experts called ‘a supercharged hurricane season,’” said AccuWeather lead hurricane expert Alex DaSilva. “This was an exceptionally powerful and destructive year for hurricanes in America, despite an unusual and historic lull during the climatological peak of the season.”
AccuWeather
This year’s hurricane season produced 18 named storms and 11 hurricanes. Five hurricanes made landfall, two of which were major storms. According to NOAA, an “average” season produces 14 named storms, seven hurricanes, and three major hurricanes. The season comes to an end on November 30.
California Gov. Gavin Newsom announced yesterday that if President-elect Donald Trump scraps the $7,500 EV tax credit, California will consider reviving its Clean Vehicle Rebate Program. The CVRP ran from 2010 to 2023 and helped fund nearly 600,000 EV purchases by offering rebates that started at $5,000 and increased to $7,500. But the program as it is now would exclude Tesla’s vehicles, because it is aimed at encouraging market competition, and Tesla already has a large share of the California market. Tesla CEO Elon Musk, who has cozied up to Trump, called California’s potential exclusion of Tesla “insane,” though he has said he’s okay with Trump nixing the federal subsidies. Newsom would need to go through the State Legislature to revive the program.
President-elect Donald Trump said yesterday he would impose steep new tariffs on all goods imported from China, Canada, and Mexico on day one of his presidency in a bid to stop “drugs” and “illegal aliens” from entering the United States. Specifically, Trump threatened Canada and Mexico each with a 25% tariff, and China with a 10% hike on existing levies. Such moves against three key U.S. trade partners would have major ramifications across many sectors, including the auto industry. Many car companies import vehicles and parts from plants in Mexico. The Canadian government responded with a statement reminding everyone that “Canada is essential to U.S. domestic energy supply, and last year 60% of U.S. crude oil imports originated in Canada.” Tariffs would be paid by U.S. companies buying the imported goods, and those costs would likely trickle down to consumers.
Amazon workers across the world plan to begin striking and protesting on Black Friday “to demand justice, fairness, and accountability” from the online retail giant. The protests are organized by the UNI Global Union’s Make Amazon Pay Campaign, which calls for better working conditions for employees and a commitment to “real environmental sustainability.” Workers in more than 20 countries including the U.S. are expected to join the protests, which will continue through Cyber Monday. Amazon’s carbon emissions last year totalled 68.8 million metric tons. That’s about 3% below 2022 levels, but more than 30% above 2019 levels.
Researchers from MIT have developed an AI tool called the “Earth Intelligence Engine” that can simulate realistic satellite images to show people what an area would look like if flooded by extreme weather. “Visualizing the potential impacts of a hurricane on people’s homes before it hits can help residents prepare and decide whether to evacuate,” wrote Jennifer Chu at MIT News. The team found that AI alone tended to “hallucinate,” generating images of flooding in areas that aren’t actually susceptible to a deluge. But when combined with a science-backed flood model, the tool became more accurate. “One of the biggest challenges is encouraging people to evacuate when they are at risk,” said MIT’s Björn Lütjens, who led the research. “Maybe this could be another visualization to help increase that readiness.” The tool is still in development and is available online. Here is an image it generated of flooding in Texas:
Maxar Open Data Program via Gupta et al., CVPR Workshop Proceedings. Lütjens et al., IEEE TGRS
A new installation at the Centre Pompidou in Paris lets visitors listen to the sounds of endangered and extinct animals – along with the voice of the artist behind the piece, the one and only Björk.
How Hurricane Helene is still putting the Southeast at risk.
Less than two months after Hurricane Helene cut a historically devastating course up into the southeastern U.S. from Florida’s Big Bend, drenching a wide swath of states with 20 trillion gallons of rainfall in just five days, experts are warning of another potential threat. The National Interagency Fire Center’s forecast of fire-risk conditions for the coming months has the footprint of Helene highlighted in red, with the heightened concern stretching into the new year.
While the flip from intense precipitation to wildfire warnings might seem strange, experts say it speaks to the weather whiplash we’re now seeing regularly. “What we expect from climate change is this layering of weather extremes creating really dangerous situations,” Robert Scheller, a professor of forestry and environmental resources at North Carolina State University, explained to me.
Scheuller said North Carolina had been experiencing drought conditions early in the year, followed by intense rain leading up to Helene’s landfall. Then it went dry again — according to the U.S. Drought Monitor, much of the state was back to some level of drought condition as of mid-November. The NIFC forecast report says the same is true for much of the region, including Florida, despite its having been hit by Hurricane Milton soon after Helene.
That dryness is a particular concern due to the amount of debris left in Helene’s wake — another major risk factor for fire. The storm’s winds, which reached more than 100 miles per hour in some areas, wreaked havoc on millions of acres of forested land. In North Carolina alone, the state’s Forest Service estimates over 820,000 acres of timberland were damaged.
“When you have a catastrophic storm like [Helene], all of the stuff that was standing upright — your trees — they might be snapped off or blown over,” fire ecologist David Godwin told me. “All of a sudden, that material is now on the forest floor, and so you have a really tremendous rearrangement of the fuels and the vegetation within ecosystems that can change the dynamics of how fire behaves in those sites.”
Godwin is the director of the Southern Fire Exchange for the University of Florida, a program that connects wildland firefighters, prescribed burners, and natural resources managers across the Southeast with fire science and tools. He says the Southeast sees frequent, unplanned fires, but that active ecosystem management helps keep the fires that do spark from becoming conflagrations. But an increase like this in fallen or dead vegetation — what Godwin refers to as fire “fuel” — can take this risk to the next level, particularly as it dries out.
Godwin offered an example from another storm, 2018’s Hurricane Michael, which rapidly intensified before making landfall in Northern Florida and continuing inland, similar to Hurricane Helene. In its aftermath, there was a 10-fold increase in the amount of fuel on the ground, with 72 million tons of timber damaged in Florida. Three years later, the Bertha Swamp Road Fire filled the storm’s Florida footprint with flames, which consumed more than 30,000 acres filled with dried out forest fuel. One Florida official called the wildfire the “ghost” of Michael, nodding to the overlap of the impacted areas and speaking to the environmental threat the storm posed even years later.
Not only does this fuel increase the risk of fire, it changes the character of the fires that do ignite, Godwin said. Given ample ground fuel, flame lengths can grow longer, allowing them to burn higher into the canopy. That’s why people setting prescribed fires will take steps like raking leaf piles, which helps keep the fire intensity low.
These fires can also produce more smoke, Godwin said, which can mix with the mountainous fog in the region to deadly effect. According to the NIFC, mountainous areas incurred the most damage from Helene, not only due to downed vegetation, but also because of “washed out roads and trails” and “slope destabilization” from the winds and rain. If there is a fire in these areas, all these factors will also make it more challenging for firefighters to address it, the report adds.
In addition to the natural debris fire experts worry about, Helene caused extensive damage to the built environment, wrecking homes, businesses, and other infrastructure. Try imagining four-and-a-half football fields stacked 10 feet tall with debris — that’s what officials have removed so far just in Asheville, North Carolina. In Florida’s Treasure Island, there were piles 50 feet high of assorted scrap materials. Officials have warned that some common household items, such as the lithium-ion batteries used in e-bikes and electric vehicles, can be particularly flammable after exposure to floodwaters. They are also advising against burning debris as a means of managing it due to all the compounding risks.
Larry Pierson, deputy chief of the Swannanoa Fire Department in North Carolina, told Blueridge Public Radio that his department’s work has “grown exponentially since the storm.” While cooler, wetter winter weather could offer some relief, Scheuller said the area will likely see heightened fire behavior for years after the storm, particularly if the swings between particularly wet and particularly dry periods continue.
Part of the challenge moving forward, then, is to find ways to mitigate risk on this now-hazardous terrain. For homeowners, that might mean exercising caution when dealing with debris and considering wildfire risk as part of rebuilding plans, particularly in more wooded areas. On a larger forest management scale, this means prioritizing safe debris collection and finding ways to continue the practice of prescribed burns, which are utilized more in the Southeast than in any other U.S. region. Without focused mitigation efforts, Godwin told me the area’s overall fire outlook would be much different.
“We would have a really big wildfire issue,” he said, “perhaps even bigger than what we might see in parts of the West.”