You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The problem is, we don’t know how much energy it’s actually using.
The price of Bitcoin set a new all time high this week, crossing the $69,000 mark on Tuesday before falling back down to around $67,500 by Thursday afternoon. That almost certainly means Bitcoin’s energy usage is rising, too — although any chance of getting a precise idea of how much, even just in the U.S., may be delayed for months. Last week, the U.S. Energy Information Administration agreed to stop collecting data on crypto mining operations after a federal court in Texas put a halt on the project until the EIA goes through a more fulsome approval process.
That Bitcoin eats up a lot of power is beyond dispute. Bitcoin mining involves solving increasingly complex math problems, which at this point requires vast amounts of computing power; using outside data, the EIA estimated that crypto accounts for around 2% of the nation’s total electricity use. Both the industry’s electricity usage and how it participates in electricity markets have been subject to criticism from Democratic lawmakers, who have pushed for more information-gathering. If the price of Bitcoin continues to climb, that skepticism could ratchet up.
“There is a very direct relationship between the value of what is being mined by the miners and how much is being spent on electricity,” Alex De Vries, a cryptocurrency and energy researcher, told me.
An extensive New York Times investigation last year found that large-scale mining operations were “putting immense pressure on the power grid,” and that “their operations can create costs — including higher electricity bills and enormous carbon pollution — for everyone around them.” According to the University of Cambridge Judge Business School, Bitcoin’s energy consumption has risen about 50% in the past year, from an annualized rate of around 110 terawatt-hours a year just over 163 TWh, comparable to the electricity production of Ukraine or Pakistan. (That is, of course, an estimate, based on a model derived from the performance of mining hardware and the assumption that miners only operate with hardware that allows them to mine Bitcoin profitably.)
With all the attention on consumption and emissions, Bitcoin miners have been eager to portray themselves as, if not quite the goodies, at least not the baddies.
“The industry as a whole has a good story to tell about the energy piece,” Tom Mapes, president of a newly formed industry group called the Digital Energy Council, told me. He also told me that I “have to be realistic about it. We do use a lot of power — not to say that using power in every facet is bad.”
The feel-good Bitcoin energy story goes something like this: Crypto miners are always ready to use energy at the right price — and to shut things down at the right price, too. “We have the ability as a bulk power user of our size has the ability to flex load like no another,” Mapes said. “Datacenters cannot flex load like this. We can be built in as a tool to work within constraints of these grids.”
If a mining facility is co-located with an energy resource, it can be there to purchase power production that might otherwise be curtailed because there isn’t enough transmission capacity to get it to other customers. It can also be a buyer of first resort for a newly developed generator or it can keep an old one in business, as Bitcoin mining has with some fossil fuel generators.
“You tend to see Bitcoin miners anywhere there’s stranded energy and excess power,” said Margot Paez, a fellow at the Bitcoin Policy Institute. There are some examples of crypto mining co-located with renewables, but that does not always mean that the power they use is entirely renewable. There’s also a crypto mining operation set up at a nuclear power plant in Pennsylvania, adjacent to what will be an Amazon Web Services data center.
The main way crypto operations interact with the grid is not by supporting any particular resource, though, but rather by being flexible about when they operate. Shutting off when demand is high can be quite lucrative — sometimes even more so than the crypto mining itself.
Riot Networks, a mining company with extensive operations in Texas and a plaintiff in the EIA record collection suit, has become a flashpoint for crypto’s interaction with the electricity markets precisely because it eagerly shares data with investors and the public about its participation in programs to maintain grid stability. In August, when demand hit record highs and Texas consumers were asked to conserve energy, Riot reported $8.6 million in revenue from selling Bitcoins it had mined and $31.6 million either from selling power it had bought for a prearranged price back to the grid at the higher market price or from incentive payments for being willing to power down during demand spikes.
The company’s chief executive said that last August “was a landmark month for Riot in showcasing the benefits of our unique power strategy.” (Of the 34 large Bitcoin mining operations in the New York Times investigation, Riot was the largest and had the most fossil fuel consumption attributed to it.)
But that was then and this is now. The revenues Riot is deriving from Bitcoin mining are likely substantially greater than they were five or six months ago, as the price of Bitcoin has almost doubled. The company has told investors that it costs around $7,500 to mine a single Bitcoin, which could mean that it and other crypto miners operating strategically in the electricity market will be less willing to sell power back to the grid or turn off during demand spikes.
If you’re thinking this all sounds a lot like the conversation around demand response, well, so was I. Demand response is something climate people love to talk about. They want consumers to get paid for using less power when demand spikes, and they think it’s really neat that you can charge an electric car overnight when demand is low and want you to be able to sell that power back to the grid when demand gets high.
Putting energy consumers near renewables and other non-carbon-generating energy sources that can absorb excess power when renewable production is “too high” for the grid is something you hear about a lot with, say, hydrogen production or energy storage. Why let that energy go to waste when we could incentivize people to store it, instead?
But an electrolyzer or a battery is not just a clever way to figure out how to deal with the peaks and valleys of variable renewable energy resources like wind and solar, it’s also potentially a key component of a decarbonized energy system. It doesn’t just consume non-carbon energy, it can store and transfer carbon-free energy as well.
Crypto, on the other hand, takes energy, renewable or not, and turns it into money. It’s a greedy and flexible consumer of electricity, and there are market designs where non-carbon generators would be happy to work with such a consumer. But from the perspective of the energy system, a consumer is all it will ever be.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On FERC’s ‘disastrous misstep,’ the World Court’s climate ruling, and 127 SMRs
Current conditions: West African countries including Guinea-Bissau, Guinea-Conakry, Senegal and The Gambia are facing flash flooding from heavy rainfall • The southwestern corner of New Mexico is suffering “exceptional” drought, the highest possible level in the U.S. Drought Monitor. • Already roasting in excessive heat, Des Moines, Iowa, is bracing for thunderstorms.
The Department of Energy canceled a nearly $5 billion loan guarantee for the Grain Belt Express, a transmission project designed to move wind power from Kansas to the industrial upper Midwest. After more than a decade of development, the power line won bipartisan support and secured $4.9 billion in federal financing late last year to fund the first phase of the project, running from Ford County in Kansas to Callaway County in Missouri.
As Heatmap’s Matthew Zeitlin explained, the project eventually drew the ire of Missouri Senator Josh Hawley, who recently stepped up his attacks in the hopes that a more friendly administration could help scrap the project. The transmission line’s developer, Invenergy, told Heatmap in a statement that “a privately financed Grain Belt Express transmission superhighway will advance President Trump’s agenda of American energy and technology dominance.”
The microreactor startup Oklo inked a deal with Liberty Energy, the fracking giant where Secretary of Energy Chris Wright served as chief executive before entering government. Liberty was already an early investor in Oklo, and Wright served on the nuclear company’s board. But the new deal is a strategic partnership with a plan to deploy Liberty’s gas equipment alongside Oklo’s reactors, mirroring similar pairings that other small modular reactor developers have promoted.
Oklo is among 127 small modular reactor designs currently under development worldwide, according to a new tally from the Nuclear Energy Agency at the Organisation for Economic Co-operation and Development, the 38-member club of rich countries. Of those designs, 51 are in pre-licensing or licensing processes, and 85 are in active discussion between SMR developers and site owners. Just seven are either operating or under construction.
The Federal Energy Regulatory Commission approved fast-track interconnection processes proposed by the Midcontinent Independent System Operator and the Southwest Power Pool. The new processes will allow power plants to sidestep the standard reviews for a grid hookup. Gas-fired power plants are “likely to be the main beneficiary of the fast-track processes, with standalone batteries also potentially being included,” Utility Dive reported. The American Clean Power Association, the biggest renewable energy lobby, called the decision “a dangerous misstep.”
Southern California’s landmark rule to spur the electrification of certain boilers and water heaters survived a major court challenge. A federal court last week upheld the first-in-the-nation regulation that applies to light-industrial and commercial boilers, steam generators, process heaters, residential pool heaters and tankless water heaters. The ruling, which only applies to the 17 million people in large parts of Los Angeles and its surrounding suburbs, could “help reenergize efforts around the country to replace fossil-fuel-burning equipment with electric heat pumps and other clean technologies,” Canary Media’s Maria Gallucci wrote.
Heatmap’s Emily Pontecorvo reported earlier this week on an effort in Newton, Massachusetts to beat back new gas pipelines block by block. But overall, the fight for electrification has recently faced repeated setbacks. In 2023, a federal court struck down the northern California city of Berkeley’s pioneering ban on new gas hookups, which was replicated in cities across the country. Last year, gas utilities staged something of a coup at the quasi-governmental organization that writes the building codes used in nearly every state.
Children stand outside a church destroyed in a cyclone in Vanuatu.Mario Tama/Getty Images
In a historic decision on Wednesday morning, the International Court of Justice ruled that countries must act on climate change. While non-binding, the verdict from the United Nations’ high court was dubbed “the biggest climate case in history,” as it established the first international legal precedent of a nation state’s responsibility to curb planet-heating emissions.
The tiny South Pacific island republic of Vanuatu called the ruling a “milestone in the fight for climate justice” and vowed to “take the ICJ ruling back to the United Nations General Assembly, and pursue a resolution that will support implementation of this decision,” said Vanuatuan climate minister Ralph Regenvanu. He anticipated opposition from Washington. “Even as fossil fuel expansion continues under the U.S.’s influence, along with the loss of climate finance and technology transfer, and the lack of climate ambition following the U.S.’s withdrawal from the Paris Agreement,” he said, “major polluters — past and present — cannot continue to act with impunity and treat developing countries as sacrifice zones to further feed corporate greed.”
Researchers at Japan’s Shinshu University have demonstrated for the first time that a new eco-friendly plastic made from microbes safely decomposes in deep ocean conditions
“This research addresses one of the most critical limitations of current bioplastics—their lack of biodegradability in marine environments,” said Professor Seiichi Taguchi at the Shinshu’s Institute for Aqua Regeneration. “The study provides a pathway for safer alternatives to conventional plastics and supports the transition to a circular bioeconomy.”
NextEra CEO John Ketchum projected serenity during the company’s earnings call Wednesday.
The business of renewable energy development in the United States is the business of NextEra. The company’s renewable division is one of the country’s largest and most sophisticated, with almost 30 gigawatts in its project backlog — including 3.2 gigawatts added in the past three months.
NextEra’s financial results and outlook for the future can be a guide to how the sector is thinking — or wants people to think it’s thinking — about the state of the development landscape. Now especially, that landscape looks confusing and contradictory, with power demand increasing sharply alongside hostility to wind and solar development.
The way NextEra sees it, NextEra will come through fine. But many other — especially many other smaller — players may struggle.
“Bottom line, America needs more electricity, not less,” NextEra Chief Executive John Ketchum told analysts during the company’s earnings presentation Wednesday.
“America needs it now, not just in the future. We are firmly aligned with the administration’s goal to unleash American energy dominance. And to do so, we need all of the electrons we can get on the grid. There’s truly no time to wait.”
That alignment may be one way, however. From sunsetting tax credits to ordering enhanced reviews of wind and solar projects by federal regulators, the Trump administration has made it clear that it does not see wind and solar as part of its energy strategy.
The rhetoric coming from Washington hasn’t been particularly constructive, either, no matter how often renewable energy companies try to label their work as part and parcel of an “energy dominance” agenda. Just in the past few weeks, Trump has claimed that China has “very, very few” wind farms (in fact it has very, very many), and Secretary of Energy Chris Wright called wind and solar a “parasite on the grid.”
NextEra is not unaware of the tone and policy emanating from the administration. The company issued a new risk disclosure, first noticed by analysts at Jefferies, saying that its guidance on future performance assumes “no changes to governmental policies or incentives, including continued applicability of existing Internal Revenue Service tax credit safe harbor guidance,” i.e. that it can “commence construction” the way it always has, by following existing IRS guidance.
Although that would be awfully nice, it may not be the case for much longer. Soon after signing the One Big Beautiful Bill Act, President Trump issued an executive order calling for “new and revised” tax guidance “to ensure that policies concerning the ‘beginning of construction’ are not circumvented, including by preventing the artificial acceleration or manipulation of eligibility and by restricting the use of broad safe harbors unless a substantial portion of a subject facility has been built.”
It doesn’t take a terribly close reading to intuit that Trump wants to narrow the window for renewables developers to claim tax credits even beyond what Congress has already done. According to conservative members of Congress who wanted the tax credits to phase out even sooner, the president was merely fulfilling a promise he’d made to win their vote.
Ketchum at least projected serenity about the safe harbor situation, telling analysts that the definition of construction has been understood “for well over a decade,” that it “is informed by longstanding Treasury Department guidance,” and that the OBBBA’s language “definition is consistent with the settled meeting.”
He also noted that NextEra had “made significant financial commitments over the last few years, including in the first half of 2025, to begin construction under these rules that were in effect at the time those commitments were made,” i.e. before the bill was signed.
“We believe that we’ve begun construction on a sufficient number of projects to cover our development expectations through 2029,” Ketchum continued, adding that the company has determined it will be eligible for tax credits based on “our belief as to what the statute provides based on our experience in this industry over the last couple of decades.”
If anything, Ketchum suggested, NextEra might be advantaged by the harsh deadlines for commencing construction (July 4, 2026) or being placed in service (the end of 2027) in the new law. “It comes down to who’s safe harbor, right?” Ketchum said. “We know we compete against a lot of really small developers who don’t have the balance sheet, the construction financing to do things around safe harbor.”
In this kind of environment, Ketchum said, size matters.
“If you’re in a market where you have folks drop out, right, because they didn’t plan ahead, they don’t have the ability to get construction financing, they don’t have the ability to safe harbor. It obviously creates bigger opportunities for us.”
NextEra could be left to pick up the pieces from smaller developers that don’t make it, Ketchum said. “If we do see some small developers kind of fall away, there’ll be more projects that could potentially hit the market and come up for sale.”
It sure looks that way, at least. Democrats should start coming up with a plan.
For the first six months of President Trump’s term, the big question was about what would happen to the Inflation Reduction Act. We now have something like an answer.
President Trump’s memorably named One Big Beautiful Bill Act repealed many of the IRA’s most important clean energy tax credits, including incentives for wind, solar, and electric vehicles. And while it’s still unclear whether the Trump administration will let developers actually use the tax credits that remain on the books — especially the now-denuded credits for wind and solar — fewer “unknown unknowns” remain about what might come next.
So I’ve been trying to figure out where climate and energy policy might go from here. And one story that I keep coming back to is the flashing red lights around what could become a serious electricity affordability crisis.
It’s now widely understood that electricity demand is rising in the United States for the first time in a generation. The Energy Information Administration projects that electricity use will grow 1.7% in the next few years, after increasing by just 0.1% per year from 2005 to 2020. That growth is projected to come from new data centers, new factories, the (now) slow(er) but (still) steady adoption of electric vehicles, and population growth.
What is less well understood is how poorly the United States is prepared to match this rise in electricity demand with an equivalent increase in supply. To some degree, American electricity prices are already rising: So far this year, utilities have received or requested permission to increase customers’ bills by $29 billion, according to a July report from PowerLines, a think tank and advocacy group. That’s a large number in its own right, and it’s more than twice as much as had been approved at this time last year.
But when you look across the power system, virtually every trend is setting us up for electricity price spikes:
On top of all this, of course, the Trump administration has made it much more uncertain which new solar, wind, and battery projects will be able to secure tax credits — and with them, secure bank financing.
None of these trends alone would guarantee price increases or electricity supply constraints. But taken together, they reveal an electricity system that is coming under a variety of strains.
In the 2010s, cheap natural gas and technological advances in energy efficiency pacified much of the power system. We won’t have the same luxury this decade.
This is all going to be bad for the economy, bad for the climate, and bad for climate policy.
It’s a setback for the U.S. economy because, as President Trump somewhat alluded to in his second inaugural address, energy is a key input to virtually every other economic process, including manufacturing. But it’s especially bad for climate policy. The dominant plan to decarbonize much of the U.S. economy is to “electrify everything” — cars, appliances, home heating, and even many industrial processes. Americans will be far less eager to electrify everything if electricity is expensive.
If energy price hikes do arrive, Democrats are going to have a relatively straightforward time communicating about them in a narrow political sense. The story is just too simple: Democrats passed a law to encourage clean energy called the Inflation Reduction Act. Republicans repealed it. Energy prices inflated. QED.
That story alone might be too contrived, but the evidence we have suggests that OBBBA will raise energy bills. The REPEAT Project at Princeton University — led by Jesse Jenkins, my Shift Key podcast cohost — has a new report out projecting that the One Big Beautiful Bill Act will increase Americans’ electricity bills by $165 a year by the end of the decade. (If the law is allowed to stick around, and in the absence of intervening policies, it could raise bills by hundreds of dollars a year by the middle of next decade.)
OBBBA’s explosion of the federal deficit will make the situation worse: By expanding the deficit for such little public gain — that is, merely to memorialize earlier tax cuts, not even to make new ones — the Federal Reserve will have a more difficult time cutting interest rates in the future. That will in turn make it even more difficult for utilities and developers to finance new energy projects.
The political story will be so compelling here, I think, that Democrats will come under a lot of pressure to reinstate the wind and solar tax credits. And maybe they should do that — it could make sense as part of a larger energy or permitting deal. But stacking more solar and wind on the grid will not on its own lower people’s electricity bills.
Going into 2028, Democrats will need an actual plan to stabilize or cut electricity costs. They will need ideas about how (and whether) to speed up permitting, restructure wholesale power markets, and build new power plants in order to stabilize the power grid.
One thing that’s already clear is that in this inflationary environment, states like New York with publicly owned power authorities are able to intervene more forcefully in their own power markets than states that lack such capability. That’s because the state itself can act to build its own large-scale power plants. New York Governor Kathy Hochul recently directed the state’s power authority to build a new nuclear power plant upstate in order to grow the supply of zero-emissions electricity. Using their state own power authorities, governors in other states — or even the federal government, with an entity like the TVA— could take a similar step.
With all that said, I’ve been trying to come up with a scenario under which these price hikes will not materialize. In the late 2010s, for instance, America’s liquified natural gas exports surged essentially from zero, but domestic consumers didn’t see significant price hikes because drillers increased gas production to match the exports. Maybe that could happen again. And maybe utilities will — and this would, to be clear, be horrible for the climate — run their aging coal plants much more than they once anticipated doing.
Or maybe load growth won’t be as bad as we think. When Jesse and I spoke to Peter Freed, Meta’s former director of energy strategy, for Shift Key, he told us that the current data center boom is different from any previous buildout because of the presence of speculators. For the first time, he said, speculative data center developers are buying up prospective sites and requesting utility-scale hookups with the expectation that they will find a tenant for the data center in the future. In other words, the demand side of the electricity system is filled with an unusual amount of froth at the moment.
We also know that, more generally, the demand side of the power system is a mess. In the past few years, climate analysts have gotten used to talking about the power grid’s interconnection queue — that is, its supply side. But the demand-side queue — the process that lets new data centers, factories, and other new electricity users connect — is even more broken. In some jurisdictions, it’s little more than an Excel file that projects move up and down within as local politics requires.
We also know that one source of new demand — one planned factory or, more often, one data center — will sometimes apply to hook up to multiple states or utilities at the same time. It will get utilities to bid against each other, suss out the best construction sites and power rates, and only relatively late in the process make a final decision about where to build.
So if I were putting together a bear case for electricity demand, I would start here. Maybe aggressive data center speculators are bidding in multiple utilities, driving up projections across many states. That’s causing utilities to freak out about their supply, leading them to project the need for a lot of new investment — and, with it, a lot of electricity rate increases. But as data center speculators actually begin to build (or abandon) projects — and as some of the air inevitably comes out of the AI boom — some of this projected demand will start to evaporate. Perhaps the data centers that do get built will find ways to reduce their power usage, too.
Even this story won’t fully eliminate load growth on its own, though. Data centers make up the largest share of new electricity demand, but even then, they’re not the majority of it. The rest comes from, roughly, new factories, the slow electrification of the vehicle fleet, and new residential construction. But let’s say the One Big Beautiful Bill Act succeeds in hobbling the electric vehicle sector in the United States, many EV and battery factories get canceled, and fewer Americans buy EVs overall. Calculate in a mild recession, too, since all the AI and EV investment will be drying up.
In that world, most new sources of power demand really will be in abeyance. That’s how some of these power projections might not come true. But in most other scenarios, it’s time to hold on — and for blue-state leaders to think about how they can find cheap, zero-emissions electrons, as soon as possible.