You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The problem is, we don’t know how much energy it’s actually using.

The price of Bitcoin set a new all time high this week, crossing the $69,000 mark on Tuesday before falling back down to around $67,500 by Thursday afternoon. That almost certainly means Bitcoin’s energy usage is rising, too — although any chance of getting a precise idea of how much, even just in the U.S., may be delayed for months. Last week, the U.S. Energy Information Administration agreed to stop collecting data on crypto mining operations after a federal court in Texas put a halt on the project until the EIA goes through a more fulsome approval process.
That Bitcoin eats up a lot of power is beyond dispute. Bitcoin mining involves solving increasingly complex math problems, which at this point requires vast amounts of computing power; using outside data, the EIA estimated that crypto accounts for around 2% of the nation’s total electricity use. Both the industry’s electricity usage and how it participates in electricity markets have been subject to criticism from Democratic lawmakers, who have pushed for more information-gathering. If the price of Bitcoin continues to climb, that skepticism could ratchet up.
“There is a very direct relationship between the value of what is being mined by the miners and how much is being spent on electricity,” Alex De Vries, a cryptocurrency and energy researcher, told me.
An extensive New York Times investigation last year found that large-scale mining operations were “putting immense pressure on the power grid,” and that “their operations can create costs — including higher electricity bills and enormous carbon pollution — for everyone around them.” According to the University of Cambridge Judge Business School, Bitcoin’s energy consumption has risen about 50% in the past year, from an annualized rate of around 110 terawatt-hours a year just over 163 TWh, comparable to the electricity production of Ukraine or Pakistan. (That is, of course, an estimate, based on a model derived from the performance of mining hardware and the assumption that miners only operate with hardware that allows them to mine Bitcoin profitably.)
With all the attention on consumption and emissions, Bitcoin miners have been eager to portray themselves as, if not quite the goodies, at least not the baddies.
“The industry as a whole has a good story to tell about the energy piece,” Tom Mapes, president of a newly formed industry group called the Digital Energy Council, told me. He also told me that I “have to be realistic about it. We do use a lot of power — not to say that using power in every facet is bad.”
The feel-good Bitcoin energy story goes something like this: Crypto miners are always ready to use energy at the right price — and to shut things down at the right price, too. “We have the ability as a bulk power user of our size has the ability to flex load like no another,” Mapes said. “Datacenters cannot flex load like this. We can be built in as a tool to work within constraints of these grids.”
If a mining facility is co-located with an energy resource, it can be there to purchase power production that might otherwise be curtailed because there isn’t enough transmission capacity to get it to other customers. It can also be a buyer of first resort for a newly developed generator or it can keep an old one in business, as Bitcoin mining has with some fossil fuel generators.
“You tend to see Bitcoin miners anywhere there’s stranded energy and excess power,” said Margot Paez, a fellow at the Bitcoin Policy Institute. There are some examples of crypto mining co-located with renewables, but that does not always mean that the power they use is entirely renewable. There’s also a crypto mining operation set up at a nuclear power plant in Pennsylvania, adjacent to what will be an Amazon Web Services data center.
The main way crypto operations interact with the grid is not by supporting any particular resource, though, but rather by being flexible about when they operate. Shutting off when demand is high can be quite lucrative — sometimes even more so than the crypto mining itself.
Riot Networks, a mining company with extensive operations in Texas and a plaintiff in the EIA record collection suit, has become a flashpoint for crypto’s interaction with the electricity markets precisely because it eagerly shares data with investors and the public about its participation in programs to maintain grid stability. In August, when demand hit record highs and Texas consumers were asked to conserve energy, Riot reported $8.6 million in revenue from selling Bitcoins it had mined and $31.6 million either from selling power it had bought for a prearranged price back to the grid at the higher market price or from incentive payments for being willing to power down during demand spikes.
The company’s chief executive said that last August “was a landmark month for Riot in showcasing the benefits of our unique power strategy.” (Of the 34 large Bitcoin mining operations in the New York Times investigation, Riot was the largest and had the most fossil fuel consumption attributed to it.)
But that was then and this is now. The revenues Riot is deriving from Bitcoin mining are likely substantially greater than they were five or six months ago, as the price of Bitcoin has almost doubled. The company has told investors that it costs around $7,500 to mine a single Bitcoin, which could mean that it and other crypto miners operating strategically in the electricity market will be less willing to sell power back to the grid or turn off during demand spikes.
If you’re thinking this all sounds a lot like the conversation around demand response, well, so was I. Demand response is something climate people love to talk about. They want consumers to get paid for using less power when demand spikes, and they think it’s really neat that you can charge an electric car overnight when demand is low and want you to be able to sell that power back to the grid when demand gets high.
Putting energy consumers near renewables and other non-carbon-generating energy sources that can absorb excess power when renewable production is “too high” for the grid is something you hear about a lot with, say, hydrogen production or energy storage. Why let that energy go to waste when we could incentivize people to store it, instead?
But an electrolyzer or a battery is not just a clever way to figure out how to deal with the peaks and valleys of variable renewable energy resources like wind and solar, it’s also potentially a key component of a decarbonized energy system. It doesn’t just consume non-carbon energy, it can store and transfer carbon-free energy as well.
Crypto, on the other hand, takes energy, renewable or not, and turns it into money. It’s a greedy and flexible consumer of electricity, and there are market designs where non-carbon generators would be happy to work with such a consumer. But from the perspective of the energy system, a consumer is all it will ever be.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
There has been no new nuclear construction in the U.S. since Vogtle, but the workers are still plenty busy.
The Trump administration wants to have 10 new large nuclear reactors under construction by 2030 — an ambitious goal under any circumstances. It looks downright zany, though, when you consider that the workforce that should be driving steel into the ground, pouring concrete, and laying down wires for nuclear plants is instead building and linking up data centers.
This isn’t how it was supposed to be. Thousands of people, from construction laborers to pipefitters to electricians, worked on the two new reactors at the Plant Vogtle in Georgia, which were intended to be the start of a sequence of projects, erecting new Westinghouse AP1000 reactors across Georgia and South Carolina. Instead, years of delays and cost overruns resulted in two long-delayed reactors 35 miles southeast of Augusta, Georgia — and nothing else.
“We had challenges as we were building a new supply chain for a new technology and then workforce,” John Williams, an executive at Southern Nuclear Operating Company, which owns over 45% of Plant Vogtle, said in a webinar hosted by the environmental group Resources for the Future in October.
“It had been 30 years since we had built a new nuclear plant from scratch in the United States. Our workforce didn’t have that muscle memory that they have in other parts of the world, where they have been building on a more regular frequency.”
That workforce “hasn’t been building nuclear plants” since heavy construction stopped at Vogtle in 2023, he noted — but they have been busy “building data centers and car manufacturing in Georgia.”
Williams said that it would take another “six to 10” AP1000 projects for costs to come down far enough to make nuclear construction routine. “If we were currently building the next AP1000s, we would be farther down that road,” he said. “But we’ve stopped again.”
J.R. Richardson, business manager and financial secretary of the International Brotherhood of Electric Workers Local 1579, based in Augusta, Georgia, told me his union “had 2,000 electricians on that job,” referring to Vogtle. “So now we have a skill set with electricians that did that project. If you wait 20 or 30 years, that skill set is not going to be there anymore.”
Richardson pointed to the potential revitalization of the failed V.C. Summer nuclear project in South Carolina, saying that his union had already been reached out to about it starting up again. Until then, he said, he had 350 electricians working on a Meta data center project between Augusta and Atlanta.
“They’re all basically the same,” he told me of the data center projects. “They’re like cookie cutter homes, but it’s on a bigger scale.”
To be clear, though the segue from nuclear construction to data center construction may hold back the nuclear industry, it has been great for workers, especially unionized electrical and construction workers.
“If an IBEW electrician says they're going hungry, something’s wrong with them,” Richardson said.
Meta’s Northwest Louisiana data center project will require 700 or 800 electricians sitewide, Richardson told me. He estimated that of the IBEW’s 875,000 members, about a tenth were working on data centers, and about 30% of his local were on a single data center job.
When I asked him whether that workforce could be reassembled for future nuclear plants, he said that the “majority” of the workforce likes working on nuclear projects, even if they’re currently doing data center work. “A lot of IBEW electricians look at the longevity of the job,” Richardson told me — and nuclear plants famously take a long, long time to build.
America isn’t building any new nuclear power plants right now (though it will soon if Rick Perry gets his way), but the question of how to balance a workforce between energy construction and data center projects is a pressing one across the country.
It’s not just nuclear developers that have to think about data centers when it comes to recruiting workers — it’s renewables developers, as well.
“We don’t see people leaving the workforce,” said Adam Sokolski, director of regulatory and economic affairs at EDF Renewables North America. “We do see some competition.”
He pointed specifically to Ohio, where he said, “You have a strong concentration of solar happening at the same time as a strong concentration of data center work and manufacturing expansion. There’s something in the water there.”
Sokolski told me that for EDF’s renewable projects, in order to secure workers, he and the company have to “communicate real early where we know we’re going to do a project and start talking to labor in those areas. We’re trying to give them a market signal as a way to say, We’re going to be here in two years.”
Solar and data center projects have lots of overlapping personnel needs, Sokolski said. There are operating engineers “working excavators and bulldozers and graders” or pounding posts into place. And then, of course, there are electricians, who Sokolski said were “a big, big piece of the puzzle — everything from picking up the solar panel off from the pallet to installing it on the racking system, wiring it together to the substations, the inverters to the communication systems, ultimately up to the high voltage step-up transformers and onto the grid.”
On the other hand, explained Kevin Pranis, marketing manager of the Great Lakes regional organizing committee of the Laborers’ International Union of North America, a data center is like a “fancy, very nice warehouse.” This means that when a data center project starts up, “you basically have pretty much all building trades” working on it. “You’ve got site and civil work, and you’re doing a big concrete foundation, and then you’re erecting iron and putting a building around it.”
Data centers also have more mechanical systems than the average building, “so you have more electricians and more plumbers and pipefitters” on site, as well.
Individual projects may face competition for workers, but Pranis framed the larger issue differently: Renewable energy projects are often built to support data centers. “If we get a data center, that means we probably also get a wind or solar project, and batteries,” he said.
While the data center boom is putting upward pressure on labor demand, Pranis told me that in some parts of the country, like the Upper Midwest, it’s helping to compensate for a slump in commercial real estate, which is one of the bread and butter industries for his construction union.
Data centers, Pranis said, aren’t the best projects for his members to work on. They really like doing manufacturing work. But, he added, it’s “a nice large load and it’s a nice big building, and there’s some number of good jobs.”
A conversation with Dustin Mulvaney of San Jose State University
This week’s conversation is a follow up with Dustin Mulvaney, a professor of environmental studies at San Jose State University. As you may recall we spoke with Mulvaney in the immediate aftermath of the Moss Landing battery fire disaster, which occurred near his university’s campus. Mulvaney told us the blaze created a true-blue PR crisis for the energy storage industry in California and predicted it would cause a wave of local moratoria on development. Eight months after our conversation, it’s clear as day how right he was. So I wanted to check back in with him to see how the state’s development landscape looks now and what the future may hold with the Moss Landing dust settled.
Help my readers get a state of play – where are we now in terms of the post-Moss Landing resistance landscape?
A couple things are going on. Monterey Bay is surrounded by Monterey County and Santa Cruz County and both are considering ordinances around battery storage. That’s different than a ban – important. You can have an ordinance that helps facilitate storage. Some people here are very focused on climate change issues and the grid, because here in Santa Cruz County we’re at a terminal point where there really is no renewable energy, so we have to have battery storage. And like, in Santa Cruz County the ordinance would be for unincorporated areas – I’m not sure how materially that would impact things. There’s one storage project in Watsonville near Moss Landing, and the ordinance wouldn’t even impact that. Even in Monterey County, the idea is to issue a moratorium and again, that’s in unincorporated areas, too.
It’s important to say how important battery storage is going to be for the coastal areas. That’s where you see the opposition, but all of our renewables are trapped in southern California and we have a bottleneck that moves power up and down the state. If California doesn’t get offshore wind or wind from Wyoming into the northern part of the state, we’re relying on batteries to get that part of the grid decarbonized.
In the areas of California where batteries are being opposed, who is supporting them and fighting against the protests? I mean, aside from the developers and an occasional climate activist.
The state has been strongly supporting the industry. Lawmakers in the state have been really behind energy storage and keeping things headed in that direction of more deployment. Other than that, I think you’re right to point out there’s not local advocates saying, “We need more battery storage.” It tends to come from Sacramento. I’m not sure you’d see local folks in energy siting usually, but I think it’s also because we are still actually deploying battery storage in some areas of the state. If we were having even more trouble, maybe we’d have more advocacy for development in response.
Has the Moss Landing incident impacted renewable energy development in California? I’ve seen some references to fears about that incident crop up in fights over solar in Imperial County, for example, which I know has been coveted for development.
Everywhere there’s batteries, people are pointing at Moss Landing and asking how people will deal with fires. I don’t know how powerful the arguments are in California, but I see it in almost every single renewable project that has a battery.
Okay, then what do you think the next phase of this is? Are we just going to be trapped in a battery fire fear cycle, or do you think this backlash will evolve?
We’re starting to see it play out here with the state opt-in process where developers can seek state approval to build without local approval. As this situation after Moss Landing has played out, more battery developers have wound up in the opt-in process. So what we’ll see is more battery developers try to get permission from the state as opposed to local officials.
There are some trade-offs with that. But there are benefits in having more resources to help make the decisions. The state will have more expertise in emergency response, for example, whereas every local jurisdiction has to educate themselves. But no matter what I think they’ll be pursuing the opt-in process – there’s nothing local governments can really do to stop them with that.
Part of what we’re seeing though is, you have to have a community benefit agreement in place for the project to advance under the California Environmental Quality Act. The state has been pretty strict about that, and that’s the one thing local folks could still do – influence whether a developer can get a community benefits agreement with representatives on the ground. That’s the one strategy local folks who want to push back on a battery could use, block those agreements. Other than that, I think some counties here in California may not have much resistance. They need the revenue and see these as economic opportunities.
I can’t help but hear optimism in your tone of voice here. It seems like in spite of the disaster, development is still moving forward. Do you think California is doing a better or worse job than other states at deploying battery storage and handling the trade offs?
Oh, better. I think the opt-in process looks like a nice balance between taking local authority away over things and the better decision-making that can be brought in. The state creating that program is one way to help encourage renewables and avoid a backlash, honestly, while staying on track with its decarbonization goals.
The week’s most important fights around renewable energy.
1. Nantucket, Massachusetts – A federal court for the first time has granted the Trump administration legal permission to rescind permits given to renewable energy projects.
2. Harvey County, Kansas – The sleeper election result of 2025 happened in the town of Halstead, Kansas, where voters backed a moratorium on battery storage.
3. Cheboygan County, Michigan – A group of landowners is waging a new legal challenge against Michigan’s permitting primacy law, which gives renewables developers a shot at circumventing local restrictions.
4. Klamath County, Oregon – It’s not all bad news today, as this rural Oregon county blessed a very large solar project with permits.
5. Muscatine County, Iowa – To quote DJ Khaled, another one: This county is also advancing a solar farm, eliding a handful of upset neighbors.