You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The problem is, we don’t know how much energy it’s actually using.
The price of Bitcoin set a new all time high this week, crossing the $69,000 mark on Tuesday before falling back down to around $67,500 by Thursday afternoon. That almost certainly means Bitcoin’s energy usage is rising, too — although any chance of getting a precise idea of how much, even just in the U.S., may be delayed for months. Last week, the U.S. Energy Information Administration agreed to stop collecting data on crypto mining operations after a federal court in Texas put a halt on the project until the EIA goes through a more fulsome approval process.
That Bitcoin eats up a lot of power is beyond dispute. Bitcoin mining involves solving increasingly complex math problems, which at this point requires vast amounts of computing power; using outside data, the EIA estimated that crypto accounts for around 2% of the nation’s total electricity use. Both the industry’s electricity usage and how it participates in electricity markets have been subject to criticism from Democratic lawmakers, who have pushed for more information-gathering. If the price of Bitcoin continues to climb, that skepticism could ratchet up.
“There is a very direct relationship between the value of what is being mined by the miners and how much is being spent on electricity,” Alex De Vries, a cryptocurrency and energy researcher, told me.
An extensive New York Times investigation last year found that large-scale mining operations were “putting immense pressure on the power grid,” and that “their operations can create costs — including higher electricity bills and enormous carbon pollution — for everyone around them.” According to the University of Cambridge Judge Business School, Bitcoin’s energy consumption has risen about 50% in the past year, from an annualized rate of around 110 terawatt-hours a year just over 163 TWh, comparable to the electricity production of Ukraine or Pakistan. (That is, of course, an estimate, based on a model derived from the performance of mining hardware and the assumption that miners only operate with hardware that allows them to mine Bitcoin profitably.)
With all the attention on consumption and emissions, Bitcoin miners have been eager to portray themselves as, if not quite the goodies, at least not the baddies.
“The industry as a whole has a good story to tell about the energy piece,” Tom Mapes, president of a newly formed industry group called the Digital Energy Council, told me. He also told me that I “have to be realistic about it. We do use a lot of power — not to say that using power in every facet is bad.”
The feel-good Bitcoin energy story goes something like this: Crypto miners are always ready to use energy at the right price — and to shut things down at the right price, too. “We have the ability as a bulk power user of our size has the ability to flex load like no another,” Mapes said. “Datacenters cannot flex load like this. We can be built in as a tool to work within constraints of these grids.”
If a mining facility is co-located with an energy resource, it can be there to purchase power production that might otherwise be curtailed because there isn’t enough transmission capacity to get it to other customers. It can also be a buyer of first resort for a newly developed generator or it can keep an old one in business, as Bitcoin mining has with some fossil fuel generators.
“You tend to see Bitcoin miners anywhere there’s stranded energy and excess power,” said Margot Paez, a fellow at the Bitcoin Policy Institute. There are some examples of crypto mining co-located with renewables, but that does not always mean that the power they use is entirely renewable. There’s also a crypto mining operation set up at a nuclear power plant in Pennsylvania, adjacent to what will be an Amazon Web Services data center.
The main way crypto operations interact with the grid is not by supporting any particular resource, though, but rather by being flexible about when they operate. Shutting off when demand is high can be quite lucrative — sometimes even more so than the crypto mining itself.
Riot Networks, a mining company with extensive operations in Texas and a plaintiff in the EIA record collection suit, has become a flashpoint for crypto’s interaction with the electricity markets precisely because it eagerly shares data with investors and the public about its participation in programs to maintain grid stability. In August, when demand hit record highs and Texas consumers were asked to conserve energy, Riot reported $8.6 million in revenue from selling Bitcoins it had mined and $31.6 million either from selling power it had bought for a prearranged price back to the grid at the higher market price or from incentive payments for being willing to power down during demand spikes.
The company’s chief executive said that last August “was a landmark month for Riot in showcasing the benefits of our unique power strategy.” (Of the 34 large Bitcoin mining operations in the New York Times investigation, Riot was the largest and had the most fossil fuel consumption attributed to it.)
But that was then and this is now. The revenues Riot is deriving from Bitcoin mining are likely substantially greater than they were five or six months ago, as the price of Bitcoin has almost doubled. The company has told investors that it costs around $7,500 to mine a single Bitcoin, which could mean that it and other crypto miners operating strategically in the electricity market will be less willing to sell power back to the grid or turn off during demand spikes.
If you’re thinking this all sounds a lot like the conversation around demand response, well, so was I. Demand response is something climate people love to talk about. They want consumers to get paid for using less power when demand spikes, and they think it’s really neat that you can charge an electric car overnight when demand is low and want you to be able to sell that power back to the grid when demand gets high.
Putting energy consumers near renewables and other non-carbon-generating energy sources that can absorb excess power when renewable production is “too high” for the grid is something you hear about a lot with, say, hydrogen production or energy storage. Why let that energy go to waste when we could incentivize people to store it, instead?
But an electrolyzer or a battery is not just a clever way to figure out how to deal with the peaks and valleys of variable renewable energy resources like wind and solar, it’s also potentially a key component of a decarbonized energy system. It doesn’t just consume non-carbon energy, it can store and transfer carbon-free energy as well.
Crypto, on the other hand, takes energy, renewable or not, and turns it into money. It’s a greedy and flexible consumer of electricity, and there are market designs where non-carbon generators would be happy to work with such a consumer. But from the perspective of the energy system, a consumer is all it will ever be.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.
President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.
“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”
The announcement indicates that some in the anti-wind space are leaving open the possibility that Trump’s much-hyped offshore wind ban may be less sweeping than initially suggested.
In its press release, Van Drew’s office said the executive order would “lay the groundwork for permanent measures against the projects,” leaving the door open to only a temporary pause on permitting new projects. The congressman had recently told New Jersey reporters that he anticipates only a six-month moratorium on offshore wind.
The release also stated that the “proposed order” is “expected to be finalized within the first few months of the administration,” which is a far cry from Trump’s promise to stop projects on Day 1. If enacted, a pause would essentially halt all U.S. offshore wind development because the sought-after stretches of national coastline are entirely within federal waters.
Whether this is just caution from Van Drew’s people or a true moderation of Trump’s ambition we’ll soon find out. Inauguration Day is in less than a week.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “Super Scooper” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the Super Scooper collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the Super Scooper collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the Super Scooper, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Editor’s note: This story has been updated to reflect that the Québécois firefighting planes are called Super Scoopers, not super soakers.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.