You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A new report demonstrates how to power the computing boom with (mostly) clean energy.
After a year of concerted hand-wringing about the growing energy needs of data centers, a report that dropped just before the holidays proposed a solution that had been strangely absent from the discussion.
AI companies have seemingly grasped for every imaginable source of clean energy to quench their thirst for power, including pricey, left-field ideas like restarting shuttered nuclear plants. Some are foregoing climate concerns altogether and ordering up off-grid natural gas turbines. In a pithily named new analysis — “Fast, scalable, clean, and cheap enough” — the report’s authors make a compelling case for an alternative: off-grid solar microgrids.
An off-grid solar microgrid is a system with solar panels, batteries, and small gas generators that can work together to power a data center directly without connecting to the wider electricity system. It can have infinite possible configurations, such as greater or smaller numbers of solar panels, and more or less gas-generated capacity. The report models the full range of possibilities to illustrate the trade-offs in terms of emission reductions and cost.
An eclectic group of experts got together to do the research, including staffers from the payment company Stripe, a developer called Scale Microgrids, and Paces, which builds software to help renewable energy developers identify viable sites for projects. They found that an off-grid microgrid that supplied 44% of a data center’s demand from solar panels and used a natural gas generator the rest of the time would cost roughly $93 per megawatt-hour compared to about $86 for large, off-grid natural gas turbines — and it would emit nearly one million tons of CO2 less than the gas turbines. A cleaner system that produced 90% of its power from solar and batteries would cost closer to $109 per megawatt-hour, the authors found. While that’s more expensive than gas turbines, it’s significantly cheaper than repowering Three Mile Island, the fabled nuclear plant that Microsoft is bringing back online for an estimated $130 per megawatt-hour.
One challenge with solar microgrids is that they require a lot of land for solar panels. But a geospatial analysis showed that there’s more than enough available land in the U.S. southwest — primarily in West Texas — to cover estimated energy demand growth from data centers through 2030. This shouldn’t be taken as a recommendation, per se. The paper doesn’t interrogate the need for data centers or the trade-offs of building renewable power for AI training facilities versus to serve manufacturing or households. The report is just an exercise in asking whether, if these data centers are going to be developed, could they at least add as few emissions as possible? Not all hyperscalers care about climate, and those that do might still prioritize speed and scale over their net-zero commitments. But the authors argue that it’s possible to build these systems more quickly than it would be to install big gas turbines, which currently have at least three-year lead times to procure and fall under more complicated permitting regimes.
Before the New Year, I spoke with two of the authors — Zeke Hausfather from Stripe and Duncan Campbell from Scale Microgrids — about the report. Stripe doesn’t build data centers and has no plans to, but Hausfather works for a unit within the company called Stripe Climate, which has a “remit to work on impactful things,” he told me. He and his colleagues got interested in the climate dilemma of data centers, and enlisted Scale Microgrids and Paces to help investigate. Our conversation has been lightly edited for clarity.
Why weren’t off-grid solar microgrids really being considered before?
Zeke Hausfather: As AI has grown dramatically, there’s been much more demand for data centers specifically focused on training. Those data centers have a lot more relaxed requirements. Instead of serving millions of customer requests in real time, they’re running these incredibly energy intensive training models. Those don’t need to necessarily be located near where people live, and that unlocks a lot more potential for solar, because you need about 50 times more land to build a data center with off-grid solar and storage than you would to build a data center that had a grid connection.
The other change is that we’re simply running out of good grid connections. And so a lot of the conversation among data center developers has been focused on, is there a way to do this with off-grid natural gas? We think that it makes a lot more sense, particularly given the relaxed constraints of where you can build these, to go with solar and storage, gas back-up, and substantially reduce the emissions impact.
Duncan Campbell: It was funny, when Nan [Ransohoff, head of climate at Stripe] and Zeke first reached out to me, I feel like they convinced me that microgrids were a good idea, which was the first time this ever happened in my life. They were like, what do you think about off-grid solar and storage? Oh, the energy density is way off, you need a ton of land. They’re like, yeah, but you know, for training, you could put it out in the desert, it’s fine, and hyperscalers are doing crazy things right now to access this power. We just went through all these things, and by the end of the call, I was like, yeah, we should do this study. I wasn’t thinking about it this way until me, the microgrids guy, spoke to the payments company.
So it’s just kind of against conventional logic?
Campbell: Going off-grid at all is wild for a data center operator to consider, given the historical impulse was, let’s have 3x more backup generators than we need. Even the off-grid gas turbine proposals out there feel a little nuts. Then, to say solar, 1,000 acres of land, a million batteries — it’s just so unconventional, it’s almost heretical. But when you soberly assess the performance criteria and how the landscape has shifted, particularly access to the grid being problematic right now, but also different requirements for AI training and a very high willingness to pay — as we demonstrate in our reference case with the Three Mile Island restart — it makes sense.
Hausfather: We should be clear, when we talk about reliability, a data center with what we model, which is solar, batteries, and 125% capacity backup gas generators, is still probably going to achieve upwards of 99% reliability. It’s just not gonna be the 99.999% that’s traditionally been needed for serving customers with data centers. You can relax some of the requirements around that.
Can you explain how you went about investigating what it would mean for data centers to use off-grid solar microgrids?
Campbell: First we just built a pretty simple power flow model that says, if you’re in a given location, the solar panel is going to make this much power every hour of the year. And if you have a certain amount of demand and a certain amount of battery, the battery is going to charge and discharge these times to make the demand and supply match. And then when it can’t, your generators will kick on. So that model is just for a given solar-battery-generator combo in a given location. Then what we did is made a huge scenario suite in 50-megawatt increments. Now you can see, for any level of renewable-ness you want, here’s what the [levelized cost of energy] is.
Hausfather: As you approach 100%, the costs start increasing exponentially, which isn’t a new finding, but you’re essentially having to overbuild more and more solar and batteries in order to deal with those few hours of the year where you have extended periods of cloudiness. Which is why it makes a lot more sense, financially, to have a system with some gas generator use — unless you happen to be in a situation where you can actually only run your data center 90% of the time. I think that’s probably a little too heretical for anyone today, but we did include that as one of the cases.
Did you consider water use? Because when you zoom in on the Southwest, that seems like it could be a constraint.
Hausfather: We talked about water use a little bit, but it wasn’t a primary consideration. One of the reasons is that how data centers are designed has a big effect on net water use. There are a lot of designs now that are pretty low — close to zero — water use, because you’re cycling water through the system rather than using evaporative cooling as the primary approach.
What do you want the takeaway from this report to be? Should all data centers be doing this? To what extent do you think this can replace other options out there?
Hausfather: There is a land rush right now for building data centers quickly. While there’s a lot of exciting investment happening in clean, firm generation like the enhanced geothermal that Fervo is doing, none of those are going to be available at very large scales until after 2030. So if you’re building data centers right now and you don’t want to cause a ton of emissions and threaten your company’s net-zero targets or the social license for AI more broadly, this makes a lot of sense as an option. The cost premium above building a gas system is not that big.
Campbell: For me, it’s two things. I see one purpose of this white paper being to reset rules of thumb. There’s this vestigial knowledge we have that this is impossible, and no, this is totally possible. And it seems actually pretty reasonable.
The second part that I think is really radical is the gigantic scale implied by this solution. Every other solution being proposed is kind of like finding a needle in a haystack — if we find this old steel mill, we could use that interconnection to build a data center, or, you know, maybe we can get Exxon to make carbon capture work finally. If a hyperscaler just wanted to build 10 gigawatts of data centers, and wanted one plan to do it, I think this is the most compelling option. The scalability implied by this solution is a huge factor that should be considered.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On exemptions, lots of new EVs, and Cyclone Alfred
Current conditions: A smattering of rainfall did little to contain a massive wildfire raging in Japan • Indonesia is using cloud seeding to try to stop torrential rains that have displaced thousands • At least 22 tornadoes have been confirmed this week across southern states.
The Trump administration said yesterday that automakers will be exempt from the new 25% tariffs on imports from Mexico and Canada – but just for a month. The announcement followed a meeting between administration officials and the heads of Stellantis, GM, and Ford – oh, to be a fly on the wall. As Heatmap’s Robinson Meyer explained, the tariffs are expected to spike new car prices by $4,000 to $10,000, and could hit internal combustion cars even worse than EVs, and prompt layoffs at Ford and GM. “At the request of the companies associated with [the United States-Mexico-Canada Agreement], the president is giving them an exemption for one month so they are not at an economic disadvantage,” Trump said in a statement. Stellantis thanked Trump for the reprieve and said the company “share[s] the president’s objective to build more American cars and create lasting American jobs.” Around 40% of Stellantis cars currently sold in the U.S. are imported from Canada and Mexico.
The Supreme Court has rejected President Trump’s request to withhold roughly $2 billion in congressionally-approved payments to the U.S. Agency for International Development for foreign aid work that has already been completed. On his first day back in office, Trump ordered a 90-day pause on all foreign aid so programs could be reviewed to ensure they align with his agenda. The administration then eliminated funding for the majority of USAID’s contracts, including at least 130 that related to climate and/or clean energy. This week’s SCOTUS decision was “a welcome but confusing development for humanitarian and development organizations around the world,” The New York Timesreported, “as they waited to see if thousands of canceled contracts would be restarted.”
Speaking of cars, there has been a lot of EV news in the last few days:
Rivian announced plans to expand internationally. CFO Claire McDonough also said the company is working “around the clock” to roll out the new R2, R3, and R3X models, with production for the R2 set to start early next year. She said international expansion plans would kick off after the R2 production ramps up.
Volkswagen unveiled the ID. EVERY1. The concept-car version of its ultra-affordable EV “will be the first to roll out with software and architecture from Rivian,” TechCrunchreported. Production is slated for 2027, and the car will start at around 20,000 euros (or $21,500). No word on a U.S. release, though.
The ID. EVERY1Volkswagen
Volvo showed off the ES90. What is it? Good question. “Some might say it is a sedan,” the company said in its press release. “Others will see a fastback, or even hints of an SUV. We’ll let you be the final judge – all we know is that the new, fully electric Volvo ES90 carves out a new space for itself by eliminating the compromises between those three segments, which puts it in a class of its own.” InsideEVscalled it the company’s “most advanced EV to date,” because it can charge for 186 miles of range in 10 minutes on a fast charger.
Cadillac introduced a very long electric SUV. The electric Escalade IQL will go into production this year. With an overall length of 228.5 inches, it will be the longest SUV, uh, ever. It’ll start at $132,695.
On a related note, Tesla sales continue to plummet worldwide. They were down 76% last month in Germany, with sharp declines across other European countries, too. In Australia, sales were down 72%.
Global sea ice levels were at an all-time low last month, according to researchers at the Copernicus Climate Change Service. Arctic sea ice cover was 8% below average in February, the lowest since records began in 1979, and “the third consecutive month in which the sea ice extent has set a record for the corresponding month.” Antarctic sea ice cover was 26% below average. “One of the consequences of a warmer world is melting sea ice, and the record or near-record low sea ice cover at both poles has pushed global sea ice cover to an all-time minimum,” said Samantha Burgess at the European Centre for Medium-Range Weather Forecasts. Melting sea ice contributes to sea level rise and ocean acidification, harms polar ecosystems, and creates a global-warming feedback loop by reducing albedo, which is the Earth’s ability to reflect sunlight back to space.
C3S
Forecasters are growing increasingly concerned about Cyclone Alfred, which is swirling off the coast of eastern Australia and is expected to arrive Friday or Saturday as a category 2 storm, or perhaps even a category 3. Alfred will be the first cyclone in 50 years to make landfall in this part of Australia. The storm has slowed as it approaches land, which means it will spend more time over very warm waters, soaking up even more moisture to dump on land. “The northeastern Coral Sea, where Cyclone Alfred formed, experienced the fourth-hottest temperatures on record for February and the hottest on record for January,” a group of climate change researchers wrote at The Conversation. Residents in and around Brisbane have been told to prepare to evacuate.
American drivers spent more time on the road last year than ever before, logging a record 3.28 trillion miles.
On boasts and brags, clean power installations, and dirty air
Current conditions: Strong winds helped spark dozens of fires across parched Texas • India’s Himalayan state of Uttarakhand experienced a 600% rise in precipitation over 24 hours, which triggered a deadly avalanche • The world’s biggest iceberg, which has been drifting across the Southern Ocean for 5 years, has run aground.
President Trump addressed Congress last night in a wide-ranging speech boasting about the actions taken during his first five weeks in office. There were some familiar themes: He claimed to have “ended all of [former President] Biden’s environmental restrictions” (false) and the “insane electric vehicle mandate” (also false — no such thing has ever existed), and bragged about withdrawing from the Paris climate agreement (true). He also doubled down on his plan to boost U.S. fossil fuel production while spouting false statements about the Biden administration’s energy policies, and suggested that Japan and South Korea want to team up with the U.S. to build a “gigantic” natural gas pipeline in Alaska.
On the same day as the speech, new tariffs on imports from Canada, Mexico, and China came into effect, triggering retaliatory duties and causing stock markets to plunge. Experts are busy trying to figure out what it all means for American businesses and consumers. As Heatmap’s Robinson Meyer explained, the tariffs are likely to make electricity prices go up, raise construction costs, make gas more expensive at the pump, and make new cars costlier. Fossil fuel firms aren’t thrilled. The American Gas Association said the 10% tariff on Canadian natural gas “indicates potential impacts totaling at least $1.1 billion in additional costs to American consumers per year.” Chet Thompson, CEO of the American Fuel & Petrochemical Manufacturers, said that “imposing tariffs on energy, refined products, and petrochemical imports will not make us more energy secure or lower costs for consumers.”
Commerce Secretary Howard Lutnick has implied Trump might lift these tariffs as soon as today, but TBD.
The Trump administration has ended a program that monitored the air quality at more than 80 U.S. embassies and consulates around the world, citing “budget constraints.” The program started in 2008 with the U.S. embassy in Beijing and expanded from there. The data collected, which was posted on the AirNow website, has been used in academic studies and credited with helping reduce pollution levels in the host countries, leading to better health outcomes. This move “puts the health of foreign service officers at risk” and could hinder research and policy, Dan Westervelt, a research professor at Columbia University’s Lamont-Doherty Earth Observatory, toldThe New York Times.
Clean power installations soared in the fourth quarter of 2024, sending total operational capacity above and beyond the 300 gigawatt mark, according to a new report from the American Clean Power Association. “It took more than 20 years for the U.S. to install the first 100 GW of clean power, five years to install the next 100 GW, and three years to install the most recent 100 GW,” the report says. Here are some takeaways:
ACPA
China plans to ramp up its efforts to rein in emissions, expanding its emissions trading system beyond power plants to to include industries such as steel, aluminum, and cement, Premier Li Qiang said in a report this week. “Li also confirmed China intends to continue to play a key role in diplomacy on emissions reduction, as the U.S. retreats from international cooperation,” Bloombergreported. The country plans to roll out major climate projects such as offshore wind farms, “new energy bases” across its deserts, with a goal of reaching peak emissions before 2030. China is the world’s largest emitter of greenhouse gases, and while it has been rapidly expanding renewable power generation, it also struggles to wean itself off coal.
The Supreme Court yesterday watered down the Environmental Protection Agency’s authority to regulate water pollution, siding with the city of San Francisco in an unusual lawsuit pitting the liberal hub against the environmental authority. In a 5-4 decision, the justices said the agency had overstepped its authority under the Clean Water Act when it issued permitting for a San Francisco wastewater treatment plant that empties into the Pacific. The permit included provisions that would have made San Francisco authorities responsible for ensuring the water quality in the Pacific met EPA standards. Justice Samuel Alito essentially wrote that the permitting rules were too vague. “When a permit contains such requirements, a permittee that punctiliously follows every specific requirement in its permit may nevertheless face crushing penalties if the quality of the water in its receiving waters falls below the applicable standards,” Alito wrote. The ruling will make it harder for the EPA to limit water pollution. Next up on the SCOTUS docket: nuclear waste!
Bernard Looney, the former CEO of oil giant BP, is the new boss of an AI startup that tells businesses how to cut their emissions.
A conversation with Resources for the Future’s David Wear on the fires in the Carolinas and how the political environment could affect the future of forecasting.
The Wikipedia article for “wildfire” has 22 photographs, including those of incidents in Arizona, Utah, Washington, and California. But there is not a single picture of a fire in the American Southeast, despite researchers warning that the lower righthand quadrant of the country will face a “perfect storm” of fire conditions over the next 50 years.
In what is perhaps a grim premonition of what is to come, several major fires are burning across the Southeast now — including the nearly 600-acre Melrose Fire in Polk County, North Carolina, a little over 80 miles to the west of Charlotte, and the more than 2,000-acre Carolina Forest fire in Horry County, South Carolina. The region is also battling hundreds of smaller brush fires, the smoke from which David Wear — the land use, forestry, and agriculture program director at Resources for the Future — could see out his Raleigh-area window.
Wear is also the co-author of a study by RFF and the U.S. Forest Service that came out in late 2024 and singled out the Southeast as facing a “particularly worrisome” rise in wildfire risk over the next half-century. I spoke with him this week to learn more about why the Carolinas are burning and what the future of fire looks like for the region. Our conversation has been edited and condensed for clarity.
When discussing fires in the American West, we often talk about how historic suppression efforts are responsible for the megafires we see today. What was the historic fire regime like in the Southeast? What’s going on to make it a hot spot for wildfires?
First, there are the similarities. Both Western and Southeastern forests, especially pine forests, are fire-adapted systems; they need regular fires to maintain health. Anything that takes those forests out of balance is a problem, and fire suppression is an issue in the East and the West, and especially in the Southeast. But forests in the Southeast are the most heavily managed forests in the country — perhaps in the world. In many cases, they’re regularly burned; the South does more prescribed burning than the rest of the country combined. It’s a very, very common practice in this part of the world.
So we shouldn’t be surprised that there is fire in Southeastern forests. There have been big, episodic fires in the South, though they’re not as common. There was the fire in 2016 in East Tennessee, from the Smokies into Gatlinburg, with a number of fatalities and lots of structures damaged or destroyed. There have been big fire years in east and west Texas. And there have been big fire seasons in Florida, though it’s been a while.
How is population growth in the Southeast adding to the strain?
We’re accustomed to talking about the wildland-urban interface in the West, but it’s also a big issue in the Southeast. Some of our urban growth centers in the Southeast include the Raleigh-Durham area, where I live, and Atlanta, Nashville, and Florida. These are generally flat landscapes, as well as very heavily forested landscapes. As the population grows out of the city centers, they go into pine and mixed-pine hardwood forests that are fire-adapted ecosystems. Then you have interspersed communities with forest vegetation, and that’s a big issue.
I also read in your report that much of that land is privately owned, which makes management tricky.
Private ownership is about 89% of forests in the South. [Editor’s note: By comparison, only about a third of forests in the West are privately owned.] Even where you have public ownership, a lot of that is by the Department of Defense and concentrated in a couple of different areas in the Ozarks and southern Appalachians. Much of the landscape in the coastal plain and Piedmont — which is most of the South — is predominantly private ownership.
There’s a distinction to be made between commercial owners, like timber investment management companies or real estate investment trusts, who actively manage landscapes. With timber harvesting, there are a lot of risk mitigation activities and a lot of prescribed burning. But then you have over a million non-industrial private landowners with small holdings. If you’re trying to coordinate any kind of wildfire mitigation scheme using fuel treatments and the like, it requires some work.
Horry County, South Carolina, and Polk County, North Carolina, were not part of your paper’s list of counties vulnerable to wildfire. I’m curious if you think what we’re seeing now says something about the limits of the study and the data you had available, or if you have another takeaway about what’s going on.
Importantly, our study looked at long-term averages. Throughout the South, there is a fire regime, and in any given year, it is possible to have wildfires of consequence. I would point out that we were especially concerned this year because Hurricane Helene laid down an awful lot of trees and created a fuel load.
We’re also entering one of the two fire seasons in the South. Wildfire is most predominant in the spring and in the fall; it’s at those times when temperatures begin to rise but humidity remains low, and there are extended dry periods that allow the fuels to dry out. You have warm temperatures and wind in the spring, setting the stage for wildfire. Typically, that window will begin to close at the end of April because it’s pretty darn humid in the South at that point, and it’s much less likely that fuels will get dry enough to carry a fire.
The same thing happens in the fall: Temperatures may remain high, and if we don’t have a lot of precipitation and humidity — usually in October and into November — then you have the conditions right for fire. But as the climate shifts, we see the length of those seasons growing to the point where the fall is approaching the spring. Wildfires in January and February indicate that these two seasons are growing toward one another and providing a much longer season. Our paper showed that, when you account for climate change across all of those global climate models and representative concentration pathways, the windows for more wildfire activity and more intense wildfire activity are expanding.
Your paper cited wildfire risks across the Sun Belt. Today, the National Weather Service is warning of “potentially historic” fire conditions in central Texas. Can local emergency managers use your modeling to prepare for such situations?
Things like the year-to-year fire projections and the day-to-day forecasts best serve local emergency managers. Wildfire in the South is determined by the drying of fuels and temperature and humidity conditions, which vary daily. If we look over the last week, Saturday was beautiful in the Carolinas. It was sunny, in the 70s, dry, and a little windy. That was the day [hundreds of] fires started across the Southeast. And the next day, there were very few new fires. Mid-week projections of wildfire potential in the Southeast show that it’s really low, with the exception of Texas. It changes day to day, driven by fine-grain weather forecasts, and that gives emergency managers some insight into where they might want to pre-position crews or do pre-suppression activities.
What we’re doing with the modeling is asking, What is this going to look like in 50 years? The takeaway is that wildfire activity is going to remain strong and perhaps grow in the West, but the big structural change is really strong growth and active fire in the Southeast, where you have wildfire and wildlands proximal to millions of people and more vulnerable communities. It’s a fire regime that’s going to affect more people.
I also wanted to ask about the USDA Forest Service’s contributions to your paper. Do you think research like this could still happen today, given the Trump administration’s efforts to eliminate anything climate-related from the federal agenda?
I came to Resources for the Future six years ago after a long career with the Forest Service, so it’s hard for me to remain a dispassionate scientist here. I think we need to see how the dust settles. It’s hard to imagine a future where the agency and federal government do not have a high level of concern regarding fire — and I don’t think you can do any kind of effective planning, or thinking about the future, or targeting of activities without understanding how climate is likely to impact these disturbance regimes.
I don’t have the crystal ball that many people are seeking right now. We’ll have to wait to see. But our research demonstrates the vital role of understanding climate dynamics, and it shows how critical weather forecasts are for people with boots on the ground who are trying to stay ahead of disaster.
Editor’s note: This story has been updated to reflect that about a third of land in the West is privately owned, not publicly owned.