Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

The Viral ‘Superconductor’ Wouldn’t Have Saved the Planet, Anyway

On the double disappointment of a supposed breakthrough in energy transmission.

A hovering thermometer.
Heatmap Illustration/Getty Images

For the past two weeks, the alleged discovery by Korean scientists of the “holy grail” of physics — the first room temperature superconductor — has captured the world’s imagination. Superconductors transmit energy without any resistance. In science fiction, they are the key to unlocking countless energy breakthroughs, from nuclear fusion to levitating trains.

On social media, hopeful dilettantes, myself included, clicked refresh with rapt enthusiasm as professional and amateur scientists alike live-tweeted and live-streamed attempts to replicate the experiment and dissected the latest research. Overall sentiment about the findings oscillated dramatically from one hour to the next.

But now, the jig may be up. On Monday night, the Condensed Matter Theory Center at the University of Maryland reviewed the latest evidence and declared that LK-99, the material in question, was not a superconductor at all, much less one at room temperature. “With a great deal of sadness, we now believe that the game is over,” the research center tweeted.

There are many other labs investigating the research that have yet to weigh in, and the saga may not be over. There are also many other scientists tinkering away with other materials in hopes of making the same kind of discovery. But success might prove underwhelming. Because even if we soon identify a room temperature superconductor — whether LK-99 or another material — it’s unlikely to make tackling climate change any easier.

Pretty much every material we use to generate, move, and use electricity today has some amount of electrical resistance, causing the loss of energy in the form of heat. U.S. power lines, for example, lose about 5% of the electricity they carry. The main promise of superconductors, when it comes to climate change, is the potential to eliminate this shortcoming, improving the efficiency of everything from wind turbines to power lines to vehicles.

Scientists have already discovered superconducting materials, but the problem is that they only exhibit zero resistance when cooled to extremely low temperatures, like between -300 and -450 degrees Fahrenheit. That’s why a material that proves to be superconducting at room temperature would be so exciting — it could be much easier to use in commercial applications.

I asked Kiruba Sivasubramaniam Haran, an electrical engineer at the University of Illinois who studies applications for superconductors, what the most exciting potential use for such a material would be. “It’s hard to pinpoint because it’s going to impact everything,” he told me. “You can push the bounds of electric currents that you can push through a motor, you can push the bounds of magnetic fields, make everything really small and compact, and you can cut all the losses.”

Researchers aren’t waiting around for room temperature superconductors to try and do this. They are still attempting to exploit the last breakthrough in the field, in the late 1980s, when scientists discovered materials that were superconducting at slightly higher temperatures — closer to -300 than -400. That meant they could be cooled with liquid nitrogen, rather than liquid helium, which is a finite, expensive resource. The discovery was awarded Nobel prizes and set off an explosion of research.

Haran said that for pretty much every piece of equipment on the power grid, there’s already been a demonstration project to try and improve it with these so-called “high temperature superconductors.” The Department of Energy has supported projects testing them in grid equipment in Chicago, Long Island, and Columbus, Ohio. GE Research is working on putting them in wind turbines. Companies like Commonwealth Fusion Systems that are racing to develop fusion reactors — a potential source of limitless, clean energy — use superconducting magnets to control and confine plasma. Haran himself has a company that’s trying to use them to build lightweight electric motors capable of powering large airplanes.

It’s been decades and these applications have yet to scale. Part of the challenge, Inna Vishik, a materials scientist at the University of California, Davis, told me, is achieving cost parity with existing solutions. Take transmission lines, which today use copper wire. Copper may not be perfect, but it’s cheap, and it’s already there. “I don't think we'll ever discover a superconductor that's cheaper than copper,” she said.

It’s true that part of what has held superconductors back has been the need to cool them. Karan said that his company is close to breaking even with its electric motor, and that a superconductor that could withstand higher temperatures would turn the trade-offs in its favor.

But other scientists stressed to me that temperature is just one factor. Jonathan Menard, chief research officer at the Princeton Plasma Physics Laboratory, told me that one of the bottlenecks for fusion has been manufacturing superconductors at scale. “The industry is challenged to figure out how to build this material in bulk and meet quality requirements that the fusion companies want,” he said.

The utility of a room temperature superconductor will also depend entirely on other properties of that material, such as how much current it can carry while remaining superconducting. We could very well discover a room temperature superconductor that’s entirely useless for many applications.

“All of the different superconducting materials have different critical properties,” said Menard. “They only stay superconducting below a certain magnetic field, below a certain temperature, and under certain stress conditions. We really have to assess it for all of those limits.”

Not to overly moralize the story of LK-99, but it’s dangerous to fall prey to magical thinking. There are no quick, easy solutions to climate change, but there are solutions that exist today. Holding out for technological breakthroughs risks failing to take advantage of all the opportunities to cut emissions at our fingertips.

Climate change is a problem of accumulation, and every ton of carbon that goes into the atmosphere matters. If scientists found a game-changing superconductor tomorrow, the world would face far fewer hazards by cutting emissions as rapidly as possible than if it waited for the discovery to translate to commercial applications.

There’s a glass-half-full version of this: Room temperature superconductors would be a monumental discovery, but we certainly don’t need them to decarbonize.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Ideas

The Last Time America Tried to Legislate Its Way to Energy Affordability

Lawmakers today should study the Energy Security Act of 1980.

Jimmy Carter.
Heatmap Illustration/Getty Images, Library of Congress

The past few years have seen wild, rapid swings in energy policy in the United States, from President Biden’s enthusiastic embrace of clean energy to President Trump’s equally enthusiastic re-embrace of fossil fuels.

Where energy industrial policy goes next is less certain than any other moment in recent memory. Regardless of the direction, however, we will need creative and effective policy tools to secure our energy future — especially for those of us who wish to see a cleaner, greener energy system. To meet the moment, we can draw inspiration from a largely forgotten piece of energy industrial policy history: the Energy Security Act of 1980.

Keep reading...Show less
Blue
AM Briefing

The Grinch of Offshore Wind

On Google’s energy glow up, transmission progress, and South American oil

Donald Trump.
Heatmap Illustration/Getty Images

Current conditions: Nearly two dozen states from the Rockies through the Midwest and Appalachians are forecast to experience temperatures up to 30 degrees above historical averages on Christmas Day • Parts of northern New York and New England could get up to a foot of snow in the coming days • Bethlehem, the West Bank city south of Jerusalem in which Christians believe Jesus was born, is preparing for a sunny, cloudless Christmas Day, with temperatures around 60 degrees Fahrenheit.

This is our last Heatmap AM of 2025, but we’ll see you all again in 2026!

THE TOP FIVE

1. Trump halts construction on all offshore wind projects

Just two weeks after a federal court overturned President Donald Trump’s Day One executive order banning new offshore wind permits, the administration announced a halt to all construction on seaward turbines. Secretary of the Interior Doug Burgum announced the move Monday morning on X: “Due to national security concerns identified by @DeptofWar, @Interior is PAUSING leases for 5 expensive, unreliable, heavily subsidized offshore wind farms!” As Heatmap’s Jael Holzman explained in her writeup, there are only five offshore wind projects currently under construction in U.S. waters: Vineyard Wind, Revolution Wind, Coastal Virginia Offshore Wind, Sunrise Wind, and Empire Wind. “The Department of War has come back conclusively that the issues related to these large offshore wind programs create radar interference, create genuine risk for the U.S., particularly related to where they are in proximity to our East Coast population centers,” Burgum told Fox Business host Maria Bartiromo.

Keep reading...Show less
Green
Energy

Google Is Cornering the Market on Energy Wonks

The hyperscaler is going big on human intelligence to help power its artificial intelligence.

The Google logo holding electricity.
Heatmap Illustration/Getty Images

Google is on an AI hiring spree — and not just for people who can design chips and build large language models. The tech giant wants people who can design energy systems, too.

Google has invested heavily of late in personnel for its electricity and infrastructure-related teams. Among its key hires is Tyler Norris, a former Duke University researcher and one of the most prominent proponents of electricity demand flexibility for data centers, who started in November as “head of market innovation” on the advanced energy team. The company also hired Doug Lewin, an energy consultant and one of the most respected voices in Texas energy policy, to lead “energy strategy and market design work in Texas,” according to a note he wrote on LinkedIn. Nathan Iyer, who worked on energy policy issues at RMI, has been a contractor for Google Clean Energy for about a year. (The company also announced Monday that it’s shelling out $4.5 billion to acquire clean energy developer Intersect.)

Keep reading...Show less
Yellow