You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

There are two kinds of people who work on climate solutions: Those who still believe in the promise of carbon markets, and those who think the whole concept is fundamentally flawed.
In the first category, you have people like McGee Young, the CEO of a company called WattCarbon. Young is aware of the ways carbon markets can be a race to the bottom — enabling companies to buy cheap certificates that say they used clean energy or reduced their carbon footprint, when in reality their purchase had little effect on the environment or the energy system.
And yet, there’s all this money out there for the taking! Companies want to green their image! Tackling climate change is expensive! There must be a way to funnel corporate sustainability budgets to where they can make a real impact!
To Young, the solution is a matter of better data and greater transparency. “We need a record-keeping system that allows us to raise the bar,” he told me.
Young launched his vision for that record-keeping system on Wednesday — the WattCarbon Energy Attribute Tracking System, or WEATS. It functions similarly to other environmental credit registries: Owners of clean energy assets can sign up to generate credits known as Environmental Attribute Certificates, or EACs, which buyers can then purchase to count toward their own clean energy or carbon goals.
WEATS has two main features that differentiate it. First, it will include credits from small-scale distributed energy resources like residential solar panels, batteries, and heat pumps — clean energy solutions that haven’t really been able to participate in carbon markets until now. Second, each EAC will include granular information about where and when the power was generated, in the case of solar, or the carbon savings incurred, in the case of heat pumps, down to the hour.
The first feature is part of what motivated Young to start WattCarbon. “The clean energy transition is more than just wind and solar, it’s more than just generation,” he told me. But it’s the second that Young said is key to improving the credibility of claims that companies are “using 100% clean energy,” or “achieving net-zero.”
Today, many companies simply buy enough clean energy credits to match their annual energy use, regardless of where or when the energy was generated. But researchers have shown that this strategy can have little to no impact on emissions. For example, if a company is only buying solar credits, but it is using energy at night, its carbon footprint from that nighttime energy could surpass any environmental benefits of the solar it bought.
To solve this, some energy buyers have embraced a concept called “24/7 carbon-free energy,” which means that “every kilowatt-hour of electricity consumption is met with carbon-free electricity sources, every hour of every day, everywhere,” in the words of a United Nations-led initiative to promote the concept. “It is both the end state of a fully decarbonized electricity system,” according to the UN, “and a transformative approach to energy procurement, supply, and policy design that is critical to accelerating its arrival.”
If you’ve followed the recent debate about the green hydrogen tax credit, you might be familiar with the idea. In December, the Treasury Department proposed that hydrogen producers will have to match their electricity consumption with the purchase of local clean electricity generation on an hourly basis to prove their hydrogen is clean enough to qualify for the full value of the tax credit. That means producers can either hook up directly to a solar farm or wind farm or geothermal power plant and operate only when it is generating power, or, it can buy renewable energy credits or EACs that correspond to the hours that it operates.
WattCarbon’s marketplace is one of the first to enable this by requiring sellers to include data about exactly where and when each EAC was produced. It also include the carbon intensity of the grid in the place and time when that unit of power was produced. For example, 1 megawatt-hour of solar power in West Virginia, where the grid is supplied by a lot of coal-fired power plants, would likely reduce emissions far more than 1 megawatt-hour of solar power in California, where the main fossil fuel burned for power is natural gas. Similarly, 1 megawatt-hour of solar generated in the afternoon in California will not do as much to reduce emissions as if that unit of power were stored in a battery and then dispatched at night. On other markets, all of these credits might simply be advertised as 1 megawatt-hour of solar power, and the buyer would be none the wiser.
So what does this new carbon trading marketplace look like in practice? There are a lot of possibilities, but here’s one scenario. WattCarbon partners with a company that helps homeowners electrify their heating or install and manage their solar and battery systems. That third party company can then say to their customers, “As an extra incentive to do this, we can help you sell the environmental benefits it provides to third parties through the WattCarbon marketplace,” and those extra payments are what convinces the homeowner to go for it.
Independent experts I spoke with were cautiously optimistic about what this new marketplace could do. “We need to deploy on the order of a billion machines, in the U.S. alone — and not over a century, but on the order of a decade,” said Kevin Kircher, an assistant professor of mechanical engineering at Purdue University, whose research focuses on heat pumps and other distributed energy resources. “So there’s a lot that needs to be done, and just connecting people to money to do the work is really important.”
Wilson Ricks, a PhD candidate at Princeton University whose research informed the Treasury’s proposal for the hydrogen tax credit, said that having a platform where hydrogen companies can procure clean energy from a variety of projects, and with time and location data, would be very useful. He was also intrigued by WattCarbon’s attempt to create EACs tied to batteries because energy storage systems are one of the few resources that can produce clean power when the wind isn’t blowing and the sun isn’t shining.
But both Ricks and Kircher warned there are a number of ways this system of credits could fall into the same traps that ensnare many carbon offset projects and reduce their credibility. For one, it’s really hard to get the math right. That’s especially true for a project like a heat pump, where the carbon savings are based on a counterfactual situation where the homeowner would have kept their gas heater. You have to basically estimate how often they would have run it, which opens the door to sloppiness at best and fraud at worst.
Another key criterion — a concept called additionality — is very hard to assess. Would the household that switches to a heat pump have done so regardless of whether they were getting extra revenue from selling EACs? If the answer is unequivocally yes, the credits are meaningless and serve to give corporate emitters an excuse to keep emitting.
Young acknowledged to me that this was likely going to be true in some cases, but still felt that heat pump owners deserved to be paid for the environmental benefits they were providing. “We provide environmental subsidies for large-scale wind and solar, and we don't do that for the things that we're putting into our buildings and our communities. And to me, there’s an inherent inequality in the way that we treat and value clean energy that needs to be addressed.”
That didn’t quite make sense to me — the government provides subsidies for all kinds of clean energy resources, including distributed energy resources, I countered. The Treasury will give you $2,000 for a heat pump and a 30% discount on rooftop solar.
“That’s true,” Young said. “But we don’t have enough money in all of our government programs to truly scale those.”
I couldn’t argue with that. But the real challenge is helping low-income homeowners with the upfront capital to install these devices — after-the-fact payments are not enough. Young said he had plans to create a way for companies to procure EACs in advance from groups of homeowners. The deals would be similar to the power purchase agreements that big electricity consumers like Google and Walmart make with large-scale renewable energy developers, helping to finance those projects by reducing the risk.
“This is a necessary but not sufficient step,” Young said of the version of the marketplace that launched Wednesday. “Without this, we can’t do that. But this by itself would be inadequate for the market to be able to reach its fullest potential.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A federal judge in Massachusetts ruled that construction on Vineyard Wind could proceed.
The Vineyard Wind offshore wind project can continue construction while the company’s lawsuit challenging the Trump administration’s stop work order proceeds, judge Brian E. Murphy for the District of Massachusetts ruled on Tuesday.
That makes four offshore wind farms that have now won preliminary injunctions against Trump’s freeze on the industry. Dominion Energy’s Coastal Virginia offshore wind project, Orsted’s Revolution Wind off the coast of New England, and Equinor’s Empire Wind near Long Island, New York, have all been allowed to proceed with construction while their individual legal challenges to the stop work order play out.
The Department of the Interior attempted to pause all offshore wind construction in December, citing unspecified “national security risks identified by the Department of War.” The risks are apparently detailed in a classified report, and have been shared neither with the public nor with the offshore wind companies.
Vineyard Wind, a joint development between Avangrid Renewables and Copenhagen Infrastructure Partners, has been under construction since 2021, and is already 95% built. More than that, it’s sending power to Massachusetts customers, and will produce enough electricity to power up to 400,000 homes once it’s complete.
In court filings, the developer argued it was urgent the stop work order be lifted, as it would lose access to a key construction boat required to complete the project on March 31. The company is in the process of replacing defective blades on its last handful of turbines — a defect that was discovered after one of the blades broke in 2024, scattering shards of fiberglass into the ocean. Leaving those turbine towers standing without being able to install new blades created a safety hazard, the company said.
“If construction is not completed by that date, the partially completed wind turbines will be left in an unsafe condition and Vineyard Wind will incur a series of financial consequences that it likely could not survive,” the company wrote. The Trump administration submitted a reply denying there was any risk.
The only remaining wind farm still affected by the December pause on construction is Sunrise Wind, a 924-megawatt project being developed by Orsted and set to deliver power to New York State. A hearing for an injunction on that order is scheduled for February 2.
Noon Energy just completed a successful demonstration of its reversible solid-oxide fuel cell.
Whatever you think of as the most important topic in energy right now — whether it’s electricity affordability, grid resilience, or deep decarbonization — long-duration energy storage will be essential to achieving it. While standard lithium-ion batteries are great for smoothing out the ups and downs of wind and solar generation over shorter periods, we’ll need systems that can store energy for days or even weeks to bridge prolonged shifts and fluctuations in weather patterns.
That’s why Form Energy made such a big splash. In 2021, the startup announced its plans to commercialize a 100-plus-hour iron-air battery that charges and discharges by converting iron into rust and back again. The company’s CEO, Mateo Jaramillo, told The Wall Street Journal at the time that this was the “kind of battery you need to fully retire thermal assets like coal and natural gas power plants.” Form went on to raise a $240 million Series D that same year, and is now deploying its very first commercial batteries in Minnesota.
But it’s not the only player in the rarified space of ultra-long-duration energy storage. While so far competitor Noon Energy has gotten less attention and less funding, it was also raising money four years ago — a more humble $3 million seed round, followed by a $28 million Series A in early 2023. Like Form, it’s targeting a price of $20 per kilowatt-hour for its electricity, often considered the threshold at which this type of storage becomes economically viable and materially valuable for the grid.
Last week, Noon announced that it had completed a successful demonstration of its 100-plus-hour carbon-oxygen battery, partially funded with a grant from the California Energy Commission, which charges by breaking down CO2 and discharges by recombining it using a technology known as a reversible solid-oxide fuel cell. The system has three main components: a power block that contains the fuel cell stack, a charge tank, and a discharge tank. During charging, clean electricity flows through the power block, converting carbon dioxide from the discharge tank into solid carbon that gets stored in the charge tank. During discharge, the system recombines stored carbon with oxygen from the air to generate electricity and reform carbon dioxide.
Importantly, Noon’s system is designed to scale up cost-effectively. That’s baked into its architecture, which separates the energy storage tanks from the power generating unit. That makes it simple to increase the total amount of electricity stored independent of the power output, i.e. the rate at which that energy is delivered.
Most other batteries, including lithium-ion and Form’s iron-air system, store energy inside the battery cells themselves. Those same cells also deliver power; thus, increasing the energy capacity of the system requires adding more battery cells, which increases power whether it’s needed or not. Because lithium-ion cells are costly, this makes scaling these systems for multi-day energy storage completely uneconomical.
In concept, Noon’s ability to independently scale energy capacity is “similar to pumped hydro storage or a flow battery,” Chris Graves, the startup’s CEO, told me. “But in our case, many times higher energy density than those — 50 times higher than a flow battery, even more so than pumped hydro.” It’s also significantly more energy dense than Form’s battery, he said, likely making it cheaper to ship and install (although the dirt cheap cost of Form’s materials could offset this advantage.)
Noon’s system would be the first grid-scale deployment of reversible solid-oxide fuel cells specifically for long-duration energy storage. While the technology is well understood, historically reversible fuel cells have struggled to operate consistently and reliably, suffering from low round trip efficiency — meaning that much of the energy used to charge the battery is lost before it’s used — and high overall costs. Graves conceded Noon has implemented a “really unique twist” on this tech that’s allowed it to overcome these barriers and move toward commercialization, but that was as much as he would reveal.
Last week’s demonstration, however, is a big step toward validating this approach. “They’re one of the first ones to get to this stage,” Alexander Hogeveen Rutter, a manager at the climate tech accelerator Third Derivative, told me. “There’s certainly many other companies that are working on a variance of this,” he said, referring to reversible fuel cell systems overall. But none have done this much to show that the technology can be viable for long-duration storage.
One of Noon’s initial target markets is — surprise, surprise — data centers, where Graves said its system will complement lithium-ion batteries. “Lithium ion is very good for peak hours and fast response times, and our system is complementary in that it handles the bulk of the energy capacity,” Graves explained, saying that Noon could provide up to 98% of a system’s total energy storage needs, with lithium-ion delivering shorter streams of high power.
Graves expects that initial commercial deployments — projected to come online as soon as next year — will be behind-the-meter, meaning data centers or other large loads will draw power directly from Noon’s batteries rather than the grid. That stands in contrast to Form’s approach, which is building projects in tandem with utilities such as Great River Energy in Minnesota and PG&E in California.
Hogeveen Rutter, of Third Derivative, called Noon’s strategy “super logical” given the lengthy grid interconnection queue as well as the recent order from the Federal Energy Regulatory Commission intended to make it easier for data centers to co-locate with power plants. Essentially, he told me, FERC demanded a loosening of the reins. “If you’re a data center or any large load, you can go build whatever you want, and if you just don’t connect to the grid, that’s fine,” Hogeveen Rutter said. “Just don’t bother us, and we won’t bother you.”
Building behind-the-meter also solves a key challenge for ultra-long-duration storage — the fact that in most regions, renewables comprise too small a share of the grid to make long-duration energy storage critical for the system’s resilience. Because fossil fuels still meet the majority of the U.S.’s electricity needs, grids can typically handle a few days without sun or wind. In a world where renewables play a larger role, long-duration storage would be critical to bridging those gaps — we’re just not there yet. But when a battery is paired with an off-grid wind or solar plant, that effectively creates a microgrid with 100% renewables penetration, providing a raison d’être for the long-duration storage system.
“Utility costs are going up often because of transmission and distribution costs — mainly distribution — and there’s a crossover point where it becomes cheaper to just tell the utility to go pound sand and build your power plant,” Richard Swanson, the founder of SunPower and an independent board observer at Noon, told me. Data centers in some geographies might have already reached that juncture. “So I think you’re simply going to see it slowly become cost effective to self generate bigger and bigger sizes in more and more applications and in more and more locations over time.”
As renewables penetration on the grid rises and long-duration storage becomes an increasing necessity, Swanson expects we’ll see more batteries like Noon’s getting grid connected, where they’ll help to increase the grid’s capacity factor without the need to build more poles and wires. “We’re really talking about something that’s going to happen over the next century,” he told me.
Noon’s initial demo has been operational for months, cycling for thousands of hours and achieving discharge durations of over 200 hours. The company is now fundraising for its Series B round, while a larger demo, already built and backed by another California Energy Commission grant, is set to come online soon.
While Graves would not reveal the size of the pilot that’s wrapping up now, this subsequent demo is set to deliver up to 100 kilowatts of power at once while storing 10 megawatt-hours of energy, enough to operate at full power for 100 hours. Noon’s full-scale commercial system is designed to deliver the same 100-hour discharge duration while increasing the power output to 300 kilowatts and the energy storage capacity to 30 megawatt-hours.
This standard commercial-scale unit will be shipping container-sized, making it simple to add capacity by deploying additional modules. Noon says it already has a large customer pipeline, though these agreements have yet to be announced. Those deals should come to light soon though, as Swanson says this technology represents the “missing link” for achieving full decarbonization of the electricity sector.
Or as Hogeveen Rutter put it, “When people talk about, I’m gonna get rid of all my fossil fuels by 2030 or 2035 — like the United Kingdom and California — well this is what you need to do that.”
On aluminum smelting, Korean nuclear, and a geoengineering database
Current conditions: Winter Storm Fern may have caused up to $115 billion in economic losses and triggered the longest stretch of subzero temperatures in New York City’s history • Temperatures across the American South plunged up to 30 degrees Fahrenheit below historical averages • South Africa’s Northern Cape is roasting in temperatures as high as 104 degrees.

President Donald Trump has been on quite a shopping spree since taking an equity stake in MP Materials, the only active rare earths miner in the U.S., in a deal Heatmap’s Matthew Zeitlin noted made former Biden administration officials “jealous.” The latest stake the administration has taken for the American taxpayer is in USA Rare Earth, a would-be miner that has focused its attention establishing a domestic manufacturing base for the rare earth-based magnets China dominates. On Monday, the Department of Commerce announced a deal to inject $1.6 billion into the company in exchange for shares. “USA Rare Earth’s heavy critical minerals project is essential to restoring U.S. critical mineral independence,” Secretary of Commerce Howard Lutnick said in a statement. “This investment ensures our supply chains are resilient and no longer reliant on foreign nations.” In a call with analysts Monday, USA Rare Earth CEO Barbara Humpton called the deal “a watershed moment in our work to secure and grow a resilient and independent rare earth value chain based in this country.”
After two years of searching for a site to build the United States’ first new aluminum smelter in half a century, Century Aluminum has abandoned its original plan and opted instead to go into business with a Dubai-based rival developing a plant in Oklahoma. Emirates Global Aluminum announced plans last year to construct a smelter near Tulsa. Under the new plan, Century Aluminum would take a 40% stake in the venture, with Emirates Global Aluminum holding the other 60%. At peak capacity, the smelter would produce 750,000 tons of aluminum per year, a volume The Wall Street Journal noted would make it the largest smelter in the U.S. Emirates Global Aluminum has not yet announced a long-term contract to power the facility. Century Aluminum’s original plan was to use 100% of its power from renewables or nuclear, Canary Media reported, and received $500 million from the Biden administration to support the project.
The federal Mine Safety and Health Administration has stopped publishing data tied to inspections of sites with repeated violations, E&E News reported. At a hearing before the House Education & the Workforce Subcommittee on Workforce Protections last week, Wayne Palmer, the assistant secretary of labor for mine safety and health, said the data would no longer be made public. “To the best of my knowledge, we do not publish those under the current administration,” Palmer said. He said the decision to not make public results of “targeted inspections” predated his time at the agency. The move comes as the Trump administration is pushing to ramp up mining in the U.S. to compete with China’s near monopoly over key metals such as rare earths, and lithium. As Heatmap’s Katie Brigham wrote in September, “everybody wants to invest in critical minerals.”
Sign up to receive Heatmap AM in your inbox every morning:
South Korea’s center-left Democratic Party has historically been staunchly anti-nuclear. So when the country’s nuclear regulator licensed a new plant earlier this month — its first under a new Democratic president — I counted it as a win for the industry. Now President Lee Jae-myung’s administration is going all in all on atomic energy. On Monday, NucNet reported that the state-owned Korea Hydro & Nuclear Power plans to open bidding for sites for two new large reactors. The site selection is set to take up to six months. The country then plans to begin construction in the early 2030s and bring the reactors online in 2037 and 2038. Kim Sung-whan, the country’s climate minister, said the Lee administration would stick to the nuclear buildout plan authored in February 2025 under former President Yoon Suk Yeol, a right-wing leader who strongly supported the atomic power industry before being ousted from power after attempting to declare martial law.
Reflective, a nonprofit group that bills itself as “aiming to radically accelerate the pace of sunlight reflection research,” launched its Uncertainty Database on Monday, with the aim of providing scientists, funders, and policymakers with “an initial foundation to create a transparent, prioritized, stage-gated” roadmap of different technologies to spray aerosols in the atmosphere to artificially cool the planet. “SAI research is currently fragmented and underpowered, with no shared view of which uncertainties actually matter for real-world decisions,” Dakota Gruener, the chief executive of Reflective, said in a statement. “We need a shared, strategic view of what we know, what we don’t, and where research can make the biggest difference. The Uncertainty Database helps the field prioritize the uncertainties and research that matter most for informed decisions about SAI.” The database comes as the push to research geoengineering technologies goes mainstream. As Heatmap’s Robinson Meyer reported in October, Stardust Solutions, a U.S. firm run by former Israeli government physicists, has already raised $60 million in private capital to commercialize technology that many climate activists and scientists still see as taboo to even study.
Often we hear of the carbon-absorbing potential of towering forest trees or fast-growing algae. But nary a word on the humble shrub. New research out of China suggests the bush deserves another look. An experiment in planting shrubs along the edges of western China’s Taklamakan Desert over the past four decades has not only kept desertification at bay, it’s made a dent in carbon emissions from the area. “This is not a rainforest,” King-Fai Li, a physicist at the University of California at Riverside, said in a statement. “It’s a shrubland like Southern California’s chaparral. But the fact that it’s drawing down CO2 at all, and doing it consistently, is something positive we can measure and verify from space.” The study provides a rare, long-term case study of desert greening, since this effort has endured for decades whereas one launched in the Sahara Desert by the United Nations crumbled.