You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
There are two kinds of people who work on climate solutions: Those who still believe in the promise of carbon markets, and those who think the whole concept is fundamentally flawed.
In the first category, you have people like McGee Young, the CEO of a company called WattCarbon. Young is aware of the ways carbon markets can be a race to the bottom — enabling companies to buy cheap certificates that say they used clean energy or reduced their carbon footprint, when in reality their purchase had little effect on the environment or the energy system.
And yet, there’s all this money out there for the taking! Companies want to green their image! Tackling climate change is expensive! There must be a way to funnel corporate sustainability budgets to where they can make a real impact!
To Young, the solution is a matter of better data and greater transparency. “We need a record-keeping system that allows us to raise the bar,” he told me.
Young launched his vision for that record-keeping system on Wednesday — the WattCarbon Energy Attribute Tracking System, or WEATS. It functions similarly to other environmental credit registries: Owners of clean energy assets can sign up to generate credits known as Environmental Attribute Certificates, or EACs, which buyers can then purchase to count toward their own clean energy or carbon goals.
WEATS has two main features that differentiate it. First, it will include credits from small-scale distributed energy resources like residential solar panels, batteries, and heat pumps — clean energy solutions that haven’t really been able to participate in carbon markets until now. Second, each EAC will include granular information about where and when the power was generated, in the case of solar, or the carbon savings incurred, in the case of heat pumps, down to the hour.
The first feature is part of what motivated Young to start WattCarbon. “The clean energy transition is more than just wind and solar, it’s more than just generation,” he told me. But it’s the second that Young said is key to improving the credibility of claims that companies are “using 100% clean energy,” or “achieving net-zero.”
Today, many companies simply buy enough clean energy credits to match their annual energy use, regardless of where or when the energy was generated. But researchers have shown that this strategy can have little to no impact on emissions. For example, if a company is only buying solar credits, but it is using energy at night, its carbon footprint from that nighttime energy could surpass any environmental benefits of the solar it bought.
To solve this, some energy buyers have embraced a concept called “24/7 carbon-free energy,” which means that “every kilowatt-hour of electricity consumption is met with carbon-free electricity sources, every hour of every day, everywhere,” in the words of a United Nations-led initiative to promote the concept. “It is both the end state of a fully decarbonized electricity system,” according to the UN, “and a transformative approach to energy procurement, supply, and policy design that is critical to accelerating its arrival.”
If you’ve followed the recent debate about the green hydrogen tax credit, you might be familiar with the idea. In December, the Treasury Department proposed that hydrogen producers will have to match their electricity consumption with the purchase of local clean electricity generation on an hourly basis to prove their hydrogen is clean enough to qualify for the full value of the tax credit. That means producers can either hook up directly to a solar farm or wind farm or geothermal power plant and operate only when it is generating power, or, it can buy renewable energy credits or EACs that correspond to the hours that it operates.
WattCarbon’s marketplace is one of the first to enable this by requiring sellers to include data about exactly where and when each EAC was produced. It also include the carbon intensity of the grid in the place and time when that unit of power was produced. For example, 1 megawatt-hour of solar power in West Virginia, where the grid is supplied by a lot of coal-fired power plants, would likely reduce emissions far more than 1 megawatt-hour of solar power in California, where the main fossil fuel burned for power is natural gas. Similarly, 1 megawatt-hour of solar generated in the afternoon in California will not do as much to reduce emissions as if that unit of power were stored in a battery and then dispatched at night. On other markets, all of these credits might simply be advertised as 1 megawatt-hour of solar power, and the buyer would be none the wiser.
So what does this new carbon trading marketplace look like in practice? There are a lot of possibilities, but here’s one scenario. WattCarbon partners with a company that helps homeowners electrify their heating or install and manage their solar and battery systems. That third party company can then say to their customers, “As an extra incentive to do this, we can help you sell the environmental benefits it provides to third parties through the WattCarbon marketplace,” and those extra payments are what convinces the homeowner to go for it.
Independent experts I spoke with were cautiously optimistic about what this new marketplace could do. “We need to deploy on the order of a billion machines, in the U.S. alone — and not over a century, but on the order of a decade,” said Kevin Kircher, an assistant professor of mechanical engineering at Purdue University, whose research focuses on heat pumps and other distributed energy resources. “So there’s a lot that needs to be done, and just connecting people to money to do the work is really important.”
Wilson Ricks, a PhD candidate at Princeton University whose research informed the Treasury’s proposal for the hydrogen tax credit, said that having a platform where hydrogen companies can procure clean energy from a variety of projects, and with time and location data, would be very useful. He was also intrigued by WattCarbon’s attempt to create EACs tied to batteries because energy storage systems are one of the few resources that can produce clean power when the wind isn’t blowing and the sun isn’t shining.
But both Ricks and Kircher warned there are a number of ways this system of credits could fall into the same traps that ensnare many carbon offset projects and reduce their credibility. For one, it’s really hard to get the math right. That’s especially true for a project like a heat pump, where the carbon savings are based on a counterfactual situation where the homeowner would have kept their gas heater. You have to basically estimate how often they would have run it, which opens the door to sloppiness at best and fraud at worst.
Another key criterion — a concept called additionality — is very hard to assess. Would the household that switches to a heat pump have done so regardless of whether they were getting extra revenue from selling EACs? If the answer is unequivocally yes, the credits are meaningless and serve to give corporate emitters an excuse to keep emitting.
Young acknowledged to me that this was likely going to be true in some cases, but still felt that heat pump owners deserved to be paid for the environmental benefits they were providing. “We provide environmental subsidies for large-scale wind and solar, and we don't do that for the things that we're putting into our buildings and our communities. And to me, there’s an inherent inequality in the way that we treat and value clean energy that needs to be addressed.”
That didn’t quite make sense to me — the government provides subsidies for all kinds of clean energy resources, including distributed energy resources, I countered. The Treasury will give you $2,000 for a heat pump and a 30% discount on rooftop solar.
“That’s true,” Young said. “But we don’t have enough money in all of our government programs to truly scale those.”
I couldn’t argue with that. But the real challenge is helping low-income homeowners with the upfront capital to install these devices — after-the-fact payments are not enough. Young said he had plans to create a way for companies to procure EACs in advance from groups of homeowners. The deals would be similar to the power purchase agreements that big electricity consumers like Google and Walmart make with large-scale renewable energy developers, helping to finance those projects by reducing the risk.
“This is a necessary but not sufficient step,” Young said of the version of the marketplace that launched Wednesday. “Without this, we can’t do that. But this by itself would be inadequate for the market to be able to reach its fullest potential.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A war of attrition is now turning in opponents’ favor.
A solar developer’s defeat in Massachusetts last week reveals just how much stronger project opponents are on the battlefield after the de facto repeal of the Inflation Reduction Act.
Last week, solar developer PureSky pulled five projects under development around the western Massachusetts town of Shutesbury. PureSky’s facilities had been in the works for years and would together represent what the developer has claimed would be one of the state’s largest solar projects thus far. In a statement, the company laid blame on “broader policy and regulatory headwinds,” including the state’s existing renewables incentives not keeping pace with rising costs and “federal policy updates,” which PureSky said were “making it harder to finance projects like those proposed near Shutesbury.”
But tucked in its press release was an admission from the company’s vice president of development Derek Moretz: this was also about the town, which had enacted a bylaw significantly restricting solar development that the company was until recently fighting vigorously in court.
“There are very few areas in the Commonwealth that are feasible to reach its clean energy goals,” Moretz stated. “We respect the Town’s conservation go als, but it is clear that systemic reforms are needed for Massachusetts to source its own energy.”
This stems from a story that probably sounds familiar: after proposing the projects, PureSky began reckoning with a burgeoning opposition campaign centered around nature conservation. Led by a fresh opposition group, Smart Solar Shutesbury, activists successfully pushed the town to drastically curtail development in 2023, pointing to the amount of forest acreage that would potentially be cleared in order to construct the projects. The town had previously not permitted facilities larger than 15 acres, but the fresh change went further, essentially banning battery storage and solar projects in most areas.
When this first happened, the state Attorney General’s office actually had PureSky’s back, challenging the legality of the bylaw that would block construction. And PureSky filed a lawsuit that was, until recently, ongoing with no signs of stopping. But last week, shortly after the Treasury Department unveiled its rules for implementing Trump’s new tax and spending law, which basically repealed the Inflation Reduction Act, PureSky settled with the town and dropped the lawsuit – and the projects went away along with the court fight.
What does this tell us? Well, things out in the country must be getting quite bleak for solar developers in areas with strident and locked-in opposition that could be costly to fight. Where before project developers might have been able to stomach the struggle, money talks – and the dollars are starting to tell executives to lay down their arms.
The picture gets worse on the macro level: On Monday, the Solar Energy Industries Association released a report declaring that federal policy changes brought about by phasing out federal tax incentives would put the U.S. at risk of losing upwards of 55 gigawatts of solar project development by 2030, representing a loss of more than 20 percent of the project pipeline.
But the trade group said most of that total – 44 gigawatts – was linked specifically to the Trump administration’s decision to halt federal permitting for renewable energy facilities, a decision that may impact generation out west but has little-to-know bearing on most large solar projects because those are almost always on private land.
Heatmap Pro can tell us how much is at stake here. To give you a sense of perspective, across the U.S., over 81 gigawatts worth of renewable energy projects are being contested right now, with non-Western states – the Northeast, South and Midwest – making up almost 60% of that potential capacity.
If historical trends hold, you’d expect a staggering 49% of those projects to be canceled. That would be on top of the totals SEIA suggests could be at risk from new Trump permitting policies.
I suspect the rate of cancellations in the face of project opposition will increase. And if this policy landscape is helping activists kill projects in blue states in desperate need of power, like Massachusetts, then the future may be more difficult to swallow than we can imagine at the moment.
And more on the week’s most important conflicts around renewables.
1. Wells County, Indiana – One of the nation’s most at-risk solar projects may now be prompting a full on moratorium.
2. Clark County, Ohio – Another Ohio county has significantly restricted renewable energy development, this time with big political implications.
3. Daviess County, Kentucky – NextEra’s having some problems getting past this county’s setbacks.
4. Columbia County, Georgia – Sometimes the wealthy will just say no to a solar farm.
5. Ottawa County, Michigan – A proposed battery storage facility in the Mitten State looks like it is about to test the state’s new permitting primacy law.
A conversation with Jeff Seidman, a professor at Vassar College.
This week’s conversation is with Jeff Seidman, a professor at Vassar College and an avid Heatmap News reader. Last week Seidman claimed a personal victory: he successfully led an effort to overturn a moratorium on battery storage development in the town of Poughkeepsie in Hudson Valley, New York. After reading a thread about the effort he posted to BlueSky, I reached out to chat about what my readers might learn from his endeavors – and how they could replicate them, should they want to.
The following conversation was lightly edited for clarity.
So how did you decide to fight against a battery storage ban? What was your process here?
First of all, I’m not a professional in this area, but I’ve been learning about climate stuff for a long time. I date my education back to when Vox started and I read my first David Roberts column there. But I just happened to hear from someone I know that in the town of Poughkeepsie where I live that a developer made a proposal and local residents who live nearby were up in arms about it. And I heard the town was about to impose a moratorium – this was back in March 2024.
I actually personally know some of the town board members, and we have a Democratic majority who absolutely care about climate change but didn’t particularly know that battery power was important to the energy transition and decarbonizing the grid. So I organized five or six people to go to the town board meeting, wrote a letter, and in that initial board meeting we characterized the reason we were there as being about climate.
There were a lot more people on the other side. They were very angry. So we said do a short moratorium because every day we’re delaying this, peaker plants nearby are spewing SOx and NOx into the air. The status quo has a cost.
But then the other side, they were clearly triggered by the climate stuff and said renewables make the grid more expensive. We’d clearly pressed a button in the culture wars. And then we realized the mistake, because we lost that one.
When you were approaching getting this overturned, what considerations did you make?
After that initial meeting and seeing how those mentions of climate or even renewables had triggered a portion of the board, and the audience, I really course-corrected. I realized we had to make this all about local benefits. So that’s what I tried to do going forward.
Even for people who were climate concerned, it was really clear that what they perceived as a present risk in their neighborhood was way more salient than an abstract thing like contributing to the fight against climate change globally. So even for people potentially on your side, you have to make it about local benefits.
The other thing we did was we called a two-hour forum for the county supervisors and mayor’s association because we realized talking to them in a polarized environment was not a way to have a conversation. I spoke and so did Paul Rogers, a former New York Fire Department lieutenant who is now in fire safety consulting – he sounds like a firefighter and can speak with a credibility that I could never match in front of, for example, local fire chiefs. Winning them over was important. And we took more than an hour of questions.
Stage one was to convince them of why batteries were important. Stage two was to show that a large number of constituents were angry about the moratorium, but that Republicans were putting on a unified front against this – an issue to win votes. So there was a period where Democrats on the Poughkeepsie board were convinced but it was politically difficult for them.
But stage three became helping them do the right thing, even with the risk of there being a political cost.
What would you say to those in other parts of the country who want to do what you did?
If possible, get a zoning law in place before there is any developer with a specific proposal because all of the opposition to this project came from people directly next to the proposed project. Get in there before there’s a specific project site.
Even if you’re in a very blue city, don’t make it primarily about climate. Abstract climate loses to non-abstract perceived risk every time. Make it about local benefits.
To the extent you can, read and educate yourself about what good batteries provide to the grid. There’s a lot of local economic benefits there.
I am trying to put together some of the resources I used into a packet, a tool kit, so that people elsewhere can learn from it and draw from those resources.
Also, the more you know, the better. All those years of reading David Roberts and Heatmap gave me enough knowledge to actually answer questions here. It works especially when you have board members who may be sympathetic but need to be reassured.