You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Especially with carbon capture tax incentives on the verge of disappearing, perhaps At One Ventures founder Tom Chi is onto something.

Technology to suck carbon dioxide out of the air — a.k.a. direct air capture — has always had boosters who say it’s necessary to reach net zero, and detractors who view it as an expensive fig leaf for the fossil fuel industry. But when the typical venture capitalist looks at the tech, all they see is dollar signs. Because while the carbon removal market is still in its early stages, if you look decades down the line, a technology that can permanently remove residual emissions in a highly measurable fashion has got to be worth a whole lot, right? Right?
Not so, says Tom Chi, founder of At One Ventures and co-founder of Google’s technological “moonshot factory,” X. Bucking the dominant attitude, he’s long vowed to stay away from DAC altogether. “If you’re trying to collect carbon dioxide in the air, it’s like trying to suck all the carbon dioxide through a tiny soda straw,” Chi told me. Given that the concentration of CO2 in the atmosphere sits at about 0.04%, “2,499 molecules out of 2,500 are not the one you’re trying to get,” Chi said. “These are deep, physical disadvantages to the approach.”
He’s obviously not the first to realize this. DAC companies and their scientists are well aware of the challenges they face. But investors are generally comfortable taking on risk across a host of different technologies and industries on the premise that at least a few of their portfolio companies will hit it big. As such, a nascent market and challenging physics are not inherent reasons to steer clear. DAC’s potential to secure cash-rich oil and gas industry buyers is pure upside.
Most prominent climate tech venture capital firms — including Lowercarbon Capital, Breakthrough Energy Ventures, Prelude Ventures, and Khosla Ventures — have at least one DAC company in their portfolios. At One Ventures itself has backed everything from producing oxygen on the moon (while also decarbonizing steel) to indoor solar cells and thorium-powered nuclear reactors, a hobbyhorse of techno-optimist nuclear bros and former presidential candidate Andrew Yang. So the fact that Chi won’t touch DAC is no small deal.
His hesitation stems from a matter of scale. To capture that 0.04% of atmospheric carbon, many DAC companies use giant fans to pull in large volumes of air from the atmosphere, which then pass through either a solid filter or a liquid solution that chemically captures the carbon dioxide. Although some companies are pursuing alternate approaches that rely on passive air contact rather than energy-intensive fans, either way, the amount of air that reaches any DAC machine’s so-called “collection aperture” is minuscule “relative to the scale of planet Earth,” Chi told me.
He views this as the core pitfall of the technology. “Half of the [operating expense] of the system is just trying to go after a technical disadvantage that you took on from day one,” Chi said. “By comparison, nature based restorations have enormous apertures,” Chi told me. “Think about the aperture of all the forests on the planet. Think about the aperture of all the soils on the planet, all the wetlands on the planet, the ocean.” His preferred methods of carbon removal are all nature-based. “In addition, their sequestration tends to be photosynthesis-powered, which means we’re not burning natural gas or using grid electricity in order to go make that thing work.”
Nature-based solutions often raise eyebrows in the carbon removal and reduction space, though, bringing to mind highly questionable carbon offsets such as those earned via “avoided deforestation.” The inherent counterfactual — would these trees really have been cut down if we didn’t buy these credits? — is difficult to measure with any certainty, and a 2023 investigation by The Guardian found that the majority of these types of credits are essentially bogus.
This same essential question around measurability plagues everything from afforestation and reforestation to soil carbon sequestration, biochar application, and wetland restoration. It’s extremely difficult to measure how much carbon is stored — and for how long — within complex, open ecosystems. On the other hand, engineered solutions such as direct air capture or bioenergy with carbon capture and storage are simple to quantify and promise permanent storage, making them attractive to large corporate buyers and easy to incentivize via mechanisms such as the federal carbon sequestration tax credit.
When I put all this to Chi, his response was simple. “It’s not an advantage to be able to measure something that can’t solve the problem,” he told me. For a moment, it seemed as if we had hit an intellectual dead end. For now, carbon removals and reductions are mainly driven by the voluntary carbon market, where prices are based on the exact tonnage of carbon removed. Reputable buyers don’t want to be burned again by investing in difficult to quantify offsets, and the current administration certainly doesn’t seem likely to step in with nature-based removal mandates or purchasing commitments anytime soon.
Chi’s answer to this conundrum is “financial enclosure,” essentially a fancy way of saying we need to monetize the value of nature-based systems. In many cases, he admitted, we don’t quite yet know how to do that, at least in a way that benefits the common good. “We figured out how to financially enclose a forest, clear cut it in order to go make board feed and paper and pulp,” he explained. But we don’t know how to financially enclose the benefit of preserving said forest, nor many other ecosystems such as wetlands that serve as highly effective carbon sinks.
At One Ventures has backed companies that work with a variety of buyers — from national governments to mining companies and farmers — that have a financial stake in (or are legally required to care about) ecosystem preservation and restoration. “Sometimes people break nature hard enough that it becomes that obvious. And then they have to go fix it,” Chi told me. “We’re going to invest in the companies that make it possible to go do that at incredibly low cost structures.”
One portfolio company, Dendra Systems, uses robots, drones, and other automated methods to do large scale ecosystem restoration, such as replanting mangroves in parts of the world such as Myanmar and Abu Dhabi where they’ve been cleared for property development or industrial use. The governments of both countries are paying Dendra to do this after realizing that removing mangroves had catastrophic consequences —- destroying subsistence fishing, wrecking erosion breaks — that would cost more to ameliorate than simply replanting the trees.
Then there’s Dalan Animal Health, which is developing vaccines for honeybees as hives become more vulnerable to disease. While not directly focused on carbon removal, the company has successfully “financially enclosed” pollination, as industrial farmers whose crops depend on pollinators will pay for the vaccine. This helps restore healthy ecosystems that can ultimately draw down more carbon. Chi told me that insurance companies have also shown a willingness to pay for nature-based solutions that can help lessen the impact of disasters such as floods or hurricanes.
While the carbon benefits of these companies are simply a bonus, the firm has invested in one pure play removal company, Gigablue. This startup releases engineered particles into the ocean that attract carbon-absorbing phytoplankton. As the particles accumulate more plankton, they sink to the ocean floor, where the carbon is then stored. Using onsite sampling and other advanced techniques, Chi told me that this tech is “very measurable” while also having an “aperture [that] is as wide as the ocean area that we’ve sprinkled things onto.”
Though Chi dislikes the illogical nature of the voluntary carbon market — he would much prefer a “polluter pays” system where money is directed towards nature-based sequestration — he knows that with the markets we have, precise measurability is paramount. So At One Ventures is throwing money at this, too. Portfolio company Chloris Geospatial combines satellite data and machine learning to measure biomass from space and track changes over time, helping legitimize forest-based removals. And Miraterra is focused on novel sensing tech and advanced modeling that allows farmers to calculate the amount of carbon in their soil.
But even if the carbon stored in natural ecosystems never becomes quite as measurable as engineered carbon removals, Chi thinks investors, companies, or governments should still be going all in. “When your volume is so much larger, then you can even throw big error bars around your measurability and still be miles ahead,” he told me.
Many investors say they want it all. You’ll see them funding nature-based and engineered carbon removal companies alike in an effort to take a “portfolio approach” to carbon removal. Chi, unsurprisingly, thinks that’s hogwash. “It’s weasel words to be like, it’s an important part of this portfolio,” he told me. The United Nations Intergovernmental Panel on Climate Change also advocates for a diversified approach, without saying DAC itself is strictly necessary. DAC is “not going to do 1%, and it’s going to be massively more expensive than your other 99%,” Chi said. “At some point you’re going to be like, why is this in the portfolio?”
It’s certainly a more blunt assessment of the industry’s viability (or lack thereof) than I’ve heard any investor hazard before. But there may be more folks starting to come around to Chi’s perspective. With government support for DAC in question and the utility of carbon capture tax credits — which only benefit engineered removals — deeply threatened, venture funding for DAC is down over 60% from this time last year, Bloomberg reported.
Rajesh Swaminathan, a climate tech investor at Khosla Ventures told the publication that while many investors have taken bets on direct air capture, “Now, people are stepping back and saying, ‘Why didn’t I look at the economics there?’” Khosla itself is an investor in the DAC company Spiritus.
So what’s a longterm skeptic like Chi to do in this moment of doubt? As he told me, “I’m just going to keep on giving talks on it, and I know that physics is on my side.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
And it’s blocking America’s economic growth, argues a former White House climate advisor.
Everyone is talking about affordability and the rising cost of energy to power our lives — with good reason. Leading up to Winter Storm Fern, natural gas prices skyrocketed more than 50% in just two days. Since President Trump took office, electricity prices have risen by 13%, despite his promise to cut them in half in his first year. Now, 16% of U.S households are behind on their electricity bills, and that number is expected to rise throughout the winter.
And we all know that much more energy will be needed in the years ahead to meet our electrification needs. The Trump administration and its well-funded allies in the fossil fuel industry are blocking our ability to put the cheapest, most reliable energy onto the grid. They are standing in the way of progress, pushing a false narrative that our country needs more dirty, expensive energy to bring costs down.
Our state and local leaders, environmental advocates, and businesses are the ones pushing to build more. They are the ones focused on a pro-growth agenda that invests in the U.S. economy and meets new energy demand with clean energy. Now is the time for all Americans to stand together, not in anger or frustration, but with hope, inspiration, and resilience. We already have the technologies, policies, and practices we need to deliver a cleaner, safer, and more affordable world. We just have to build it.
It’s time to push for common-sense policies that quickly scale up the cheapest forms of energy — solar, wind, and battery storage — to protect our health and natural resources. And it’s high time we let families keep their hard-earned money rather than pay to keep dirty coal and other volatile and expensive fossil fuels — including natural gas — alive.
Our federal government is propping up polluting sources of energy that are draining our economy. They are forcing coal plants to stay open while costing ratepayers millions. In fact, Trump’s U.S. Department of Energy just extended its order to keep Michigan’s JH Campbell coal plant running for four more months, forcing consumers to pay a whopping $113 million in costs so far, despite the state’s utility saying that “no energy emergency exists.”
Trump’s Environmental Protection Agency is stripping states and Tribes of their authority to protect water resources that their communities depend on to allow more oil and gas pipelines and other fossil fuel infrastructure to be built, doubling down on the very problem that is driving prices up. Retail natural gas prices have risen 11% year over year, far outpacing inflation. Moreover, gas price spikes have been a major factor in rising retail electricity bills, particularly in the Northeast and Southeast. We’re seeing similar cost increases as a result of Trump’s liquified natural gas export policies and his constant attacks on the Inflation Reduction Act.
Let me be clear: Renewable energy is the fastest and cheapest option to add power to the grid. Period. Full Stop. Already nearly 80% of planned power plant capacity is tied to renewable sources, according to Cleanview.co. Solar made up 98% of new capacity this fall. States with the highest levels of wind and solar generation, like Iowa and Oklahoma, have the lowest utility bill rate increases in America. States like New Mexico are already ahead of schedule to meet their clean energy goals, while also keeping rates down.
So don’t buy what the Trump administration is selling. We can have long-term, stable economic growth built on cheap, clean energy that doesn’t trash our watersheds and destroy the places we love. In Nevada and Utah, the Sierra Club worked alongside Fervo to secure a new deal to supply 24/7 carbon-free energy to a large Google data center built with new environmental principles for advanced geothermal. And in Michigan and Illinois, a broad coalition of environmental leaders worked with industry stakeholders to achieve common sense permitting reform to facilitate faster adoption of more affordable energy onto the grid in the Midwest.
We all know from experience that the fossil fuel industry will do everything it can to force us to stick with the status quo. They aren’t going to stand idle and give up their foothold on dirty energy, which they have long enjoyed. That’s why we must deliver pro-growth solutions and stand up against those blocking progress to line their pockets with families’ hard-earned money.
It’s time for us to take charge and build a clean, affordable energy future. We need to call on our policymakers in states and cities to stand up for their constituents. And we need business leaders to invest in our economic future. Now is the time to demand the healthy, low-cost, clean energy future that empowers all of us.
Plus, consolidation in carbon removal.
On Wednesday, I covered a major raise in the virtual power plant space — a sector that may finally be ready to make a tangible impact on the grid after decades of theorizing. Beyond that, investors continued to place bets on both fusion and fission, as the Trump administration continues pushing for faster deployment of new nuclear reactors. This week also saw fresh capital flowing to fleet electrification and climate-resilience solutions, two areas that have benefited less, shall we say, from the president’s enthusiasm.
The fusion startup Avalanche Energy raised $29 million to develop its tabletop-sized microreactors and scale its fusion test facility, FusionWERX, in Washington State. Led by RA Capital Management and joined by existing climate tech-focused backers such as Congruent Ventures and Lowercarbon Capital, this funding round follows what CEO Robin Langtry described to me as multiple breakthroughs in stabilizing the company’s fusion plasma and ridding it of impurities such as excess oxygen.
“Now we really have a very straight technical path to get to this Q > 1 fusion machine,” Langtry told me, referring to the point at which a fusion reaction produces more energy than was used to initiate it, often called “scientific breakeven.” Now that the pathway to commercial viability is coming into focus, Avalanche is starting to invest in expensive, longer-lead-time equipment such as superconducting magnets and systems to manage the fusion fuel, which it expects to arrive at the FusionWERX facility in early 2027. At that point, the startup will begin running tests that could achieve breakeven.
Avalanche is pursuing a technical approach called magneto-electrostatic fusion, a lesser-known method that uses strong magnetic and electric fields to accelerate ions into fusion-producing collisions while keeping the plasma contained. The startup aims to commercialize its tech, which Langtry says has numerous defense applications, in the early 2030s. In the meantime, much of the latest funding will go toward scaling the FusionWERX facility, where other fusion entrepreneurs and academics can test their own technologies — offering the startup a nearer-term revenue opportunity.
The Paris-based small modular reactor company Newcleo announced an $88 million growth investment, as existing European investors doubled down and new EU-based industrial backers jumped aboard, bringing its total funding to over $760 million. The startup, which is now eyeing expansion into the U.S., differentiates itself by running its reactors on recycled nuclear waste and cooling them with liquid lead, which is intended to be safer and more efficient than conventional standard water- or sodium-cooled reactors.
The startup is already investing $2 billion in a strategic partnership with the Sam Altman-backed SMR company Oklo to develop the infrastructure needed to produce and reprocess advanced nuclear fuel in the U.S. Newcleo’s CEO, Stefano Buono, told The Wall Street Journal that he expects to benefit from the Trump administration’s push to expedite domestic nuclear development, which he hopes will help Newcleo speed up its own commercialization timeline. Currently the company plans to complete its first commercial units sometime after 2030.
The company also has a number of creative collaborations underway with Italian firms. These include partnerships with the shipbuilder Fincantieri, which is exploring the potential of nuclear-powered vessels, engineering giant Saipem which is looking to develop floating nuclear plants, and the metals equipment company Danieli, which aims to use SMRs for green steel production.
Mitra EV, a commercial vehicle fleet electrification platform, just raised $27 million in a funding round that includes an equity investment from Ultra Capital and a credit facility from the climate-focused investment firm S2G Investments.
The startup focuses on small- and medium-sized businesses, which often face capital constraints and lack a dedicated fleet manager. While the financials of fleet electrification often pencil out for these companies, the real barriers frequently lie in the maze of logistics — acquiring electric vehicles, building charging infrastructure, coordinating with utilities, and navigating a web of incentive programs. Mitra EV aims to streamline all these tasks through a single platform, claiming to offer immediate cost reductions of up to 75%.
The new capital will help Mitra to expand its suite of offerings, which includes EV leasing, overnight charging infrastructure, and access to a network of shared fast-charging hubs designed specifically for fleets. For now the company operates exclusively in California, but it plans to deepen its presence across the state before expanding into additional regions. Other states such as Oregon, Colorado, Michigan, and New York have also adopted zero-emissions fleet mandates, creating ready markets for the company if it continues to grow.
The software startup Forerunner raised $39 million to scale its platform for local governments to manage and mitigate environmental risk. The company’s AI-powered tools help to centralize detailed geospatial data such as land parcels, infrastructure, inspection records, permitting information, hazard zones, and more into a single system, allowing communities to run stronger risk assessments, stay compliant with environmental regulations, and coordinate responses when floods, storms, or other emergencies hit. The startup works with over 190 local and state agencies across 26 U.S. states.
The round includes a $26.3 million Series B led by Wellington Management, alongside a previously unannounced $12.7 million Series A led by Union Square Ventures. Forerunner first gained traction by helping governments manage floodplains, and this new capital will help fuel its expansion into new areas such as infrastructure management, wildfire risk, and code enforcement.
All of this is unfolding as the Trump administration slashes staff at the Federal Emergency Management Agency, even as extreme weather events are becoming more frequent. The result is mounting pressure on state and local governments, who often still rely on fragmented, outdated systems to get a comprehensive view of their communities and the environmental hazards they face.
Carbon removal company Terradot has acquired the assets, intellectual property, projects, and removal contracts of one of its former competitors, Eion. Both are pursuing a method of carbon removal known as “enhanced rock weathering,” which accelerates the natural process by which CO2 in rainwater reacts with silicate rocks, forming a stable bicarbonate that can permanently lock away CO2 when it’s washed out to sea.
While typically this process takes thousands of years, spreading crushed minerals like basalt or olivine on agricultural fields can dramatically accelerate the process — though precise measurement and reporting remains a challenge. Terradot’s early projects have focused on basalt rocks in Brazil, whereas Eion operates in the U.S. doing olivine-based weathering. This deal could signal a forthcoming wave of mergers and acquisitions in the sector, where there’s a plethora of startups vying to commercialize novel methods of permanent carbon removal.
Current conditions: Temperatures across the Northeast will drop nearly 30 degrees Fahrenheit below historical averages as another five inches snow heads for New England • Warmer air blowing eastward from the Pacific is set to ease the East Coast cold snap by mid-month • Storm Leonardo is pummeling Iberia with rain, killing at least one person so far and forcing more than 4,000 to evacuate Andalusia, Spain.
Developers axed or pared down more than $34 billion worth of clean energy projects across the United States last year as the Trump administration yanked back support for renewables and low-carbon industries. Last year marked the first time since 2022 that companies abandoned more annual investments than they announced in the sector, E&E News reported, citing a new report from the clean energy business group E2. The 61 affected projects had promised about 38,000 jobs.
Things may be looking up for embattled renewables. Offshore wind companies have, so far, won every challenge to President Donald Trump’s orders to halt construction. As I wrote in yesterday’s newsletter, Katie Miller, the right-wing influencer and wife of Trump adviser Stephen Miller, has for the past two days promoted the value of solar and batteries in posts on X. Another data point: The Wall Street Journal just reported that the chief financial officer of the posh home-exercise bike company Peloton is jumping ship to the solar company Palmetto.
A federal judge in Texas struck down a 2021 law barring state agencies from investing in firms accused of boycotting fossil fuel companies, ruling that the statute was unconstitutional. In his decision, Judge Alan D. Albright of the U.S. District Court in Austin blocked the state from enforcing the law, known as SB 13, which he ruled was targeting activities protected by free speech rights. “SB 13 is impermissibly vague in violation of the Fourteenth Amendment because it fails to provide persons of ordinary intelligence a reasonable opportunity to know what conduct is prohibited and does not provide explicit standards for determining compliance with the law,” Albright wrote in a 12-page decision. “Thus, the law is unconstitutional and unenforceable.” The decision, The New York Times reported, was part of a lawsuit filed in 2024 by the American Sustainable Business Council on behalf of two companies, Ethos Capital and Sphere, which claimed they were put on a blacklist.
Get Heatmap AM directly in your inbox every morning:

For France, Russia, and Japan, nuclear waste isn’t waste at all — spent fuel is reprocessed to separate out the harmful byproducts caused by fission and extract some of the roughly 95% of uranium left behind after a used fuel assembly comes out of a reactor. The U.S., too, would be in that club of nations were it not for former President Jimmy Carter’s decision to kill off what was supposed to be America’s first commercial recycling plant for nuclear waste back in the 1970s. Since then, no one has seriously attempted to revive the industry. That is, until now. Last month, as I reported here, the Department of Energy announced plans to set up nuclear fuel campuses where startups could test out recycling technology. On Thursday, the agency awarded $19 million to five startups to hasten development of recycling technology. “Used nuclear fuel is an incredible untapped resource in the United States,” Assistant Secretary for Nuclear Energy Ted Garrish said in a statement. “The Trump Administration is taking a common-sense approach to making sure we’re using our resources in the most efficient ways possible to secure American energy independence and fuel our economic growth.” One of those companies, Curio Solutions, told me the funding shows the technology is “now moving decisively toward scaling up for ultimate full commercialization.”
Sign up to receive Heatmap AM in your inbox every morning:
Amazon outbid Puget Sound Energy last month in an auction for a 1.2-gigawatt solar farm in Oregon in a move the Seattle Times warned left “the utility concerned about a larger competition for resources with energy-hungry artificial intelligence companies.” The tech giant agreed to pay $83 million for the facility, which could end up as one of the largest solar projects in the U.S. The project, which would span 9,442 acres, plans to build an equal amount of battery storage capacity. The bidding war was close. PSE’s final offer was $82 million. “We are used to being kind of the only buyers for these things as utilities, and now there are other buyers who are a little bigger than we are,” Matt Steuerwalt, senior vice president of external affairs at PSE, told the newspaper Thursday.
Amazon said Thursday it plans to spend an eye-popping $200 billion — with a B — on AI infrastructure this year alone. It’s not alone in the big spending. Alphabet, Google’s parent company, announced Wednesday that it expects to spend between $175 billion to $185 billion on data centers, energy, and other AI investments this year, roughly double what it paid in 2025. But as Heatmap’s Matthew Zeitlin noted, Google’s spending spree is “fabulous news for utilities.” Just last week, utility and renewable developer NextEra told investors on its quarterly earnings call that it expects to bring 15 gigawatts of power to serve data centers over the next decade. “But I’ll be disappointed if we don’t double our goal and deliver at least 30 gigawatts through this channel by 2035, NextEra chief executive John Ketchum said.
Chronic exposure to fine particulate matter from wildfires is killing an average of 24,100 people in America’s lower 48 states each year, according to a new study. The paper, published Wednesday in the journal Science Advances, examined the period from 2006 to 2020 and found that long-term exposure to the tiny particulates from the blaze is linked to at least that many deaths. “Our message is: Wildfire smoke is very dangerous. It is an increasing threat to human health,” Yaguang Wei, a study author and assistant professor in the department of environmental medicine at Icahn School of Medicine at Mount Sinai, told the Associated Press. A scientist at the University of California at Los Angeles who was not involved in the study described the findings as “reasonable” and called for further research. A paper from 2024, which Heatmap’s Jeva Lange covered at the time, found a 10-fold increase in deaths from wildfire smoke from the 1960s to the 2010s.
Much like the classic animated movie about a bunch of zoo animals from New York City that end up stranded on Africa’s largest island, a non-native species is messing with Madagascar’s lemurs. New research from Rice University found that strawberry guava, an invasive plant from Brazil, can prevent forests from naturally regenerating. The plant, whose fruit lemurs often eat, was introduced to Madagascar during the colonial era in the 1800s and tends to take hold in areas where the rainforest canopy is damaged. Once established, the strawberry guava can stall native trees’ regrowth by decades.