You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Especially with carbon capture tax incentives on the verge of disappearing, perhaps At One Ventures founder Tom Chi is onto something.

Technology to suck carbon dioxide out of the air — a.k.a. direct air capture — has always had boosters who say it’s necessary to reach net zero, and detractors who view it as an expensive fig leaf for the fossil fuel industry. But when the typical venture capitalist looks at the tech, all they see is dollar signs. Because while the carbon removal market is still in its early stages, if you look decades down the line, a technology that can permanently remove residual emissions in a highly measurable fashion has got to be worth a whole lot, right? Right?
Not so, says Tom Chi, founder of At One Ventures and co-founder of Google’s technological “moonshot factory,” X. Bucking the dominant attitude, he’s long vowed to stay away from DAC altogether. “If you’re trying to collect carbon dioxide in the air, it’s like trying to suck all the carbon dioxide through a tiny soda straw,” Chi told me. Given that the concentration of CO2 in the atmosphere sits at about 0.04%, “2,499 molecules out of 2,500 are not the one you’re trying to get,” Chi said. “These are deep, physical disadvantages to the approach.”
He’s obviously not the first to realize this. DAC companies and their scientists are well aware of the challenges they face. But investors are generally comfortable taking on risk across a host of different technologies and industries on the premise that at least a few of their portfolio companies will hit it big. As such, a nascent market and challenging physics are not inherent reasons to steer clear. DAC’s potential to secure cash-rich oil and gas industry buyers is pure upside.
Most prominent climate tech venture capital firms — including Lowercarbon Capital, Breakthrough Energy Ventures, Prelude Ventures, and Khosla Ventures — have at least one DAC company in their portfolios. At One Ventures itself has backed everything from producing oxygen on the moon (while also decarbonizing steel) to indoor solar cells and thorium-powered nuclear reactors, a hobbyhorse of techno-optimist nuclear bros and former presidential candidate Andrew Yang. So the fact that Chi won’t touch DAC is no small deal.
His hesitation stems from a matter of scale. To capture that 0.04% of atmospheric carbon, many DAC companies use giant fans to pull in large volumes of air from the atmosphere, which then pass through either a solid filter or a liquid solution that chemically captures the carbon dioxide. Although some companies are pursuing alternate approaches that rely on passive air contact rather than energy-intensive fans, either way, the amount of air that reaches any DAC machine’s so-called “collection aperture” is minuscule “relative to the scale of planet Earth,” Chi told me.
He views this as the core pitfall of the technology. “Half of the [operating expense] of the system is just trying to go after a technical disadvantage that you took on from day one,” Chi said. “By comparison, nature based restorations have enormous apertures,” Chi told me. “Think about the aperture of all the forests on the planet. Think about the aperture of all the soils on the planet, all the wetlands on the planet, the ocean.” His preferred methods of carbon removal are all nature-based. “In addition, their sequestration tends to be photosynthesis-powered, which means we’re not burning natural gas or using grid electricity in order to go make that thing work.”
Nature-based solutions often raise eyebrows in the carbon removal and reduction space, though, bringing to mind highly questionable carbon offsets such as those earned via “avoided deforestation.” The inherent counterfactual — would these trees really have been cut down if we didn’t buy these credits? — is difficult to measure with any certainty, and a 2023 investigation by The Guardian found that the majority of these types of credits are essentially bogus.
This same essential question around measurability plagues everything from afforestation and reforestation to soil carbon sequestration, biochar application, and wetland restoration. It’s extremely difficult to measure how much carbon is stored — and for how long — within complex, open ecosystems. On the other hand, engineered solutions such as direct air capture or bioenergy with carbon capture and storage are simple to quantify and promise permanent storage, making them attractive to large corporate buyers and easy to incentivize via mechanisms such as the federal carbon sequestration tax credit.
When I put all this to Chi, his response was simple. “It’s not an advantage to be able to measure something that can’t solve the problem,” he told me. For a moment, it seemed as if we had hit an intellectual dead end. For now, carbon removals and reductions are mainly driven by the voluntary carbon market, where prices are based on the exact tonnage of carbon removed. Reputable buyers don’t want to be burned again by investing in difficult to quantify offsets, and the current administration certainly doesn’t seem likely to step in with nature-based removal mandates or purchasing commitments anytime soon.
Chi’s answer to this conundrum is “financial enclosure,” essentially a fancy way of saying we need to monetize the value of nature-based systems. In many cases, he admitted, we don’t quite yet know how to do that, at least in a way that benefits the common good. “We figured out how to financially enclose a forest, clear cut it in order to go make board feed and paper and pulp,” he explained. But we don’t know how to financially enclose the benefit of preserving said forest, nor many other ecosystems such as wetlands that serve as highly effective carbon sinks.
At One Ventures has backed companies that work with a variety of buyers — from national governments to mining companies and farmers — that have a financial stake in (or are legally required to care about) ecosystem preservation and restoration. “Sometimes people break nature hard enough that it becomes that obvious. And then they have to go fix it,” Chi told me. “We’re going to invest in the companies that make it possible to go do that at incredibly low cost structures.”
One portfolio company, Dendra Systems, uses robots, drones, and other automated methods to do large scale ecosystem restoration, such as replanting mangroves in parts of the world such as Myanmar and Abu Dhabi where they’ve been cleared for property development or industrial use. The governments of both countries are paying Dendra to do this after realizing that removing mangroves had catastrophic consequences —- destroying subsistence fishing, wrecking erosion breaks — that would cost more to ameliorate than simply replanting the trees.
Then there’s Dalan Animal Health, which is developing vaccines for honeybees as hives become more vulnerable to disease. While not directly focused on carbon removal, the company has successfully “financially enclosed” pollination, as industrial farmers whose crops depend on pollinators will pay for the vaccine. This helps restore healthy ecosystems that can ultimately draw down more carbon. Chi told me that insurance companies have also shown a willingness to pay for nature-based solutions that can help lessen the impact of disasters such as floods or hurricanes.
While the carbon benefits of these companies are simply a bonus, the firm has invested in one pure play removal company, Gigablue. This startup releases engineered particles into the ocean that attract carbon-absorbing phytoplankton. As the particles accumulate more plankton, they sink to the ocean floor, where the carbon is then stored. Using onsite sampling and other advanced techniques, Chi told me that this tech is “very measurable” while also having an “aperture [that] is as wide as the ocean area that we’ve sprinkled things onto.”
Though Chi dislikes the illogical nature of the voluntary carbon market — he would much prefer a “polluter pays” system where money is directed towards nature-based sequestration — he knows that with the markets we have, precise measurability is paramount. So At One Ventures is throwing money at this, too. Portfolio company Chloris Geospatial combines satellite data and machine learning to measure biomass from space and track changes over time, helping legitimize forest-based removals. And Miraterra is focused on novel sensing tech and advanced modeling that allows farmers to calculate the amount of carbon in their soil.
But even if the carbon stored in natural ecosystems never becomes quite as measurable as engineered carbon removals, Chi thinks investors, companies, or governments should still be going all in. “When your volume is so much larger, then you can even throw big error bars around your measurability and still be miles ahead,” he told me.
Many investors say they want it all. You’ll see them funding nature-based and engineered carbon removal companies alike in an effort to take a “portfolio approach” to carbon removal. Chi, unsurprisingly, thinks that’s hogwash. “It’s weasel words to be like, it’s an important part of this portfolio,” he told me. The United Nations Intergovernmental Panel on Climate Change also advocates for a diversified approach, without saying DAC itself is strictly necessary. DAC is “not going to do 1%, and it’s going to be massively more expensive than your other 99%,” Chi said. “At some point you’re going to be like, why is this in the portfolio?”
It’s certainly a more blunt assessment of the industry’s viability (or lack thereof) than I’ve heard any investor hazard before. But there may be more folks starting to come around to Chi’s perspective. With government support for DAC in question and the utility of carbon capture tax credits — which only benefit engineered removals — deeply threatened, venture funding for DAC is down over 60% from this time last year, Bloomberg reported.
Rajesh Swaminathan, a climate tech investor at Khosla Ventures told the publication that while many investors have taken bets on direct air capture, “Now, people are stepping back and saying, ‘Why didn’t I look at the economics there?’” Khosla itself is an investor in the DAC company Spiritus.
So what’s a longterm skeptic like Chi to do in this moment of doubt? As he told me, “I’m just going to keep on giving talks on it, and I know that physics is on my side.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The storm currently battering Jamaica is the third Category 5 to form in the Atlantic Ocean this year, matching the previous record.
As Hurricane Melissa cuts its slow, deadly path across Jamaica on its way to Cuba, meteorologists have been left to marvel and puzzle over its “rapid intensification” — from around 70 miles per hour winds on Sunday to 185 on Tuesday, from tropical storm to Category 5 hurricane in just a few days, from Category 2 occurring in less than 24 hours.
The storm is “one of the most powerful hurricane landfalls on record in the Atlantic basin,” the National Weather Service said Tuesday afternoon. Though the NWS expected “continued weakening” as the storm crossed Jamaica, “Melissa is expected to reach southeastern Cuba as an extremely dangerous major hurricane, and it will still be a strong hurricane when it moves across the southeastern Bahamas.”
So how did the storm get so strong, so fast? One reason may be the exceptionally warm Caribbean and Atlantic.
“The part of the Atlantic where Hurricane Melissa is churning is like a boiler that has been left on for too long. The ocean waters are around 30 degrees Celsius, 2 to 3 degrees above normal, and the warmth runs deep,” University of Redding research scientist Akshay Deoras said in a public statement. (Those exceedingly warm temperatures are “up to 700 times more likely due to human-caused climate change,” the climate communication group Climate Central said in a press release.)
Based on Intergovernmental Panel on Climate Change reports, the National Oceanic and Atmospheric Administration concluded in 2024 that “tropical cyclone intensities globally are projected to increase” due to anthropogenic climate change, and that “rapid intensification is also projected to increase.”
NOAA also noted that research suggested “an observed increase in the probability of rapid intensification” for tropical cyclones from 1982 to 2017 The review was still circumspect, however, labeling “increased intensities” and “rapid intensification” as “examples of possible emerging human influences.”
What is well known is that hurricanes require warm water to form — at least 80 degrees Fahrenheit, according to NOAA. “As long as the base of this weather system remains over warm water and its top is not sheared apart by high-altitude winds, it will strengthen and grow.”
A 2023 paper by hurricane researcher Andra Garner argued that between 1971 and 2020, rates of intensification of Atlantic tropical storms “have already changed as anthropogenic greenhouse gas emissions have warmed the planet and oceans,” and specifically that the number of these storms that intensify from Category 1 or weaker “into a major hurricane” — as Melissa did so quickly — “has more than doubled in the modern era relative to the historical era.”
“Hurricane Melissa has been astonishing to watch — even as someone who studies how these storms are impacted by a warming climate, and as someone who knows that this kind of dangerous storm is likely to become more common as we warm the planet,” Garner told me by email. She likened the warm ocean waters to “an extra shot of caffeine in your morning coffee — it’s not only enough to get the storm going, it’s an extra boost that can really super-charge the storm.”
This year has been an outlier for the Atlantic with three Category 5 storms, University of Miami senior research associate Brian McNoldy wrote on his blog. “For only the second time in recorded history, an Atlantic season has produced three Category 5 hurricanes,” with wind speeds reaching and exceeding 157 miles per hour, he wrote. “The previous year was 2005. This puts 2025 in an elite class of hurricane seasons. It also means that nearly 7% of all known Category 5 hurricanes have occurred just in this year.” One of those Category 5 storms in 2005 was Hurricane Katrina.
Jamaican emergency response officials said that thousands of people were already in shelters amidst storm surge, flooding, power outages, and landslides. Even as the center of the storm passed over Jamaica Tuesday evening, the National Weather Service warned that “damaging winds, catastrophic flash flooding and life-threatening storm surge continues in Jamaica.”
With Trump turning the might of the federal government against the decarbonization economy, these investors are getting ready to consolidate — and, hopefully, profit.
Since Trump’s inauguration, investors have been quick to remind me that some of the world’s strongest, most resilient companies have emerged from periods of uncertainty, taking shape and cementing their market position amid profound economic upheaval.
On the one hand, this can sound like folks grasping at optimism during a time when Washington is taking a hammer to both clean energy policies and valuable sources of government funding. But on the other hand — well, it’s true. Google emerged from the dot-com crash with its market lead solidified, Airbnb launched amid the global financial crisis, and Sunrun rose to dominance after the first clean tech bubble burst.
The circumstances may change, but behind all of these against-the-odds successes are investors who saw opportunity where others saw risk. In the climate tech landscape of 2025, well-capitalized investors are eyeing some of the more mature sectors being battered by federal policy or market uncertainty — think solar, wind, biogas, and electric transportation — rather than the fresh-faced startups pursuing more cutting edge tech.
“History does not repeat, but it certainly rhymes,” Andrew Beebe, managing director at Obvious Ventures, told me. He was working as the chief commercial officer at the solar company Suntech Power when the first climate tech bubble collapsed in the wake of the 2008 financial crisis. Back then, venture capital and project financing dried up instantly, as banks and investors faced heavy losses from their exposure to risky assets. This time around, “there’s plenty of capital at all stages of venture,” as well as infrastructure investing, he said. That means firms can afford to swoop in to finance or acquire undervalued startups and established companies alike.
“I think you’re gonna see a lot of projects in development change hands,” Beebe told me.
Investors don’t generally publicize when the companies or projects that they’re backing become “distressed assets,” i.e. are in financial trouble, nor do they broadcast when their explicit goal is to turn said projects around. But that’s often what opportunistic investing entails.
“As investors in the energy and infrastructure space — which is inherently in transition — we take it as a very important point of our strategy to be opportunistic,” Giulia Siccardo, a managing director at Quinbrook, told me. (Prior to joining the investment firm, Siccardo was director of the Department of Energy’s Office of Manufacturing & Energy Supply Chains under President Biden.)
Quinbrook sees opportunities in biogas and renewable natural gas, a sector that once enjoyed “very cushioned margins” thanks to investor interest in corporate sustainability, Siccardo told me, but which has lately gone into a “rapid decline.” But she’s also looking at solar and storage, where developers are rushing to build projects before tax credits expire, as well as grid and transmission infrastructure, given the dire need for upgrades and buildout as load growth increases.
As of now, the only investment Quinbrook has explicitly described as opportunistic is its acquisition of a biomethane facility in Junction City, Oregon. When it opened in 2013, the facility used food waste — which otherwise would have emitted methane in a landfill — to produce renewable biogas for clean electricity generation. But after Shell acquired the plant, it switched to converting cow manure and agricultural residue into renewable natural gas for heavy-duty transportation fuels, a process that it’s operated commercially since 2021. Siccardo declined to provide information about the plant’s performance at the time of Quinbrook’s acquisition, though presumably, it has yet to reach its total production capacity of 730,000 million British thermal units per year — enough to supply about 12,000 U.S. households.
The extension of the clean fuel production tax credit, plus the potential for hyperscalers to purchase RNG credits, are still driving demand, however. And that’s increased Siccardo’s confidence in pursuing investments and acquisitions in the space. “That’s a market that, from a policy standpoint, has actually been pretty stable — and you might even say favored — by the One Big Beautiful Bill relative to other technologies,” she explained.
Solar, meanwhile, is still cheap and quick to deploy, with or without the tax credits, Siccardo told me. “If you strip away all subsidies, and are just looking at, what is the technology that’s delivering the lowest cost electron, and which technology has the least supply chain bottlenecks right now in North America —- that drives you to solar and storage,” she said.
Another leading infrastructure investment firm, Generate Capital, is also looking to cash in on the moment. After replacing its CEO and enacting company-wide layoffs, Generate’s head of external affairs, Jonah Goldman, told me that “managers who understand the [climate] space and who can take advantage of the opportunities that are underpriced in this tougher market environment are set up to succeed.”
The firm also sees major opportunities when it comes to good old solar and storage projects. In an open letter, Generate’s new CEO, David Crane, wrote that “for the first time in nearly four decades, the U.S. has an insatiable need for more power: as much as we can produce, as soon as we can, wherever and however we can produce it.”
Crane sees it as the duty of Generate and other investors to use mergers and acquisitions as a tool to help clean tech scale and mature. “If companies across our subsectors were publicly traded, the market itself would act as a centripetal force towards industry consolidation,” he wrote. But because many clean energy companies are privately funded, Crane said “it is up to us, the providers of that private capital, to force industry improvement, through consolidation and otherwise.”
Helping solar companies accelerate their construction timelines to lock in tax credit eligibility has actually become an opportunistic market of its own, Chris Creed, a managing partner at Galvanize Climate Solutions and co-head of its credit division, told me. “Helping those companies that need to start or complete their projects within a predetermined time frame because of changes in the tax credit framework became an investable opportunity for us,” Creed told me. “We have a number of deals in our near term pipeline that basically came about as a result of that.”
Given that some solar companies are bound to fare better than others, he agreed that mergers and acquisitions were likely — among competitors as well as involving companies working in different stages of a supply chain. “It wouldn’t shock me if you saw some horizontal consolidation or some vertical integration,” Creed told me.
Consolidation can only go so far, though. So while investors seem to agree that solar, storage, and even the administration’s nemesis — wind — are positioned for a long and fruitful future, when it comes to more emergent technologies, not all will survive the headwinds. Beebe thinks there’s been “irrational exuberance” around both green hydrogen and direct air capture, for example, and that seasoned investors will give those spaces a pass.
Electric mobility — e.g. EVs, electric planes, and even electrified shipping — and grid scalability — which includes upgrades to make the grid more efficient, flexible, and optimized — are two sectors that Beebe is betting will survive the turmoil.
But for all investors that have the capability to do so, for now, “the easy bet is just to move your money outside the U.S.” Beebe told me.
We might be starting to see just that. Quinbrook also invests in the U.K. and Australia, and just announced its first Canadian investment last week. It acquired an ownership stake in Elemental Clean Fuels, an energy developer making renewable fuels such as RNG, low-carbon methanol, and — yes — clean hydrogen.
Last week, Generate announced that it had closed $43 million in funding from the Canadian company Fiera Infrastructure Private Debt for its North American portfolio of anaerobic digestion projects, which produce renewable natural gas — Generate’s first cross-currency, cross-border deal.
Creed still has confidence in the U.S. market, however, telling me he’s “very bullish on American innovation.” He certainly acknowledges that it’s a tough time out there for any investor deciding where to park their money, but thinks that ultimately, “that volatility should manifest itself as excess returns to investors who are able to figure out their investment strategy and deploy in this environment.”
Exactly what firms will manage this remains an open question, and the opportunities may be short-lived — but it’s a race that plenty of investors are getting in on.
“I mean, God bless the Europeans for caring about climate.”
Bill Gates, the billionaire co-founder of Microsoft and one of the world’s most important funders of climate-related causes, has a new message: Lighten up on the “doomsday.”
In a new memo, called “Three tough truths about climate,” Gates calls for a “strategic pivot.” Climate-concerned philanthropy should focus on global health and poverty, he says, which will still cause more human suffering than global warming.
“I’m not saying we should ignore temperature-related deaths because diseases are a bigger problem,” he writes. “What I am saying is that we should deal with disease and extreme weather in proportion to the suffering they cause, and that we should go after the underlying conditions that leave people vulnerable to them. While we need to limit the number of extremely hot and cold days, we also need to make sure that fewer people live in poverty and poor health so that extreme weather isn’t such a threat to them.”
This new focus didn’t come with a change in funding priorities — but that’s partly because some big shake-ups have already happened. In February, Heatmap reported that Breakthrough Energy, Gates’ climate-focused funding group, had slashed its grant-making budget. Gates later closed Breakthrough’s policy and advocacy office altogether.
Despite eliminating those financial commitments, he still dwells on two of his longtime obsessions in the new memo: cutting the “green premium” for energy technologies, meaning the delta between the cost of carbon-emitting and clean energy technologies, and improving the measurement of how spending can do the most for human welfare. The same topics dominated his thinking when I last spoke to the billionaire at the 2023 United Nations climate conference in Dubai.
What seems to have shifted, instead, is the global political environment. The Trump administration and Elon Musk gutted the federal government’s spending on global public health causes, such as vaccines and malaria prevention. European countries have also cut back their global aid spending, although not as dramatically as the U.S.
Gates seemingly now feels called to their defense: “Vaccines are the undisputed champion of lives saved per dollar spent,” he writes, praising the vaccine alliance Gavi in particular. “Energy innovation is a good buy not because it saves lives now, but because it will provide cheap clean energy and eventually lower emissions, which will have large benefits for human welfare in the future.”
Last week, Gates shared his thinking about climate change at a roundtable with a handful of reporters. He was, as always, engaging. I’ve shared some of his new takes on climate policy below. His quotes have been edited for clarity.
The environment we’re in today, the policies for climate change are less accommodating. It’s hard to name a country where you’d say, Oh, the climate policies are more accommodating today than they have been in the past.
The thesis I had was that middle income countries — who were already, at that time, the majority of all emissions — would never pay a premium for greenness. And so you could say, well, maybe the rich countries should subsidize that. But you know, the amounts involved would get you up to, like, 4% of rich country budgets would have to be transferred to do that. And we’re at 1% and going down. And there are some other worthy things that that money goes for, other than subsidizing positive green premium type approaches. So the thesis in the book [How to Avoid a Climate Disaster, published in 2021] is we had to innovate our way to negative green premiums for the middle income countries.
Climate [change] is an evil thing in that it’s caused by rich countries and high middle-income countries and the primary burden [falls on poor countries]. When I looked into climate activists, I said, Well, this is incredible. They care about poor countries so much. That’s wonderful, that they feel guilty about it. But in fact, a lot of climate activists, they have such an extreme view of what’s going to happen in rich countries — their climate activism is not because they care about poor farmers and Africa, it’s because they have some purported view that, like, New York City, can’t deal with the flooding or the heat.
The other challenge we have in the climate movement is in order to have some degree of accountability, it was very focused on short-term goals and per-country reports. And the per-country reporting thing is, in a way, a good thing, because a country — certainly when it comes to deforestation or what it’s doing on its electric grid, there is sovereign accountability for what’s being done. But I mean, the way everybody makes steel is the same. The way everybody makes the cement, it’s the same. The way we make fertilizer, it’s all the same. And so there can’t be some wonderful surprise, where some country comes in and, you know, gives you this little number [for its Paris Agreement goals], and you go, Wow, good! You’re so tough, you’re so good, you’re so amazing. Because other than deforestation and your particular electric grid, these are all global things.
If you’re a rich country, the costs of adaptation are just one of many, many things that are not gigantic, huge percentages of GDP — you know, rebuilding L.A. so that it’s like the Getty Museum, in terms of there’s no brush that can catch on fire, there’s no roof that can catch on fire, adds about 10% cost to the rebuild. It’s not like, Oh my god, we can’t live in LA. There’s no apocalyptic story for rich countries. [Climate adaptation] is one of many things that you should pay attention to, like, Does your health system work? Does your education system work? Does your political system work? There are a variety of things that are also quite important.
The place where it gets really tough is in these poor countries. But you know, what is the greatest tool for climate adaptation? Getting rich — growing your economy is the biggest single thing, living in conditions where you don’t face big climate problems. So when you say to an African country, Hey, you have a natural gas deposit, and we’re going to try to block you from getting financing for using that natural gas deposit … It probably won’t work, because there’s a lot of money in the world. It’s not clear how you’d achieve that. And it’s also in terms of the warming effect of that natural gas, versus the improvement of the conditions of the people in that country — it’s not even a close thing.
People in the [climate] movement, we do have to say to ourselves, For the Europeans, how much were they willing to pay in order to support climate? — and did we overestimate in terms of forcing them to switch to electric cars, to buy electric heat pumps, to have their price of electricity be higher? Did we overestimate their willingness to pay with some of those policies? And you do have to be careful because if your climate policies are too aggressive, you will be unelected, and you’ll have a right-wing government that cares not a bit about climate. I mean, God bless the Europeans for caring about climate. You worry they care so much about it that the people you talk to, you won’t be able to meet with them again, because they won’t be in power.