Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

Thea Energy Hits Milestone in Quest to Simplify Fusion

This fusion startup is ahead of schedule.

Fusion.
Heatmap Illustration/Getty Images, Thea Energy

Thea Energy, one of the newer entrants into the red-hot fusion energy space, raised $20 million last year as investors took a bet on the physics behind the company’s novel approach to creating magnetic fields. Today, in a paper being submitted for peer review, Thea announced that its theoretical science actually works in the real world. The company’s CEO, Brian Berzin, told me that Thea achieved this milestone “quicker and for less capital than we thought,” something that’s rare in an industry long-mocked for perpetually being 30 years away.

Thea is building a stellarator fusion reactor, which typically looks like a twisted version of the more common donut-shaped tokamak. But as Berzin explained to me, Thea’s stellarator is designed to be simpler to manufacture than the industry standard. “We don’t like high tech stuff,” Berzin told me — a statement that sounds equally anathema to industry norms as the idea of a fusion project running ahead of schedule. “We like stuff that can be stamped and forged and have simple manufacturing processes.”

The company thinks it can achieve simplicity via its artificial intelligence software, which controls the reactor’s magnetic field keeping the unruly plasma at the heart of the fusion reaction confined and stabilized. Unlike typical stellarators, which rely on the ultra-precise manufacturing and installment of dozens of huge, twisted magnets, Thea’s design uses exactly 450 smaller, simpler planar magnets, arranged in the more familiar donut-shaped configuration. These magnets are still able to generate a helical magnetic field — thought to keep the plasma better stabilized than a tokamak — because each magnet is individually controlled via the company’s software, just like “the array of pixels in your computer screen,” Berzin told me.

“We’re able to utilize the control system that we built and very specifically modulate and control each magnet slightly differently,” Berzin explained, allowing Thea to “make those really complicated, really precise magnetic fields that you need for a stellarator, but with simple hardware.”

This should make manufacturing a whole lot easier and cheaper, Berzin told me. If one of Thea’s magnets is mounted somewhat imperfectly, or wear and tear of the power plant slightly shifts its location or degrades its performance over time, Thea’s AI system can automatically compensate. “It then can just tune that magnet slightly differently — it turns that magnet down, it turns the one next to it up, and the magnetic field stays perfect,” Berzin explained. As he told me, a system that relies on hardware precision is generally much more expensive than a system that depends on well-designed software. The idea is that Thea’s magnets can thus be mass manufactured in a way that’s conducive to “a business versus a science project.”

In 2023, Thea published a technical report proving out the physics behind its so-called “planar coil stellarator,” which allowed the company to raise its $20 million Series A last year, led by the climate tech firm Prelude Ventures. To validate the hardware behind its initial concept, Thea built a 3x3 array of magnets, representative of one section of its overall “donut” shaped reactor. This array was then integrated with Thea’s software and brought online towards the end of last year.

The results that Thea announced today were obtained during testing last month, and prove that the company can create and precisely control the complex magnetic field shapes necessary for fusion power. These results will allow the company to raise a Series B in the “next couple of years,” Berzin said. During this time, Thea will be working to scale up manufacturing such that it can progress from making one or two magnets per week to making multiple per day at its New Jersey-based facility.

The company’s engineers are also planning to stress test their AI software, such that it can adapt to a range of issues that could arise after decades of fusion power plant operation. “So we’re going to start breaking hardware in this device over the next month or two,” Berzin told me. “We’re purposely going to mismount a magnet by a centimeter, put it back in and not tell the control system what we did. And then we’re going to purposely short out some of the magnetic coils.” If the system can create a strong, stable magnetic field anyway, this will serve as further proof of concept for Thea’s software-oriented approach to a simplified reactor design.

The company is still years away from producing actual fusion power though. Like many others in the space, Thea hopes to bring fusion electrons to the grid sometime in the 2030s. Maybe this simple hardware, advanced software approach is what will finally do the trick.

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

The Firings Begin

On Interior’s denial, ethane exports surge, and Spain’s grid fears

The Department of Energy.
Heatmap Illustration/Getty Images

Current conditions: A major Pacific storm is drenching California and bringing several inches of snow to Montana, Idaho, and Wyoming • A tropical storm in the Atlantic dumped nearly a foot of water on South Carolina over three days • Algeria is roasting in temperatures of more than 105 degrees Fahrenheit.

THE TOP FIVE

1. Energy Department starts firing workers amid shutdown

The Department of Energy notified workers in multiple offices Friday that they were likely to be fired or reassigned to another part of the agency, E&E News reported Tuesday. Staffers at the Office of Clean Energy Demonstrations and the Office of State and Community Energy Programs received notices stating that the offices would “be undergoing a major reorganization and your position may be reassigned to another organization, transferred to another function or abolished.” Still, the notice said “no determination has been made concerning your specific position” just yet.

Keep reading...Show less
Red
Podcast

How Julian Brave NoiseCat Changed His Mind About Climate Politics

Rob talks with the author and activist about his new book, We Survived the Night.

Julian Brave NoiseCat.
Heatmap Illustration/Getty Images

Julian Brave NoiseCat is a writer, Oscar-nominated filmmaker, champion powwow dancer, and student of Salish art and history. His first book, We Survived the Night, was released this week — it uses memoir, reporting, and literary anthology to tell the story of Native families across North America, including his own.

NoiseCat was previously an environmental and climate activist at groups including 350.org and Data for Progress. On this week’s episode of Shift Key, Rob talks with Julian about Native American nations and politics, the complexity and reality of Native life in 2025, and the “trickster” as a recurring political archetype.

Keep reading...Show less
Green
Energy

The Grid Needs Longer-Lasting Batteries. But How to Pay for Them?

Long-duration storage is still an awkward fit in most U.S. electricity markets.

A Hydrostor rendering.
Heatmap Illustration/Hydrostor

It’s hard to imagine a decarbonized grid without batteries that can last longer — far longer — than the four hours today’s grid-scale, lithium-ion batteries can pump power onto the grid. But who’s going to pay for it?

That’s the question developers and researchers are puzzling over as the U.S. electricity grid struggles to replace aging generation and transmission infrastructure. At the same time, forecast demand for electricity is surging thanks to electrification of transportation and home heating, factory construction, and, of course, data centers. With solar (still) coming online, there’s a need to spread out the plentiful power generated in the middle of the day — or even year — across other hours and seasons.

Keep reading...Show less
Blue