Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

Thea Energy Hits Milestone in Quest to Simplify Fusion

This fusion startup is ahead of schedule.

Fusion.
Heatmap Illustration/Getty Images, Thea Energy

Thea Energy, one of the newer entrants into the red-hot fusion energy space, raised $20 million last year as investors took a bet on the physics behind the company’s novel approach to creating magnetic fields. Today, in a paper being submitted for peer review, Thea announced that its theoretical science actually works in the real world. The company’s CEO, Brian Berzin, told me that Thea achieved this milestone “quicker and for less capital than we thought,” something that’s rare in an industry long-mocked for perpetually being 30 years away.

Thea is building a stellarator fusion reactor, which typically looks like a twisted version of the more common donut-shaped tokamak. But as Berzin explained to me, Thea’s stellarator is designed to be simpler to manufacture than the industry standard. “We don’t like high tech stuff,” Berzin told me — a statement that sounds equally anathema to industry norms as the idea of a fusion project running ahead of schedule. “We like stuff that can be stamped and forged and have simple manufacturing processes.”

The company thinks it can achieve simplicity via its artificial intelligence software, which controls the reactor’s magnetic field keeping the unruly plasma at the heart of the fusion reaction confined and stabilized. Unlike typical stellarators, which rely on the ultra-precise manufacturing and installment of dozens of huge, twisted magnets, Thea’s design uses exactly 450 smaller, simpler planar magnets, arranged in the more familiar donut-shaped configuration. These magnets are still able to generate a helical magnetic field — thought to keep the plasma better stabilized than a tokamak — because each magnet is individually controlled via the company’s software, just like “the array of pixels in your computer screen,” Berzin told me.

“We’re able to utilize the control system that we built and very specifically modulate and control each magnet slightly differently,” Berzin explained, allowing Thea to “make those really complicated, really precise magnetic fields that you need for a stellarator, but with simple hardware.”

This should make manufacturing a whole lot easier and cheaper, Berzin told me. If one of Thea’s magnets is mounted somewhat imperfectly, or wear and tear of the power plant slightly shifts its location or degrades its performance over time, Thea’s AI system can automatically compensate. “It then can just tune that magnet slightly differently — it turns that magnet down, it turns the one next to it up, and the magnetic field stays perfect,” Berzin explained. As he told me, a system that relies on hardware precision is generally much more expensive than a system that depends on well-designed software. The idea is that Thea’s magnets can thus be mass manufactured in a way that’s conducive to “a business versus a science project.”

In 2023, Thea published a technical report proving out the physics behind its so-called “planar coil stellarator,” which allowed the company to raise its $20 million Series A last year, led by the climate tech firm Prelude Ventures. To validate the hardware behind its initial concept, Thea built a 3x3 array of magnets, representative of one section of its overall “donut” shaped reactor. This array was then integrated with Thea’s software and brought online towards the end of last year.

The results that Thea announced today were obtained during testing last month, and prove that the company can create and precisely control the complex magnetic field shapes necessary for fusion power. These results will allow the company to raise a Series B in the “next couple of years,” Berzin said. During this time, Thea will be working to scale up manufacturing such that it can progress from making one or two magnets per week to making multiple per day at its New Jersey-based facility.

The company’s engineers are also planning to stress test their AI software, such that it can adapt to a range of issues that could arise after decades of fusion power plant operation. “So we’re going to start breaking hardware in this device over the next month or two,” Berzin told me. “We’re purposely going to mismount a magnet by a centimeter, put it back in and not tell the control system what we did. And then we’re going to purposely short out some of the magnetic coils.” If the system can create a strong, stable magnetic field anyway, this will serve as further proof of concept for Thea’s software-oriented approach to a simplified reactor design.

The company is still years away from producing actual fusion power though. Like many others in the space, Thea hopes to bring fusion electrons to the grid sometime in the 2030s. Maybe this simple hardware, advanced software approach is what will finally do the trick.

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

Exclusive: Japan’s Tiny Nuclear Reactors Are Headed to Texas

The fourth-generation gas-cooled reactor company ZettaJoule is setting up shop at an unnamed university.

A Texas sign at a ZettaJoule facility.
Heatmap Illustration/Getty Images, ZettaJoule

The appeal of next-generation nuclear technology is simple. Unlike the vast majority of existing reactors that use water, so-called fourth-generation units use coolants such as molten salt, liquid metal, or gases that can withstand intense heat such as helium. That allows the machines to reach and maintain the high temperatures necessary to decarbonize industrial processes, which currently only fossil fuels are able to reach.

But the execution requirements of these advanced reactors are complex, making skepticism easy to understand. While the U.S., Germany, and other countries experimented with fourth-generation reactors in earlier decades, there is only one commercial unit in operation today. That’s in China, arguably the leader in advanced nuclear, which hooked up a demonstration model of a high-temperature gas-cooled reactor to its grid two years ago, and just approved building another project in September.

Keep reading...Show less
Blue
Spotlight

The 5 Fights to Watch in 2026

Spoiler: A lot of them are about data centers.

Data centers and clean energy.
Heatmap Illustration/Getty Images

It’s now clear that 2026 will be big for American energy, but it’s going to be incredibly tense.

Over the past 365 days, we at The Fight have closely monitored numerous conflicts over siting and permitting for renewable energy and battery storage projects. As we’ve done so, the data center boom has come into full view, igniting a tinderbox of resentment over land use, local governance and, well, lots more. The future of the U.S. economy and the energy grid may well ride on the outcomes of the very same city council and board of commissioners meetings I’ve been reporting on every day. It’s a scary yet exciting prospect.

Keep reading...Show less
Yellow
Hotspots

A Texas Data Center Dispute Turns Tawdry

Plus a resolution for Vineyard Wind and more of the week’s big renewables fights.

The United States.
Heatmap Illustration/Getty Images

1. Hopkins County, Texas – A Dallas-area data center fight pitting developer Vistra against Texas attorney general Ken Paxton has exploded into a full-blown political controversy as the power company now argues the project’s developer had an improper romance with a city official for the host community.

  • For those who weren’t around for the first go, here’s the low-down: The Dallas ex-urb of Sulphur Springs is welcoming a data center project proposed by a relatively new firm, MSB Global. But the land – a former coal plant site – is held by Vistra, which acquired the property in a deal intended for remediating the site. After the city approved the project, Vistra refused to allow construction on the land, so Sulphur Springs sued, and in its bid to win the case, the city received support from Texas attorney general Ken Paxton, whose office then opened an antitrust investigation into the power company’s land holdings.
  • Since we first reported this news, the lawsuit has escalated. Vistra’s attorneys have requested Sulphur Springs’ attorney be removed from the court proceedings because, according to screenshots of lengthy social media posts submitted to the court, the city itself has confirmed that the attorney dated a senior executive for MSB Global as recently as the winter of 2024.
  • In a letter dated December 10, posted online by activists fighting the data center, Vistra’s attorneys now argue the relationship is what led to the data center coming to the city in the first place, and that the attorney cannot argue on behalf of the city because they’ll be a fact witness who may need to provide testimony in the case: “These allegations make awareness of negotiations surrounding the deed and the City’s subsequent conduct post-transaction, including any purported ‘reliance’ on Vistra Parties’ actions and omissions, relevant.”
  • I have not heard back from MSB Global or Sulphur Springs about this case, but if I do, you’ll be hearing about it.

2. La Plata County, Colorado – This county has just voted to extend its moratorium on battery energy storage facilities over fire fears.

Keep reading...Show less
Yellow