Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

Thea Energy Hits Milestone in Quest to Simplify Fusion

This fusion startup is ahead of schedule.

Fusion.
Heatmap Illustration/Getty Images, Thea Energy

Thea Energy, one of the newer entrants into the red-hot fusion energy space, raised $20 million last year as investors took a bet on the physics behind the company’s novel approach to creating magnetic fields. Today, in a paper being submitted for peer review, Thea announced that its theoretical science actually works in the real world. The company’s CEO, Brian Berzin, told me that Thea achieved this milestone “quicker and for less capital than we thought,” something that’s rare in an industry long-mocked for perpetually being 30 years away.

Thea is building a stellarator fusion reactor, which typically looks like a twisted version of the more common donut-shaped tokamak. But as Berzin explained to me, Thea’s stellarator is designed to be simpler to manufacture than the industry standard. “We don’t like high tech stuff,” Berzin told me — a statement that sounds equally anathema to industry norms as the idea of a fusion project running ahead of schedule. “We like stuff that can be stamped and forged and have simple manufacturing processes.”

The company thinks it can achieve simplicity via its artificial intelligence software, which controls the reactor’s magnetic field keeping the unruly plasma at the heart of the fusion reaction confined and stabilized. Unlike typical stellarators, which rely on the ultra-precise manufacturing and installment of dozens of huge, twisted magnets, Thea’s design uses exactly 450 smaller, simpler planar magnets, arranged in the more familiar donut-shaped configuration. These magnets are still able to generate a helical magnetic field — thought to keep the plasma better stabilized than a tokamak — because each magnet is individually controlled via the company’s software, just like “the array of pixels in your computer screen,” Berzin told me.

“We’re able to utilize the control system that we built and very specifically modulate and control each magnet slightly differently,” Berzin explained, allowing Thea to “make those really complicated, really precise magnetic fields that you need for a stellarator, but with simple hardware.”

This should make manufacturing a whole lot easier and cheaper, Berzin told me. If one of Thea’s magnets is mounted somewhat imperfectly, or wear and tear of the power plant slightly shifts its location or degrades its performance over time, Thea’s AI system can automatically compensate. “It then can just tune that magnet slightly differently — it turns that magnet down, it turns the one next to it up, and the magnetic field stays perfect,” Berzin explained. As he told me, a system that relies on hardware precision is generally much more expensive than a system that depends on well-designed software. The idea is that Thea’s magnets can thus be mass manufactured in a way that’s conducive to “a business versus a science project.”

In 2023, Thea published a technical report proving out the physics behind its so-called “planar coil stellarator,” which allowed the company to raise its $20 million Series A last year, led by the climate tech firm Prelude Ventures. To validate the hardware behind its initial concept, Thea built a 3x3 array of magnets, representative of one section of its overall “donut” shaped reactor. This array was then integrated with Thea’s software and brought online towards the end of last year.

The results that Thea announced today were obtained during testing last month, and prove that the company can create and precisely control the complex magnetic field shapes necessary for fusion power. These results will allow the company to raise a Series B in the “next couple of years,” Berzin said. During this time, Thea will be working to scale up manufacturing such that it can progress from making one or two magnets per week to making multiple per day at its New Jersey-based facility.

The company’s engineers are also planning to stress test their AI software, such that it can adapt to a range of issues that could arise after decades of fusion power plant operation. “So we’re going to start breaking hardware in this device over the next month or two,” Berzin told me. “We’re purposely going to mismount a magnet by a centimeter, put it back in and not tell the control system what we did. And then we’re going to purposely short out some of the magnetic coils.” If the system can create a strong, stable magnetic field anyway, this will serve as further proof of concept for Thea’s software-oriented approach to a simplified reactor design.

The company is still years away from producing actual fusion power though. Like many others in the space, Thea hopes to bring fusion electrons to the grid sometime in the 2030s. Maybe this simple hardware, advanced software approach is what will finally do the trick.

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Carbon Removal

DAC Is Struggling in America, But It’s Big in Japan

With new corporate emissions restrictions looming, Japanese investors are betting on carbon removal.

Heirloom technology.
Heatmap Illustration/Heirloom Carbon

It’s not a great time to be a direct air capture company in the U.S. During a year when the federal government stepped away from its climate commitments and cut incentives for climate tech and clean energy, investors largely backed away from capital-intensive projects with uncertain economics. And if there were ever an expensive technology without a clear path to profitability, it’s DAC.

But as the U.S. retrenches, Japanese corporations are leaning in. Heirloom’s $150 million Series B round late last year featured backing from Japan Airlines, as well as major Japanese conglomerates Mitsubishi Corporation and Mitsui & Co. Then this month, the startup received an additional infusion of cash from the Development Bank of Japan and the engineering company Chiyoda Corporation. Just days later, DAC project developer Deep Sky announced a strategic partnership with the large financial institution Sumitomo Mitsui Banking Corporation to help build out the country’s DAC market.

Keep reading...Show less
Ideas

Climate Innovation Calls for a New Kind of Environmentalism

Why America’s environmental institutions should embrace a solutions mindset

A flower and a lightbulb.
Heatmap Illustration/Getty Images

Innovation has always been core to the American story — and now, it is core to any story that successfully addresses climate. The International Energy Agency estimates that 35% to 46% of the emissions reductions we’ll need by 2050 will come from technologies that still require innovation in order to scale.

Yet there’s a gap between what society urgently needs and what our institutions are built to do. Environmentalism, especially, must evolve from a movement that merely protects to a movement that also builds and innovates.

Keep reading...Show less
Green
AM Briefing

Data Dump

On permitting reform hangups, transformers, and Last Energy’s big fundraise

Elizabeth Warren.
Heatmap Illustration/Getty Images

Current conditions: Days after atmospheric rivers deluged the Pacific Northwest, similar precipitation is headed for Northern California, albeit with less than an inch of rain expected in the foothills of the Bay Area • Australia is facing a heatwave, temperatures hovering around 90 degrees Fahrenheit this week • Heavy rains threaten flash floods in Ghana, Togo, Benin, and southern Nigeria.

THE TOP FIVE

1. Three Senate Democrats open probe into data centers’ effect on electricity bills

Three Senate Democrats considered top progressives announced Tuesday a probe into whether and how data centers are driving up residential electricity bills. In letters sent Monday to Google, Microsoft, Amazon, Meta, and three other companies, the lawmakers accused the server farms powering artificial intelligence software of “forcing utilities to spend billions of dollars to upgrade the power grid,” expenses then passed on to Americans “through the rates they charge all users of electricity,” The New York Times wrote. The senators — Elizabeth Warren of Massachusetts, Chris Van Hollen of Maryland, and Richard Blumenthal of Connecticut — warned that ratepayers will be left holding the bag when the AI bubble bursts, a possibility Friday’s stock plunge (which Heatmap’s Matthew Zeitlin covered) has made investors all too aware of.

Keep reading...Show less
Blue