You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Anu Khan is pushing carbon credits to better serve the public good.

There’s a new player in carbon removal. It’s not another startup building machines to suck carbon from the air. And it’s not another trade association or consulting firm or marketplace peddling carbon removal credits. Instead, it wants to help establish a different system for advancing carbon removal — one where the challenging but important goal of scrubbing CO2 from the atmosphere is treated as a public good and not just a business opportunity.
It’s called the Carbon Removal Standards Initiative, and it’s run by Anu Khan, the former deputy director of science and innovation at Carbon180. CRSI (pronounced like the Lannister queen in Game of Thrones, “Cersei”) is a “financially unconflicted, independent nonprofit,” that will provide technical assistance to policymakers, regulators, and nongovernmental organizations in quantifying carbon removal outcomes.
A group providing technical assistance may not sound like a revolutionary development. But Khan hopes CRSI will be a fulcrum around which the entire industry can begin to pivot.
Today’s carbon removal industry is built on selling credits, each of which is supposed to represent one ton of CO2 pulled out of the atmosphere. But the market is almost entirely self-regulated. The standards for measuring and reporting how much carbon a given project is removing have either been developed by the carbon credit registries that take a cut of the sales or by the developers themselves — in both cases a conflict of interest, even if governed by the best of intentions. Plus, there’s a multitude of standards for every type of project, and they vary in quality.
Take carbon farming, for example. If a farmer alters their practices to increase the carbon stored in their soil, they can choose from more than a dozen standards to quantify the effects. In theory, the standards all produce an identical product — a fungible carbon credit equivalent to one ton of carbon removed from the atmosphere. In reality, they vary widely in quality, with some standards producing more accurate results than others.
In watching this environment develop over the past several years, I’ve often wondered if some independent, unbiased entity might eventually step forward to enact one set of standards to rule them all. Khan told me that about a year and a half ago, she had the same thought. “Oh, to be so young,” she said.
At the time, there was growing concern that the carbon removal industry would suffer from the same credibility issues that plagued the wider market for carbon credits. “You have a multiplicity of these verification entities driven by profit motives, some of which have very loose standards,” Wil Burns, the co-executive director of the Institute for Carbon Removal Law and Policy at American University, told me. “From the standpoint of those purchasing credits or those viewing whether companies are doing anything meaningful, nobody can really distinguish.”
In early 2023, dozens of carbon removal suppliers, buyers, verifiers, academics, and nonprofit staff — including Khan — signed an open letter that now reads like an early draft of CRSI’s missions statement. It called for the creation of “an independent, not-for-profit initiative that conscientiously avoids conflicts of interest and has funding that does not depend on issuing or selling carbon credits.” This new body would “provide a trusted, scientific stamp of approval for CDR protocols through an inclusive process to identify scientific consensus.”
The letter focused on the issues with measuring carbon removal in the context of the voluntary sale of carbon credits. But over the next year, it became clear to Khan that carbon removal won’t reach the scale necessary to make a dent in climate change without government policy. “Even the market enthusiasts recognize that we’re going to need policy as quickly as possible to shore this up,” she said, “and it’s going to be policy, long term, that gets us to gigaton scale.”
So instead of providing “a trusted, scientific stamp of approval” to private businesses, CRSI is laser focused on working with policymakers. It’s not entirely clear yet what that will look like, and it’s likely to evolve as CRSI finds its footing. But the group is launching with a few projects that are already underway. It has created a database of “quantification resources,” which is basically a list of all of the methodologies published by companies, academics, government agencies, and international standards organizations, for measuring different kinds of carbon removal. It also has a database of carbon removal policies, both those enacted and proposed. Eventually, Khan plans to have them link out to each other, so you can see which standards underpin which policies.
Khan wants CRSI to be a go-to resource for policymakers and agency staff to ensure that carbon removal programs actually result in climate benefits. “We are fundamentally a mission organization,” she told me. “We believe that carbon removal is a tool for climate justice. Justice requires accountability, and in carbon removal, that means knowing how to count the carbon. We want to make sure that if we're putting public dollars into these policies, that they are backed by the ability to actually measure the carbon.”
Khan isn’t the only one whose thinking on standards has shifted toward a government-led approach. Burns, who also signed the letter, told me he’s seeing more carbon removal companies pushing for a compliance market, where the government requires polluting businesses to buy carbon removal. “They would like to both have government standards that would provide more confidence, for example, to investors,” he said, “and they would like government mandates that generate more demand.”
Freya Chay is the program lead at the nonprofit Carbon Plan, which spearheaded the letter. She told me many in the industry are now thinking about carbon removal programs that don’t revolve around selling credits at all, and therefore may have very different measurement and verification needs.
One of CRSI’s first projects is an illustrative example. Imagine if the Department of Agriculture developed a program to help farmers restore the pH of soils that have gotten too acidic, by adding basalt — a mineral that also happens to capture CO2 from the atmosphere as it dissolves. Today, carbon removal companies that sell carbon credits based on this process are taking hundreds of soil samples to measure the outcomes. The USDA likely wouldn’t need that level of precision — the captured CO2 is a co-benefit, not the entire point of the program — but “at some point you probably do want to know if you removed carbon through this policy,” said Khan. CRSI is working on figuring out how you would do that.
Similarly, we might see the development of building codes that encourage the use of concrete cured with CO2 from the atmosphere, or waste management regulations that govern the injection of carbon-rich organic waste into underground storage wells. Bigger picture, the U.S. will eventually have to measure and report how much carbon removal it’s doing across all of these little programs as part of its obligation under the Paris Agreement.
In many of these cases, those setting the rules won’t be experts in carbon removal science. “They’re going to need technical expertise,” said Khan. “We want to make sure that when they are doing that work, they have access to all of the relevant information, and that it’s organized in a way that’s legible for the expertise that they already have.”
Shuchi Talati, the former chief of staff in the office of fossil energy and carbon management at the Department of Energy, told me that having this kind of centralized resource would definitely have been useful. “The private sector has a lot of power right now in setting standards because the public sector doesn’t have the capacity,” she said. And since the field is so diverse, efforts are spread across a bunch of different agencies that don’t always talk to each other. Talati sits on the board of CRSI, and for her, the focus on government is not just about helping carbon removal scale.
“If we’re allowing the private sector to set standards and norms — and maybe they’re fine right now — but if we continue to let that happen, I can see the actual climate benefit of CDR slipping away,” Talati said. “That’s really where I see Anu’s organization fit in, where we are trying to set standards and norms from this core, foundational principle of a public good.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The fourth-generation gas-cooled reactor company ZettaJoule is setting up shop at an unnamed university.
The appeal of next-generation nuclear technology is simple. Unlike the vast majority of existing reactors that use water, so-called fourth-generation units use coolants such as molten salt, liquid metal, or gases that can withstand intense heat such as helium. That allows the machines to reach and maintain the high temperatures necessary to decarbonize industrial processes, which currently only fossil fuels are able to reach.
But the execution requirements of these advanced reactors are complex, making skepticism easy to understand. While the U.S., Germany, and other countries experimented with fourth-generation reactors in earlier decades, there is only one commercial unit in operation today. That’s in China, arguably the leader in advanced nuclear, which hooked up a demonstration model of a high-temperature gas-cooled reactor to its grid two years ago, and just approved building another project in September.
Then there’s Japan, which has been operating its own high-temperature gas-cooled reactor for 27 years at a government research site in Ibaraki Prefecture, about 90 minutes north of Tokyo by train. Unlike China’s design, it’s not a commercial power reactor. Also unlike China’s design, it’s coming to America.
Heatmap has learned that ZettaJoule, an American-Japanese startup led by engineers who worked on that reactor, is now coming out of stealth and laying plans to build its first plant in Texas.
For months, the company has quietly staffed up its team of American and Japanese executives, including a former U.S. Nuclear Regulatory Commission official and a high-ranking ex-administrator from the industrial giant Mitsubishi. It’s now preparing to decamp from its initial home base in Rockville, Maryland, to the Lone Star State as it prepares to announce its debut project at an as-yet-unnamed university in Texas.
“We haven’t built a nuclear reactor in many, many decades, so you have only a handful of people who experienced the full cycle from design to operations,” Mitsuo Shimofuji, ZettaJoule’s chief executive, told me. “We need to complete this before they retire.”
That’s where the company sees its advantage over rivals in the race to build the West’s first commercial high-temperature gas reactor, such as Amazon-backed X-energy or Canada’s StarCore nuclear. ZettaJoule’s chief nuclear office, Kazuhiko Kunitomi, oversaw the construction of Japan’s research reactor in the 1990s. He’s considered Japan’s leading expert in high-temperature gas reactors.
“Our chief nuclear officer and some of our engineers are the only people in the Western world who have experience of the whole cycle from design to construction to operation of a high temperature gas reactor,” Shimofuji said.
Like X-energy’s reactor, ZettaJoule’s design is a small modular reactor. With a capacity of 30 megawatts of thermal output and 12 megawatts of electricity, the ZettaJoule reactor qualifies as a microreactor, a subcategory of SMR that includes anything 20 megawatts of electricity or less. Both companies’ reactors will also run on TRISO, a special kind of enriched uranium with cladding on each pellet that makes the fuel safer and more efficient at higher temperatures.
While X-energy’s debut project that Amazon is financing in Washington State is a nearly 1-gigawatt power station made up of at least a dozen of the American startup’s 80-megawatt reactors, ZettaJoule isn’t looking to generate electricity.
The first new reactor in Texas will be a research reactor, but the company’s focus is on producing heat. The reactor already working in Japan, which produces heat, demonstrates that the design can reach 950 degrees Celsius, roughly 25% higher than the operating temperature of China’s reactor.
The potential for use in industrial applications has begun to attract corporate partners. In a letter sent Monday to Ted Garrish, the U.S. assistant secretary of energy in charge of nuclear power — a copy of which I obtained — the U.S. subsidiary of the Saudi Arabian oil goliath Aramco urged the Trump administration to support ZettaJoule, and said that it would “consider their application to our operations” as the technology matures. ZettaJoule is in talks with at least two other multinational corporations.
The first new reactor ZettaJoule builds won’t be identical to the unit in Japan, Shimofuji said.
“We are going to modernize this reactor together with the Japanese and U.S. engineering partners,” he said. “The research reactor is robust and solid, but it’s over-engineered. What we want to do is use the safety basis but to make it more economic and competitive.”
Once ZettaJoule proves its ability to build and operate a new unit in Texas, the company will start exporting the technology back to Japan. The microreactor will be its first product line.
“But in the future, we can scale up to 20 times bigger,” Shimofuji said. “We can do 600 megawatts thermal and 300 megawatts electric.”
Another benefit ZettaJoule can tap into is the sweeping deal President Donald Trump brokered with Japanese Prime Minister Sanae Takaichi in October, which included hundreds of billions of dollars for new reactors of varying sizes, including the large-scale Westinghouse AP1000. That included financing to build GE Vernova Hitachi Nuclear Energy’s 300-megawatt BWRX-300, one of the West’s leading third-generation SMRs, which uses a traditional water-cooled design.
Unlike that unit, however, ZettaJoule’s micro-reactor is not a first-of-a-kind technology, said Chris Gadomski, the lead nuclear analyst at the consultancy BloombergNEF.
“It’s operated in Japan for a long, long time,” he told me. “So that second-of-a-kind is an attractive feature. Some of these companies have never operated a reactor. This one has done that.”
A similar dynamic almost played out with large-scale reactors more than two decades ago. In the late 1990s, Japanese developers built four of GE and Hitachi’s ABWR reactor, a large-scale unit with some of the key safety features that make the AP1000 stand out compared to its first- and second-generation predecessors. In the mid 2000s, the U.S. certified the design and planned to build a pair in South Texas. But the project never materialized, and America instead put its resources into Westinghouse’s design.
But the market is different today. Electricity demand is surging in the near term from data centers and in the long term from electrification of cars and industry. The need to curb fossil fuel consumption in the face of worsening climate change is more widely accepted than ever. And China’s growing dominance over nuclear energy has rattled officials from Tokyo to Washington.
“We need to deploy this as soon as possible to not lose the experienced people in Japan and the U.S.,” Shimofuji said. “In two or three years time, we will get a construction permit ideally. We are targeting the early 2030s.”
If every company publicly holding itself to that timeline is successful, the nuclear industry will be a crowded field. But as history shows, those with the experience to actually take a reactor from paper to concrete may have an advantage.
It’s now clear that 2026 will be big for American energy, but it’s going to be incredibly tense.
Over the past 365 days, we at The Fight have closely monitored numerous conflicts over siting and permitting for renewable energy and battery storage projects. As we’ve done so, the data center boom has come into full view, igniting a tinderbox of resentment over land use, local governance and, well, lots more. The future of the U.S. economy and the energy grid may well ride on the outcomes of the very same city council and board of commissioners meetings I’ve been reporting on every day. It’s a scary yet exciting prospect.
To bring us into the new year, I wanted to try something a little different. Readers ask me all the time for advice with questions like, What should I be thinking about right now? And, How do I get this community to support my project? Or my favorite: When will people finally just shut up and let us build things? To try and answer these questions and more, I wanted to give you the top five trends in energy development (and data centers) I’ll be watching next year.
The best thing going for American renewable energy right now is the AI data center boom. But the backlash against developing these projects is spreading incredibly fast.
Do you remember last week when I told you about a national environmental group calling for data center moratoria across the country? On Wednesday, Senator Bernie Sanders called for a nationwide halt to data center construction until regulations are put in place. The next day, the Working Families Party – a progressive third party that fields candidates all over the country for all levels of government – called for its candidates to run in opposition to new data center construction.
On the other end of the political spectrum, major figures in the American right wing have become AI skeptics critical of the nascent data center buildout, including Florida Governor Ron DeSantis, Missouri Senator Josh Hawley, and former Trump adviser Steve Bannon. These figures are clearly following the signals amidst the noise; I have watched in recent months as anti-data center fervor has spread across Facebook, with local community pages and groups once focused on solar and wind projects pivoting instead to focus on data centers in development near them.
In other words, I predicted just one month ago, an anti-data center political movement is forming across the country and quickly gaining steam (ironically aided by the internet and algorithms powered by server farms).
I often hear from the clean energy sector that the data center boom will be a boon for new projects. Renewable energy is the fastest to scale and construct, the thinking goes, and therefore will be the quickest, easiest, and most cost effective way to meet the projected spike in energy demand.
I’m not convinced yet that this line of thinking is correct. But I’m definitely sure that no matter the fuel type, we can expect a lot more transmission development, and nothing sparks a land use fight more easily than new wires.
Past is prologue here. One must look no further than the years-long fight over the Piedmont Reliability Project, a proposed line that would connect a nuclear power plant in Pennsylvania to data centers in Virginia by crossing a large swathe of Maryland agricultural land. I’ve been covering it closely since we put the project in our inaugural list of the most at-risk projects, and the conflict is now a clear blueprint.
In Wisconsin, a billion-dollar transmission project is proving this thesis true. I highly recommend readers pay close attention to Port Washington, where the release of fresh transmission line routes for a massive new data center this week has aided an effort to recall the city’s mayor for supporting the project. And this isn’t even an interstate project like Piedmont.
While I may not be sure of the renewable energy sector’s longer-term benefits from data center development, I’m far more confident that this Big Tech land use backlash is hitting projects right now.
The short-term issue for renewables developers is that opponents of data centers use arguments and tactics similar to those deployed by anti-solar and anti-wind advocates. Everyone fighting data centers is talking about ending development on farmland, avoiding changes to property values, stopping excess noise and water use, and halting irreparable changes to their ways of life.
Only one factor distinguishes data center fights from renewable energy fights: building the former potentially raises energy bills, while the latter will lower energy costs.
I do fear that as data center fights intensify nationwide, communities will not ban or hyper-regulate the server farms in particular, but rather will pass general bans that also block the energy projects that could potentially power them. Rural counties are already enacting moratoria on solar and wind in tandem with data centers – this is not new. But the problem will worsen as conflicts spread, and it will be incumbent upon the myriad environmentalists boosting data center opponents to not accidentally aid those fighting zero-carbon energy.
This week, the Bureau of Land Management approved its first solar project in months: the Libra facility in Nevada. When this happened, I received a flood of enthusiastic and optimistic emails and texts from sources.
We do not yet know whether the Libra approval is a signal of a thaw inside the Trump administration. The Interior Department’s freeze on renewables permitting decisions continues mostly unabated, and I have seen nothing to indicate that more decisions like this are coming down the pike. What we do know is that ahead of a difficult midterm election, the Trump administration faces outsized pressure to do more to address “affordability,” Democrats plan to go after Republicans for effectively repealing the Inflation Reduction Act and halting permits for solar and wind projects, and there’s a grand bargain to be made in Congress over permitting reform that rides on an end to the permitting freeze.
I anticipate that ahead of the election and further permitting talks in Congress, the Trump administration will mildly ease its chokehold on solar and wind permits because that is the most logical option in front of them. I do not think this will change the circumstances for more than a small handful of projects sited on federal lands that were already deep in the permitting process when Trump took power.
It’s impossible to conclude a conversation about next year’s project fights without ending on the theme that defined 2025: battery fire fears are ablaze, and they’ll only intensify as data centers demand excess energy storage capacity.
The January Moss Landing fire incident was a defining moment for an energy sector struggling to grapple with the effects of the Internet age. Despite bearing little resemblance to the litany of BESS proposals across the country, that one hunk of burning battery wreckage in California inspired countless communities nationwide to ban new battery storage outright.
There is no sign this trend will end any time soon. I expect data centers to only accelerate these concerns, as these facilities can also catch fire in ways that are challenging to address.
Plus a resolution for Vineyard Wind and more of the week’s big renewables fights.
1. Hopkins County, Texas – A Dallas-area data center fight pitting developer Vistra against Texas attorney general Ken Paxton has exploded into a full-blown political controversy as the power company now argues the project’s developer had an improper romance with a city official for the host community.
2. La Plata County, Colorado – This county has just voted to extend its moratorium on battery energy storage facilities over fire fears.
3. Dane County, Wisconsin – The city of Madison appears poised to ban data centers for at least a year.
4. Goodhue County, Minnesota – The Minnesota Center for Environmental Advocacy, a large environmentalist organization in the state, is suing to block a data center project in the small city of Pine Island.
5. Hall County, Georgia – A data center has been stopped down South, at least for now.
6. Dukes County, Massachusetts – The fight between Vineyard Wind and the town of Nantucket seems to be over.