Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Jennifer Wilcox on Building the First U.S. Carbon Removal Office

Now back at the University of Pennsylvania, she talks to Heatmap about community engagement, gaps in the decarbonization market, and goats.

Jen Wilcox.
Heatmap Illustration/Getty Images, Climeworks, Tiffy3/Wikimedia Commons

In November of 2020, Jennifer Wilcox had just moved to Philadelphia and was preparing to start a new chapter in her career as a tenured “Presidential Distinguished Professor” at the University of Pennsylvania. Then she got the call: Wilcox was asked to join the incoming Biden administration as the principal deputy assistant secretary for the Office of Fossil Energy, a division of the Department of Energy.

Wilcox had never even heard of the Office of Fossil Energy and was somewhat uneasy about the title. A chemical engineer by training, Wilcox had dedicated her work to climate solutions. She was widely known for having written the first textbook on carbon capture, published in 2012, and for her trailblazing research into removing carbon dioxide from the atmosphere. With Penn’s blessing, she decided to take the job. And in the just over three years she was in office, she may have altered the course of U.S. climate action forever.

First, Wilcox led a total transformation of the department to align it with the Biden administration’s climate goals. She started by arranging 15-minute meetings with each of the nearly 150 employees who worked with her at the D.C. office to understand their perspectives on their work, whether they were happy, and their fears and challenges. She admits she can be intense.

“I took all that information, and I sat on it with many weekends and a blank piece of paper and a pencil and drew crazy diagrams,” she told me, trying to funnel everyone’s feedback into a new vision for the department.

Previously, the Office of Fossil Energy’s primary function was to support research into oil, gas, and coal extraction and use. Wilcox flipped the mission on its head, reorganizing the department into one that would support research, development, and deployment of solutions that reduced dependency on those resources and minimized their environmental impacts. By July, she had codified that mission in a new name — the Office of Fossil Energy and Carbon Management.

Wilcox maxed out her leave this spring. I caught up with her about a week after she left the DOE, as she was picking up where she left off — preparing for her first semester as a professor of chemical engineering and energy policy at Penn. She’s also starting a new side gig as chief scientist at Isometric, a carbon credit certification company that’s trying to improve trust in carbon removal measurement and verification through rigorous standards and transparency.

I asked her to reflect on her time at the Department of Energy, the changes she oversaw, and what she’s looking to do next. Our conversation has been edited for length and clarity.

When was your last day at DOE? Did you leave because you had an obligation to come back to Penn?

My last day was Friday, May 31, so just a week or so ago. Typically, when you’re in an academic tenured position, you can have a maximum of a two-year leave. Within the first year of my appointment at DOE, the Bipartisan Infrastructure Law went through, and then in the second year, the IRA went through — the Inflation Reduction Act. And I was like, this is big stuff. It felt like just a defining moment — in my career, but also in terms of climate legislation. And I thought, how could I possibly leave now? So I went back to Penn and I wrote, I thought, a pretty thoughtful letter of the impact that I could have if I could stay just a year and a half longer. And they said yes.

Could you share the story of how you were asked to go work for the department in the first place?

Sure, it’s pretty funny. Something that many people don’t know is we have a small farm — we had 22 acres in Massachusetts, and goats and a pig and chickens and oh my goodness. Penn was like, “We’ll move your goats, too,” and so we moved everybody. And here I am at the kitchen table amidst boxes, and the goats are outside, and I’m on my laptop, and I get this email from the Biden-Harris transition team. I was like, ain’t nobody got time for that. That’s spam. Delete! And then a couple days go by and I get another one, and I was like, come on. Is this real? And I forwarded it to my husband. He’s an ER doctor, and he’s like, “Honey, that’s real. You have to respond!” And so I sent my CV.

One of the first things you did was rename the department. How did that happen?

When I came in, it was really early days of, okay, net zero by 2050, and there was a question of, what does that mean for our office? Should this office exist in a net zero world?I knew that I was being recruited to think about reshaping, rethinking the portfolio.

We only had two R&D offices at the time. One was called Oil and Gas — we renamed that Office of Resource Sustainability. The other was literally the Office of Coal. What I decided to do was take that program and move it over. That whole office is all about, if you’re choosing to extract energy resources from the Earth, how do you do it in a way that’s minimal impact?

Now, what’s left is how you manage the pollution of how we use fossil fuels — that’s the carbon dioxide. And so we built out a whole new division on carbon removal. We teased out a whole program on hydrogen, and then we also separated out carbon conversion into its own division, and then carbon transport and storage. And so rather than one program focused on carbon, we had five, which is pretty cool. I mean, the amount that I was empowered and supported — and by the way, we got it all through without a single pushback, in nine months. So that was huge.

How would you characterize how the field changed from the time that you entered the office until now? Have research questions changed? Have policy priorities changed?

I think things are starting to change. One of the things from these last few years of having the resources that have started to become mobilized, it’s helping us to recognize where the gaps really are. When you have money to be able to put out for certain topic areas, you get to see who’s going to apply, and who applies gives you an indication of where the technology is at and how much of it’s ready.

For instance, if you look at the $3.5 billion for direct air capture hubs, we had to write the funding opportunity announcement to meet industry where they’re at. There’s only a couple of companies that are really even at a stage where they can start to think about demonstration on the tens of thousands of tons of removal, let alone a million tons per year.

Some of the gaps that we saw were, in direct air capture, making sure that there’s enough companies that are supported to be able to get us to the scale that we need to. And then for the other approaches to carbon removal, making sure that if we want these projects to be durable, in terms of carbon removed on a time scale that impacts climate, we need to figure out how to quantify the net carbon that’s removed.

And then one significant gap that we saw that we are trying to fill with this funding: When we think about corporations and net zero pledges, a lot of times the carbon removal purchasing is associated with Scope 3 emissions that companies don’t have the ability to control. These are supply chains. It could be paper, it could be fuel, food, glass, cement, steel. And so looking at that whole sector, it’s about 10 different industrial sectors that we need to figure out how to decarbonize. If we can think about decarbonizing these supply chains, it’ll take some of the pressure off of the carbon removals to counterbalance those.

The last piece that I feel like gets forgotten is, in the infrastructure law, we had $2.5 billion for building out geologic storage. That’s an issue because you can do the carbon capture, but the big question is, where are you going to put it? And can you get it from point A to point B? We have a whole program called CarbonSAFE that essentially shepherds the industry through the process, starting with characterization all the way to a class six permit from EPA. Building that capacity out means that’s one less thing that industry has to worry about as they’re looking at carbon capture.

During your time there, the department was interfacing with hundreds of researchers and startup founders who were all trying to get new projects or companies off the ground. I’m curious, what are some of the most common misunderstandings you saw from applicants?

There’s a couple of things, but one that stands out — and maybe this is because I have a background in academia — there’s a lot of technologies out there that are actually pretty far along, especially in point source capture [technologies that capture carbon from the smokestacks of industrial facilities before it enters the atmosphere]. Yet, at universities, they’re still trying to develop the next solvent or solid sorbent. It’s like, we can stop doing that.

Where the R&D comes in is actually getting data over a long period of time. How does the material behave? How can we recycle it and reuse it over and over again? How can we design it in a way that reduces NOx, SOx pollution, particulate matter, making the air cleaner? But it’s not about how do we just develop a new technology, because there’s a lot out there.

It seems like one of the hardest things the department was trying to do under your leadership was to strengthen its work on community engagement and community benefits — hard because many advocates for fenceline communities are so skeptical of the solutions you were working on. How did you navigate that tension?

Well, one thing is, I know what I don’t know, and I’m usually pretty willing to say what I’m good at and what I’m not good at. In the early days, I knew that this was going to be a challenge for our office and so I recruited a social scientist: Holly Jean Buck, she’s a professor at the University of Buffalo. We brought Holly in to help us develop some of the language around … it started off with community benefits, but some of our investments don’t always lead to benefits, so let’s be honest, right? And so what we wanted to think about is, what are the societal considerations and impacts of our investments? We ended up recruiting a few others, and now we have a team that’s focused on domestic engagement, and also communications and outreach.

What do you think it could mean for some of what you’ve accomplished and other things you’ve set in motion if Biden is not reelected?

I feel pretty good about what we’ve put in place, that it’s sustainable. The other thing about what I saw is that industry is really leaning in on doing these things. The low-carbon supply chains — a lot of glassmakers, cement facilities — are very interested in improving energy efficiency, are interested in carbon capture or using hydrogen as a heat source. And so what we have done is really looking at making sure they’re economic. All of these efforts that we’ve put in place are extremely bipartisan, and they’re essentially just supporting industry in a way such that they’re achievable because they’re economic.

Let’s talk a little bit about what’s next. Why did you want to work with Isometric? What are you going to be doing there?

When I was at DOE, from the beginning, we were looking at, you know, there’s a lot of the carbon removal portfolio where we don’t have the rigor in place to be able to determine the durability of the removals, the additionality of them, the time scale on which the carbon is actually removed, quantifying net removed. And so we started a commercialization effort, leveraging our national labs to help us to develop the framework. Isometric is working toward establishing rigorous frameworks, and I’m hoping to leverage the efforts ongoing at DOE — and with transparency, so that others may follow, which could lead to more durable removals and greater impact at the end of the day.

What about on the academic side of your career. Where do you plan to focus your research?

Some of the work that we were doing, or the team has been continuing to do while I’m at DOE, is mineralization, looking at different waste feedstocks that have alkalinity [a property that’s useful for carbon removal], like magnesium and calcium. One of the things that we’re going to focus a little bit more on is asking the question of, what else is there? You know, if there’s rare earth elements or critical minerals that could be used for clean energy technologies, EV motors, magnets for wind turbines. And so, I’m really excited about looking at these materials and seeing what value is there.

I’m also really excited about helping with the measurement and quantification of some of the more natural systems of removal, like forests. One of the new majors at Penn is artificial intelligence. I think there’s an opportunity right now to think about, how can we take data, whether it’s from drones or whether it’s from Lidar and airplanes or satellite data, bringing it together in an integrated way again, so that we have more robust databases that are also transparent.

There’s so many debates going on around carbon removal right now, and it feels like they often come down to philosophical differences. Are these debates important? Or do we just need to decide what we’re going to do and then reevaluate it later?

We’re not in a position anymore to think we can just decarbonize and not do greenhouse gas removals. We know we need to do both. And so I think that there are some kind of “no regrets” things that we can do — opportunities, as we’re scaling up both in the near term, to think about them in a coordinated way. In communities that don’t have solar today, imagine you have a direct air capture facility going in, and then they’re bringing clean energy that they’re using for direct air capture, but they’re bringing it for the first time ever to a community that wouldn’t otherwise have access.

But it really is regional. I think it’s regional in that there’s limited resources in any given region, whether it’s low-carbon energy, land, clean water, even geologic pore space. You have it in some states and not others. And so we really need to look at those resources and always prioritize decarbonizing, but recognize that it’s not necessarily one or the other.

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
A destroyed house and a blueprint.
Heatmap Illustration/Getty Images

Recovering from the Los Angeles wildfires will be expensive. Really expensive. Insurance analysts and banks have already produced a wide range of estimates of both what insurance companies will pay out and overall economic loss. AccuWeatherhas put out an eye-catching preliminary figure of $52 billion to $57 billion for economic losses, with the service’s chief meteorologist saying that the fires have the potential to “become the worst wildfire in modern California history based on the number of structures burned and economic loss.” On Thursday, J.P. Morgan doubled its previous estimate for insured losses to $20 billion, with an economic loss figure of $50 billion — about the gross domestic product of the country of Jordan.

The startlingly high loss figures from a fire that has only lasted a few days and is (relatively) limited in scope show just how distinctly devastating an urban fire can be. Enormous wildfires thatcover millions of acres like the 2023 Canadian wildfires can spew ash and particulate matter all over the globe and burn for months, darkening skies and clogging airways in other countries. And smaller — and far deadlier fires — than those still do not produce the same financial roll.

Keep reading...Show less
Green
Climate

Why the L.A. Fires Are Exceptionally Hard to Fight

Suburban streets, exploding pipes, and those Santa Ana winds, for starters.

Firefighters on Sunset Boulevard.
Heatmap Illustration/Getty Images

A fire needs three things to burn: heat, fuel, and oxygen. The first is important: At some point this week, for a reason we have yet to discover and may never will, a piece of flammable material in Los Angeles County got hot enough to ignite. The last is essential: The resulting fires, which have now burned nearly 29,000 acres, are fanned by exceptionally powerful and dry Santa Ana winds.

But in the critical days ahead, it is that central ingredient that will preoccupy fire managers, emergency responders, and the public, who are watching their homes — wood-framed containers full of memories, primary documents, material wealth, sentimental heirlooms — transformed into raw fuel. “Grass is one fuel model; timber is another fuel model; brushes are another — there are dozens of fuel models,” Bobbie Scopa, a veteran firefighter and author of the memoir Both Sides of the Fire Line, told me. “But when a fire goes from the wildland into the urban interface, you’re now burning houses.”

Keep reading...Show less
Yellow
Climate

What Started the Fires in Los Angeles?

Plus 3 more outstanding questions about this ongoing emergency.

Los Angeles.
Heatmap Illustration/Getty Images

As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Thursday, a question lingered in the background: What caused the fires in the first place?

Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.

Keep reading...Show less
Green