You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Now back at the University of Pennsylvania, she talks to Heatmap about community engagement, gaps in the decarbonization market, and goats.
In November of 2020, Jennifer Wilcox had just moved to Philadelphia and was preparing to start a new chapter in her career as a tenured “Presidential Distinguished Professor” at the University of Pennsylvania. Then she got the call: Wilcox was asked to join the incoming Biden administration as the principal deputy assistant secretary for the Office of Fossil Energy, a division of the Department of Energy.
Wilcox had never even heard of the Office of Fossil Energy and was somewhat uneasy about the title. A chemical engineer by training, Wilcox had dedicated her work to climate solutions. She was widely known for having written the first textbook on carbon capture, published in 2012, and for her trailblazing research into removing carbon dioxide from the atmosphere. With Penn’s blessing, she decided to take the job. And in the just over three years she was in office, she may have altered the course of U.S. climate action forever.
First, Wilcox led a total transformation of the department to align it with the Biden administration’s climate goals. She started by arranging 15-minute meetings with each of the nearly 150 employees who worked with her at the D.C. office to understand their perspectives on their work, whether they were happy, and their fears and challenges. She admits she can be intense.
“I took all that information, and I sat on it with many weekends and a blank piece of paper and a pencil and drew crazy diagrams,” she told me, trying to funnel everyone’s feedback into a new vision for the department.
Previously, the Office of Fossil Energy’s primary function was to support research into oil, gas, and coal extraction and use. Wilcox flipped the mission on its head, reorganizing the department into one that would support research, development, and deployment of solutions that reduced dependency on those resources and minimized their environmental impacts. By July, she had codified that mission in a new name — the Office of Fossil Energy and Carbon Management.
Wilcox maxed out her leave this spring. I caught up with her about a week after she left the DOE, as she was picking up where she left off — preparing for her first semester as a professor of chemical engineering and energy policy at Penn. She’s also starting a new side gig as chief scientist at Isometric, a carbon credit certification company that’s trying to improve trust in carbon removal measurement and verification through rigorous standards and transparency.
I asked her to reflect on her time at the Department of Energy, the changes she oversaw, and what she’s looking to do next. Our conversation has been edited for length and clarity.
When was your last day at DOE? Did you leave because you had an obligation to come back to Penn?
My last day was Friday, May 31, so just a week or so ago. Typically, when you’re in an academic tenured position, you can have a maximum of a two-year leave. Within the first year of my appointment at DOE, the Bipartisan Infrastructure Law went through, and then in the second year, the IRA went through — the Inflation Reduction Act. And I was like, this is big stuff. It felt like just a defining moment — in my career, but also in terms of climate legislation. And I thought, how could I possibly leave now? So I went back to Penn and I wrote, I thought, a pretty thoughtful letter of the impact that I could have if I could stay just a year and a half longer. And they said yes.
Could you share the story of how you were asked to go work for the department in the first place?
Sure, it’s pretty funny. Something that many people don’t know is we have a small farm — we had 22 acres in Massachusetts, and goats and a pig and chickens and oh my goodness. Penn was like, “We’ll move your goats, too,” and so we moved everybody. And here I am at the kitchen table amidst boxes, and the goats are outside, and I’m on my laptop, and I get this email from the Biden-Harris transition team. I was like, ain’t nobody got time for that. That’s spam. Delete! And then a couple days go by and I get another one, and I was like, come on. Is this real? And I forwarded it to my husband. He’s an ER doctor, and he’s like, “Honey, that’s real. You have to respond!” And so I sent my CV.
One of the first things you did was rename the department. How did that happen?
When I came in, it was really early days of, okay, net zero by 2050, and there was a question of, what does that mean for our office? Should this office exist in a net zero world?I knew that I was being recruited to think about reshaping, rethinking the portfolio.
We only had two R&D offices at the time. One was called Oil and Gas — we renamed that Office of Resource Sustainability. The other was literally the Office of Coal. What I decided to do was take that program and move it over. That whole office is all about, if you’re choosing to extract energy resources from the Earth, how do you do it in a way that’s minimal impact?
Now, what’s left is how you manage the pollution of how we use fossil fuels — that’s the carbon dioxide. And so we built out a whole new division on carbon removal. We teased out a whole program on hydrogen, and then we also separated out carbon conversion into its own division, and then carbon transport and storage. And so rather than one program focused on carbon, we had five, which is pretty cool. I mean, the amount that I was empowered and supported — and by the way, we got it all through without a single pushback, in nine months. So that was huge.
How would you characterize how the field changed from the time that you entered the office until now? Have research questions changed? Have policy priorities changed?
I think things are starting to change. One of the things from these last few years of having the resources that have started to become mobilized, it’s helping us to recognize where the gaps really are. When you have money to be able to put out for certain topic areas, you get to see who’s going to apply, and who applies gives you an indication of where the technology is at and how much of it’s ready.
For instance, if you look at the $3.5 billion for direct air capture hubs, we had to write the funding opportunity announcement to meet industry where they’re at. There’s only a couple of companies that are really even at a stage where they can start to think about demonstration on the tens of thousands of tons of removal, let alone a million tons per year.
Some of the gaps that we saw were, in direct air capture, making sure that there’s enough companies that are supported to be able to get us to the scale that we need to. And then for the other approaches to carbon removal, making sure that if we want these projects to be durable, in terms of carbon removed on a time scale that impacts climate, we need to figure out how to quantify the net carbon that’s removed.
And then one significant gap that we saw that we are trying to fill with this funding: When we think about corporations and net zero pledges, a lot of times the carbon removal purchasing is associated with Scope 3 emissions that companies don’t have the ability to control. These are supply chains. It could be paper, it could be fuel, food, glass, cement, steel. And so looking at that whole sector, it’s about 10 different industrial sectors that we need to figure out how to decarbonize. If we can think about decarbonizing these supply chains, it’ll take some of the pressure off of the carbon removals to counterbalance those.
The last piece that I feel like gets forgotten is, in the infrastructure law, we had $2.5 billion for building out geologic storage. That’s an issue because you can do the carbon capture, but the big question is, where are you going to put it? And can you get it from point A to point B? We have a whole program called CarbonSAFE that essentially shepherds the industry through the process, starting with characterization all the way to a class six permit from EPA. Building that capacity out means that’s one less thing that industry has to worry about as they’re looking at carbon capture.
During your time there, the department was interfacing with hundreds of researchers and startup founders who were all trying to get new projects or companies off the ground. I’m curious, what are some of the most common misunderstandings you saw from applicants?
There’s a couple of things, but one that stands out — and maybe this is because I have a background in academia — there’s a lot of technologies out there that are actually pretty far along, especially in point source capture [technologies that capture carbon from the smokestacks of industrial facilities before it enters the atmosphere]. Yet, at universities, they’re still trying to develop the next solvent or solid sorbent. It’s like, we can stop doing that.
Where the R&D comes in is actually getting data over a long period of time. How does the material behave? How can we recycle it and reuse it over and over again? How can we design it in a way that reduces NOx, SOx pollution, particulate matter, making the air cleaner? But it’s not about how do we just develop a new technology, because there’s a lot out there.
It seems like one of the hardest things the department was trying to do under your leadership was to strengthen its work on community engagement and community benefits — hard because many advocates for fenceline communities are so skeptical of the solutions you were working on. How did you navigate that tension?
Well, one thing is, I know what I don’t know, and I’m usually pretty willing to say what I’m good at and what I’m not good at. In the early days, I knew that this was going to be a challenge for our office and so I recruited a social scientist: Holly Jean Buck, she’s a professor at the University of Buffalo. We brought Holly in to help us develop some of the language around … it started off with community benefits, but some of our investments don’t always lead to benefits, so let’s be honest, right? And so what we wanted to think about is, what are the societal considerations and impacts of our investments? We ended up recruiting a few others, and now we have a team that’s focused on domestic engagement, and also communications and outreach.
What do you think it could mean for some of what you’ve accomplished and other things you’ve set in motion if Biden is not reelected?
I feel pretty good about what we’ve put in place, that it’s sustainable. The other thing about what I saw is that industry is really leaning in on doing these things. The low-carbon supply chains — a lot of glassmakers, cement facilities — are very interested in improving energy efficiency, are interested in carbon capture or using hydrogen as a heat source. And so what we have done is really looking at making sure they’re economic. All of these efforts that we’ve put in place are extremely bipartisan, and they’re essentially just supporting industry in a way such that they’re achievable because they’re economic.
Let’s talk a little bit about what’s next. Why did you want to work with Isometric? What are you going to be doing there?
When I was at DOE, from the beginning, we were looking at, you know, there’s a lot of the carbon removal portfolio where we don’t have the rigor in place to be able to determine the durability of the removals, the additionality of them, the time scale on which the carbon is actually removed, quantifying net removed. And so we started a commercialization effort, leveraging our national labs to help us to develop the framework. Isometric is working toward establishing rigorous frameworks, and I’m hoping to leverage the efforts ongoing at DOE — and with transparency, so that others may follow, which could lead to more durable removals and greater impact at the end of the day.
What about on the academic side of your career. Where do you plan to focus your research?
Some of the work that we were doing, or the team has been continuing to do while I’m at DOE, is mineralization, looking at different waste feedstocks that have alkalinity [a property that’s useful for carbon removal], like magnesium and calcium. One of the things that we’re going to focus a little bit more on is asking the question of, what else is there? You know, if there’s rare earth elements or critical minerals that could be used for clean energy technologies, EV motors, magnets for wind turbines. And so, I’m really excited about looking at these materials and seeing what value is there.
I’m also really excited about helping with the measurement and quantification of some of the more natural systems of removal, like forests. One of the new majors at Penn is artificial intelligence. I think there’s an opportunity right now to think about, how can we take data, whether it’s from drones or whether it’s from Lidar and airplanes or satellite data, bringing it together in an integrated way again, so that we have more robust databases that are also transparent.
There’s so many debates going on around carbon removal right now, and it feels like they often come down to philosophical differences. Are these debates important? Or do we just need to decide what we’re going to do and then reevaluate it later?
We’re not in a position anymore to think we can just decarbonize and not do greenhouse gas removals. We know we need to do both. And so I think that there are some kind of “no regrets” things that we can do — opportunities, as we’re scaling up both in the near term, to think about them in a coordinated way. In communities that don’t have solar today, imagine you have a direct air capture facility going in, and then they’re bringing clean energy that they’re using for direct air capture, but they’re bringing it for the first time ever to a community that wouldn’t otherwise have access.
But it really is regional. I think it’s regional in that there’s limited resources in any given region, whether it’s low-carbon energy, land, clean water, even geologic pore space. You have it in some states and not others. And so we really need to look at those resources and always prioritize decarbonizing, but recognize that it’s not necessarily one or the other.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Businesses were already bracing for a crash. Then came another 50% tariff on Chinese goods.
When I wrote Heatmap’s guide to driving less last year, I didn’t anticipate that a good motivation for doing so would be that every car in America was about to get a lot more expensive.
Then again, no one saw the breadth and depth of the Trump administration’s tariffs coming. “We would characterize this slate of tariffs as ‘worse than the worst case scenario,’” one group of veteran securities analysts wrote in a note to investors last week, a sentiment echoed across Wall Street and reflected in four days of stock market turmoil so far.
But if the economic downturn has renewed your interest in purchasing a bike or e-bike, you’ll want to act fast — and it may already be too late. Because Trump’s “Liberation Day” tariffs stack on top of his other tariffs and duties, the U.S. bicycle trade association PeopleForBikes calculated that beginning on April 9, the day the newest tariffs come into effect, the duty on e-bikes from China would be 79%, up from nothing at all under President Biden. The tariff on most non-electric bikes from China, meanwhile, would spike to 90%, up from 11% on January 1 of this year. Then on Tuesday, the White House announced that it would add another 50% tariff on China on top of that whole tariff stack, starting Wednesday, in retaliation for Beijing’s counter-tariffs.
Prior to the latest announcement, Jay Townley, a founding partner of the cycling industry consulting firm Human Powered Solutions, had told me that if the Trump administration actually followed through on a retaliatory 50% tariff on top of those duties, then “we’re out of business because nobody can afford to bring in a bicycle product at 100% or more in tariffs.”
It’s difficult to overstate how existential the tariffs are for the bicycle industry. Imports account for 97% of the bikes purchased in the United States, of which 87% come from China, making it “one of the most import-dependent and China-dependent industries in the U.S.,” according to a 2021 analysis by the Coalition for a Prosperous America, which advocates for trade-protectionist policies.
Many U.S. cycling brands have grumbled for years about America’s relatively generous de minimis exemption, a policy of waiving duties on items valued at less than $800. The loophole — which is what enables shoppers to buy dirt-cheap clothes from brands like Temu, Shein, and Alibaba — has also allowed for uncertified helmets and non-compliant e-bikes and e-bike batteries to flood the U.S. market. These batteries, which are often falsely marketed as meeting international safety standards, have been responsible for deadly e-bike fires in places like New York City. “A going retail for a good lithium-ion replacement battery for an e-bike is $800 to $1,000,” Townley said. “You look online, and you’ll see batteries at $350, $400, that come direct to you from China under the de minimis exemption.”
Cyclingnews reported recently that Robert Margevicius, the executive vice president of the American bicycle giant Specialized, had filed a complaint with the Trump administration over losing “billions in collectable tariffs” through the loophole. A spokesperson for Specialized defended Margevicius’ comment by calling it an “industry-wide position that is aligned with PeopleForBikes.” (Specialized did not respond to a request for clarification from Heatmap, though a spokesperson told Cyclingnews that de minimis imports permit “unsafe products and intellectual property violation.” PeopleForBikes’ general and policy counsel Matt Moore told me in an email that “we have supported reforming the way the U.S. treats low-value de minimis imports for several years.”)
Trump indeed axed China’s de minimis exemption as part of his April 2 tariffs — a small win for the U.S. bicycle brands. But any protection afforded by duties on cheap imported bikes and e-bikes will be erased by the damage from high tariffs imposed on China and other Asian countries. Fewer than 500,000 bicycles in a 10 million-unit market are even assembled in the United States, and essentially none is entirely manufactured here. “We do not know how to make a bike,” Townley told me flatly. Though a number of major U.S. brands employ engineers to design their bikes, when it comes to home-shoring manufacturing, “all of that knowledge resides in Taiwan, China, Vietnam. It isn’t here.”
In recent years, Chinese factories had become “very proficient at shipping goods from third-party countries” in order to avoid European anti-dumping duties, as well as leftover tariffs from Trump’s first term, Rick Vosper, an industry veteran and columnist at Bicycle Retailer and Industry News, told me. “Many Chinese companies built bicycle assembly plants in Vietnam specifically so the sourcing sticker would not say ‘made in China,’” he added. Of course, those bikes and component parts are now also subject to Trump’s tariffs, which are as high as 57% for Vietnam, 60% for Cambodia, and 43% for Taiwan for most bikes. (A potential added tariff on countries that import oil from Venezuela could bump them even higher.)
The tariffs could not come at a worse time for the industry. 2019 marked one of the slowest years for the U.S. specialty retail bike business in two decades, so when COVID hit — and suddenly everyone wanted a bicycle as a way of exercising and getting around — there was “no inventory to be had, but a huge influx of customers,” Vosper told me. In response, “major players put in huge increases in their orders.”
But by 2023, the COVID-induced demand had evaporated, leaving suppliers with hundreds of millions of dollars in inventory that they couldn’t move. Even by discounting wholesale prices below their own cost to make the product and offering buy-one-get-one deals, dealers couldn’t get the bikes off their hands. “All the people who wanted to buy a bike during COVID have bought a bike and are not ready to buy another one anytime soon,” Vosper said.
Going into 2025, many retailers were still dealing with the COVID-induced bicycle glut; Mike Blok, the founder of Brooklyn Carbon Bike Company in New York City, told me he could think of three or four tristate-area shops off the top of his head that have closed in recent months because they were sitting on inventory.
Blok, however, was cautiously optimistic about his own position. While he stressed that he isn’t a fan of the tariffs, he also largely sells pre-owned bikes. On the low end of the market, the tariffs will likely raise prices no more than about $15 or $20, which might not make much of a difference to consumer behavior. But for something like a higher-end carbon fiber bike, which can run $2,700 or higher and is almost entirely produced in Taiwan, the tariffs could mean an increase of hundreds of dollars for customers. “I think what that will mean for me is that more folks will be open to the pre-owned option,” Blok said, although he also anticipates his input costs for repairs and tuning will go up.
But there’s a bigger, and perhaps even more obvious, problem for bike retailers beyond their products becoming more expensive. “What I sell is not a staple good; people don’t need a bike,” Blok reminded me. “So as folks’ discretionary income diminishes because other things become more expensive, they’ll have less to spend on discretionary items.”
Townley, the industry consultant, confirmed that many major cycling brands had already seen the writing on the wall before Trump announced his tariffs and begun to pivot to re-sale. Bicycling Magazine, a hobbyist publication, is even promoting “buying used” as one of its “tips to help you save” under Trump’s tariffs. Savvy retailers might be able to pivot and rely on their service, customer loyalty, and re-sale businesses to stay afloat during the hard days ahead; Moore of PeopleForBikes also noted that “repair services may increase” as people look to fix what they already have.
And if you don’t have a bike or e-bike but were thinking about getting one as a way to lighten your car dependency, decarbonize your life, or just because they’re cool, “there are still good values to be found,” Moore went on. “Now is a great time to avoid a likely increase in prices.” Townley anticipated that depending on inventory, we’re likely 30 to 40 days away from seeing prices go up.
In the meantime, cycling organizations are scrambling to keep their members abreast of the coming changes. “PeopleForBikes is encouraging our members to contact their elected representatives about the very real impacts these tariffs will have on their companies and our industry,” Moore told me. The National Bicycle Dealers Association, a nonprofit supporting specialty bicycle retailers, has teamed up with the D.C.-based League of American Bicyclists, a ridership organization, to explore lobbying lawmakers for the first time in decades in the hopes that some might oppose the tariffs or explore carve-outs for the industry.
But Townley, whose firm Human Powered Solutions is assisting in NBDA’s effort, shared a grim conversation he had at a recent trade show in Las Vegas, where a new board member at a cycling organization had asked him “what can we do” about Trump’s tariffs.
“I said, ‘You’re out of time,” Townley recalled. “There isn’t much that can be done. All we can do is react.”
Any household savings will barely make a dent in the added costs from Trump’s many tariffs.
Donald Trump’s tariffs — the “fentanyl” levies on Canada, China, and Mexico, the “reciprocal” tariffs on nearly every country (and some uninhabited islands), and the global 10% tariff — will almost certainly cause consumer goods on average to get more expensive. The Yale Budget Lab estimates that in combination, the tariffs Trump has announced so far in his second term will cause prices to rise 2.3%, reducing purchasing power by $3,800 per year per household.
But there’s one very important consumer good that seems due to decline in price.
Trump administration officials — including the president himself — have touted cheaper oil to suggest that the economic response to the tariffs hasn’t been all bad. On Sunday, Secretary of the Treasury Scott Bessent told NBC, “Oil prices went down almost 15% in two days, which impacts working Americans much more than the stock market does.”
Trump picked up this line on Truth Social Monday morning. “Oil prices are down, interest rates are down (the slow moving Fed should cut rates!), food prices are down, there is NO INFLATION,” he wrote. He then spent the day posting quotes from Fox Business commentators echoing that idea, first Maria Bartiromo (“Rates are plummeting, oil prices are plummeting, deregulation is happening. President Trump is not going to bend”) then Charles Payne (“What we’re not talking about is, oil was $76, now it’s $65. Gasoline prices are going to plummet”).
But according to Neil Dutta, head of economic research at Renaissance Macro Research, pointing to falling oil prices as a stimulus is just another example of the “4D chess” theory, under which some market participants attribute motives to Trump’s trade policy beyond his stated goal of reducing trade deficits to as near zero (or surplus!) as possible.
Instead, oil markets are primarily “responding to the recession risk that comes from the tariff and the trade war,” Dutta told me. “That is the main story.” In short, oil markets see less global trade and less global production, and therefore falling demand for oil. The effect on household consumption, he said, was a “second order effect.”
It is true that falling oil prices will help “stabilize consumption,” Dutta told me (although they could also devastate America’s own oil industry). “It helps. It’ll provide some lift to real income growth for consumers, because they’re not spending as much on gasoline.” But “to fully offset the trade war effects, you basically need to get oil down to zero.”
That’s confirmed by some simple and extremely back of the envelope math. In 2023, households on average consumed about 700 gallons of gasoline per year, based on Energy Information Administration calculations that the average gasoline price in 2023 was $3.52, while the Bureau of Labor Statistics put average household gasoline expenditures at about $2,450.
Let’s generously assume that due to the tariffs and Trump’s regulatory and diplomatic efforts, gas prices drop from the $3.26 they were at on Monday, according to AAA, to $2.60, the average price in 2019. (GasBuddy petroleum analyst Patrick De Haanwrote Monday that the tariffs combined with OPEC+ production hikes could lead gas prices “to fall below $3 per gallon.”)
Let’s also assume that this drop in gas prices does not cause people to drive more or buy less fuel-efficient vehicles. In that case, those same 700 gallons cost the average American $1,820, which would generate annual savings of $630 on average per household. If we went to the lowest price since the Russian invasion of Ukraine, about $3 per gallon, total consumption of 700 gallons would cost a household about $2,100, saving $350 per household per year.
That being said, $1,820 is a pretty low level for annual gasoline consumption. In 2021, as the economy was recovering from the Covid recession and before gas prices popped, annual gasoline expenditures only got as low as $1,948; in 2020 — when oil prices dropped to literally negative dollars per barrel and gas prices got down to $1.85 a gallon — annual expenditures were just over $1,500.
In any case, if you remember the opening paragraphs of this story, even the most generous estimated savings would go nowhere near surmounting the overall rise in prices forecast by the Yale Budget Lab. $630 is less than $3,800! (JPMorgan has forecast a more mild increase in prices of 1% to 1.5%, but agrees that prices will likely rise and purchasing power will decline.)
But maybe look at it this way: You might be able to drive a little more than you expected to, even as your costs elsewhere are going up. Just please be careful! You don’t want to get into a bad accident and have to replace your car: New car prices are expected to rise by several thousand dollars due to Trump’s tariffs.
With cars about to get more expensive, it might be time to start tinkering.
More than a decade ago, when I was a young editor at Popular Mechanics, we got a Nissan Leaf. It was a big deal. The magazine had always kept long-term test cars to give readers a full report of how they drove over weeks and months. A true test of the first true production electric vehicle from a major car company felt like a watershed moment: The future was finally beginning. They even installed a destination charger in the basement of the Hearst Corporation’s Manhattan skyscraper.
That Leaf was a bit of a lump, aesthetically and mechanically. It looked like a potato, got about 100 miles of range, and delivered only 110 horsepower or so via its electric motors. This made the O.G. Leaf a scapegoat for Top Gear-style car enthusiasts eager to slander EVs as low-testosterone automobiles of the meek, forced upon an unwilling population of drivers. Once the rise of Tesla in the 2010s had smashed that paradigm and led lots of people to see electric vehicles as sexy and powerful, the original Leaf faded from the public imagination, a relic of the earliest days of the new EV revolution.
Yet lots of those cars are still around. I see a few prowling my workplace parking garage or roaming the streets of Los Angeles. With the faded performance of their old batteries, these long-running EVs aren’t good for much but short-distance city driving. Ignore the outdated battery pack for a second, though, and what surrounds that unit is a perfectly serviceable EV.
That’s exactly what a new brand of EV restorers see. Last week, car site The Autopiancovered DIYers who are scooping up cheap old Leafs, some costing as little as $3,000, and swapping in affordable Chinese-made 62 kilowatt-hour battery units in place of the original 24 kilowatt-hour units to instantly boost the car’s range to about 250 miles. One restorer bought a new battery on the Chinese site Alibaba for $6,000 ($4,500, plus $1,500 to ship that beast across the sea).
The possibility of the (relatively) simple battery swap is a longtime EV owner’s daydream. In the earlier days of the electrification race, many manufacturers and drivers saw simple and quick battery exchange as the solution for EV road-tripping. Instead of waiting half an hour for a battery to recharge, you’d swap your depleted unit for a fully charged one and be on your way. Even Tesla tested this approach last decade before settling for good on the Supercharger network of fast-charging stations.
There are still companies experimenting with battery swaps, but this technology lost. Other EV startups and legacy car companies that followed Nissan and Tesla into making production EVs embraced the rechargeable lithium-ion battery that is meant to be refilled at a fast-charging station and is not designed to be easily removed from the vehicle. Buy an electric vehicle and you’re buying a big battery with a long warranty but no clear plan for replacement. The companies imagine their EVs as something like a smartphone: It’s far from impossible to replace the battery and give the car a new life, but most people won’t bother and will simply move on to a new car when they can’t take the limitations of their old one anymore.
I think about this impasse a lot. My 2019 Tesla Model 3 began its life with a nominal 240 miles of range. Now that the vehicle has nearly six years and 70,000 miles on it, its maximum range is down to just 200, while its functional range at highway speed is much less than that. I don’t want to sink money into another vehicle, which means living with an EV’s range that diminishes as the years go by.
But what if, one day, I replaced its battery? Even if it costs thousands of dollars to achieve, a big range boost via a new battery would make an older EV feel new again, and at a cost that’s still far less than financing a whole new car. The thought is even more compelling in the age of Trump-imposed tariffs that will raise already-expensive new vehicles to a place that’s simply out of reach for many people (though new battery units will be heavily tariffed, too).
This is no simple weekend task. Car enthusiasts have been swapping parts and modifying gas-burning vehicles since the dawn of the automotive age, but modern EVs aren’t exactly made with the garage mechanic in mind. Because so few EVs are on the road, there is a dearth of qualified mechanics and not a huge population of people with the savvy to conduct major surgery on an electric car without electrocuting themselves. A battery-replacing owner would need to acquire not only the correct pack but also potentially adapters and other equipment necessary to make the new battery play nice with the older car. Some Nissan Leaf modifiers are finding their replacement packs aren’t exactly the same size, shape or weight, The Autopian says, meaning they need things like spacers to make the battery sit in just the right place.
A new battery isn’t a fix-all either. The motors and other electrical components wear down and will need to be replaced eventually, too. A man in Norway who drove his Tesla more than a million miles has replaced at least four battery packs and 14 motors, turning his EV into a sort of car of Theseus.
Crucially, though, EVs are much simpler, mechanically, than combustion-powered cars, what with the latter’s belts and spark plugs and thousands of moving parts. The car that surrounds a depleted battery pack might be in perfectly good shape to keep on running for thousands of miles to come if the owner were to install a new unit, one that could potentially give the EV more driving range than it had when it was new.
The battery swap is still the domain of serious top-tier DIYers, and not for the mildly interested or faint of heart. But it is a sign of things to come. A market for very affordable used Teslas is booming as owners ditch their cars at any cost to distance themselves from Elon Musk. Old Leafs, Chevy Bolts and other EVs from the 2010s can be had for cheap. The generation of early vehicles that came with an unacceptably low 100 to 150 miles of range would look a lot more enticing if you imagine today’s battery packs swapped into them. The possibility of a like-new old EV will look more and more promising, especially as millions of Americans realize they can no longer afford a new car.