You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Now back at the University of Pennsylvania, she talks to Heatmap about community engagement, gaps in the decarbonization market, and goats.
In November of 2020, Jennifer Wilcox had just moved to Philadelphia and was preparing to start a new chapter in her career as a tenured “Presidential Distinguished Professor” at the University of Pennsylvania. Then she got the call: Wilcox was asked to join the incoming Biden administration as the principal deputy assistant secretary for the Office of Fossil Energy, a division of the Department of Energy.
Wilcox had never even heard of the Office of Fossil Energy and was somewhat uneasy about the title. A chemical engineer by training, Wilcox had dedicated her work to climate solutions. She was widely known for having written the first textbook on carbon capture, published in 2012, and for her trailblazing research into removing carbon dioxide from the atmosphere. With Penn’s blessing, she decided to take the job. And in the just over three years she was in office, she may have altered the course of U.S. climate action forever.
First, Wilcox led a total transformation of the department to align it with the Biden administration’s climate goals. She started by arranging 15-minute meetings with each of the nearly 150 employees who worked with her at the D.C. office to understand their perspectives on their work, whether they were happy, and their fears and challenges. She admits she can be intense.
“I took all that information, and I sat on it with many weekends and a blank piece of paper and a pencil and drew crazy diagrams,” she told me, trying to funnel everyone’s feedback into a new vision for the department.
Previously, the Office of Fossil Energy’s primary function was to support research into oil, gas, and coal extraction and use. Wilcox flipped the mission on its head, reorganizing the department into one that would support research, development, and deployment of solutions that reduced dependency on those resources and minimized their environmental impacts. By July, she had codified that mission in a new name — the Office of Fossil Energy and Carbon Management.
Wilcox maxed out her leave this spring. I caught up with her about a week after she left the DOE, as she was picking up where she left off — preparing for her first semester as a professor of chemical engineering and energy policy at Penn. She’s also starting a new side gig as chief scientist at Isometric, a carbon credit certification company that’s trying to improve trust in carbon removal measurement and verification through rigorous standards and transparency.
I asked her to reflect on her time at the Department of Energy, the changes she oversaw, and what she’s looking to do next. Our conversation has been edited for length and clarity.
When was your last day at DOE? Did you leave because you had an obligation to come back to Penn?
My last day was Friday, May 31, so just a week or so ago. Typically, when you’re in an academic tenured position, you can have a maximum of a two-year leave. Within the first year of my appointment at DOE, the Bipartisan Infrastructure Law went through, and then in the second year, the IRA went through — the Inflation Reduction Act. And I was like, this is big stuff. It felt like just a defining moment — in my career, but also in terms of climate legislation. And I thought, how could I possibly leave now? So I went back to Penn and I wrote, I thought, a pretty thoughtful letter of the impact that I could have if I could stay just a year and a half longer. And they said yes.
Could you share the story of how you were asked to go work for the department in the first place?
Sure, it’s pretty funny. Something that many people don’t know is we have a small farm — we had 22 acres in Massachusetts, and goats and a pig and chickens and oh my goodness. Penn was like, “We’ll move your goats, too,” and so we moved everybody. And here I am at the kitchen table amidst boxes, and the goats are outside, and I’m on my laptop, and I get this email from the Biden-Harris transition team. I was like, ain’t nobody got time for that. That’s spam. Delete! And then a couple days go by and I get another one, and I was like, come on. Is this real? And I forwarded it to my husband. He’s an ER doctor, and he’s like, “Honey, that’s real. You have to respond!” And so I sent my CV.
One of the first things you did was rename the department. How did that happen?
When I came in, it was really early days of, okay, net zero by 2050, and there was a question of, what does that mean for our office? Should this office exist in a net zero world?I knew that I was being recruited to think about reshaping, rethinking the portfolio.
We only had two R&D offices at the time. One was called Oil and Gas — we renamed that Office of Resource Sustainability. The other was literally the Office of Coal. What I decided to do was take that program and move it over. That whole office is all about, if you’re choosing to extract energy resources from the Earth, how do you do it in a way that’s minimal impact?
Now, what’s left is how you manage the pollution of how we use fossil fuels — that’s the carbon dioxide. And so we built out a whole new division on carbon removal. We teased out a whole program on hydrogen, and then we also separated out carbon conversion into its own division, and then carbon transport and storage. And so rather than one program focused on carbon, we had five, which is pretty cool. I mean, the amount that I was empowered and supported — and by the way, we got it all through without a single pushback, in nine months. So that was huge.
How would you characterize how the field changed from the time that you entered the office until now? Have research questions changed? Have policy priorities changed?
I think things are starting to change. One of the things from these last few years of having the resources that have started to become mobilized, it’s helping us to recognize where the gaps really are. When you have money to be able to put out for certain topic areas, you get to see who’s going to apply, and who applies gives you an indication of where the technology is at and how much of it’s ready.
For instance, if you look at the $3.5 billion for direct air capture hubs, we had to write the funding opportunity announcement to meet industry where they’re at. There’s only a couple of companies that are really even at a stage where they can start to think about demonstration on the tens of thousands of tons of removal, let alone a million tons per year.
Some of the gaps that we saw were, in direct air capture, making sure that there’s enough companies that are supported to be able to get us to the scale that we need to. And then for the other approaches to carbon removal, making sure that if we want these projects to be durable, in terms of carbon removed on a time scale that impacts climate, we need to figure out how to quantify the net carbon that’s removed.
And then one significant gap that we saw that we are trying to fill with this funding: When we think about corporations and net zero pledges, a lot of times the carbon removal purchasing is associated with Scope 3 emissions that companies don’t have the ability to control. These are supply chains. It could be paper, it could be fuel, food, glass, cement, steel. And so looking at that whole sector, it’s about 10 different industrial sectors that we need to figure out how to decarbonize. If we can think about decarbonizing these supply chains, it’ll take some of the pressure off of the carbon removals to counterbalance those.
The last piece that I feel like gets forgotten is, in the infrastructure law, we had $2.5 billion for building out geologic storage. That’s an issue because you can do the carbon capture, but the big question is, where are you going to put it? And can you get it from point A to point B? We have a whole program called CarbonSAFE that essentially shepherds the industry through the process, starting with characterization all the way to a class six permit from EPA. Building that capacity out means that’s one less thing that industry has to worry about as they’re looking at carbon capture.
During your time there, the department was interfacing with hundreds of researchers and startup founders who were all trying to get new projects or companies off the ground. I’m curious, what are some of the most common misunderstandings you saw from applicants?
There’s a couple of things, but one that stands out — and maybe this is because I have a background in academia — there’s a lot of technologies out there that are actually pretty far along, especially in point source capture [technologies that capture carbon from the smokestacks of industrial facilities before it enters the atmosphere]. Yet, at universities, they’re still trying to develop the next solvent or solid sorbent. It’s like, we can stop doing that.
Where the R&D comes in is actually getting data over a long period of time. How does the material behave? How can we recycle it and reuse it over and over again? How can we design it in a way that reduces NOx, SOx pollution, particulate matter, making the air cleaner? But it’s not about how do we just develop a new technology, because there’s a lot out there.
It seems like one of the hardest things the department was trying to do under your leadership was to strengthen its work on community engagement and community benefits — hard because many advocates for fenceline communities are so skeptical of the solutions you were working on. How did you navigate that tension?
Well, one thing is, I know what I don’t know, and I’m usually pretty willing to say what I’m good at and what I’m not good at. In the early days, I knew that this was going to be a challenge for our office and so I recruited a social scientist: Holly Jean Buck, she’s a professor at the University of Buffalo. We brought Holly in to help us develop some of the language around … it started off with community benefits, but some of our investments don’t always lead to benefits, so let’s be honest, right? And so what we wanted to think about is, what are the societal considerations and impacts of our investments? We ended up recruiting a few others, and now we have a team that’s focused on domestic engagement, and also communications and outreach.
What do you think it could mean for some of what you’ve accomplished and other things you’ve set in motion if Biden is not reelected?
I feel pretty good about what we’ve put in place, that it’s sustainable. The other thing about what I saw is that industry is really leaning in on doing these things. The low-carbon supply chains — a lot of glassmakers, cement facilities — are very interested in improving energy efficiency, are interested in carbon capture or using hydrogen as a heat source. And so what we have done is really looking at making sure they’re economic. All of these efforts that we’ve put in place are extremely bipartisan, and they’re essentially just supporting industry in a way such that they’re achievable because they’re economic.
Let’s talk a little bit about what’s next. Why did you want to work with Isometric? What are you going to be doing there?
When I was at DOE, from the beginning, we were looking at, you know, there’s a lot of the carbon removal portfolio where we don’t have the rigor in place to be able to determine the durability of the removals, the additionality of them, the time scale on which the carbon is actually removed, quantifying net removed. And so we started a commercialization effort, leveraging our national labs to help us to develop the framework. Isometric is working toward establishing rigorous frameworks, and I’m hoping to leverage the efforts ongoing at DOE — and with transparency, so that others may follow, which could lead to more durable removals and greater impact at the end of the day.
What about on the academic side of your career. Where do you plan to focus your research?
Some of the work that we were doing, or the team has been continuing to do while I’m at DOE, is mineralization, looking at different waste feedstocks that have alkalinity [a property that’s useful for carbon removal], like magnesium and calcium. One of the things that we’re going to focus a little bit more on is asking the question of, what else is there? You know, if there’s rare earth elements or critical minerals that could be used for clean energy technologies, EV motors, magnets for wind turbines. And so, I’m really excited about looking at these materials and seeing what value is there.
I’m also really excited about helping with the measurement and quantification of some of the more natural systems of removal, like forests. One of the new majors at Penn is artificial intelligence. I think there’s an opportunity right now to think about, how can we take data, whether it’s from drones or whether it’s from Lidar and airplanes or satellite data, bringing it together in an integrated way again, so that we have more robust databases that are also transparent.
There’s so many debates going on around carbon removal right now, and it feels like they often come down to philosophical differences. Are these debates important? Or do we just need to decide what we’re going to do and then reevaluate it later?
We’re not in a position anymore to think we can just decarbonize and not do greenhouse gas removals. We know we need to do both. And so I think that there are some kind of “no regrets” things that we can do — opportunities, as we’re scaling up both in the near term, to think about them in a coordinated way. In communities that don’t have solar today, imagine you have a direct air capture facility going in, and then they’re bringing clean energy that they’re using for direct air capture, but they’re bringing it for the first time ever to a community that wouldn’t otherwise have access.
But it really is regional. I think it’s regional in that there’s limited resources in any given region, whether it’s low-carbon energy, land, clean water, even geologic pore space. You have it in some states and not others. And so we really need to look at those resources and always prioritize decarbonizing, but recognize that it’s not necessarily one or the other.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Almost half of developers believe it is “somewhat or significantly harder to do” projects on farmland, despite the clear advantages that kind of property has for harnessing solar power.
The solar energy industry has a big farm problem cropping up. And if it isn’t careful, it’ll be dealing with it for years to come.
Researchers at SI2, an independent research arm of the Solar Energy Industries Association, released a study of farm workers and solar developers this morning that said almost half of all developers believe it is “somewhat or significantly harder to do” projects on farmland, despite the clear advantages that kind of property has for harnessing solar power.
Unveiled in conjunction with RE+, the largest renewable energy conference in the U.S., the federally-funded research includes a warning sign that permitting is far and away the single largest impediment for solar developers trying to build projects on farmland. If this trend continues or metastasizes into a national movement, it could indefinitely lock developers out from some of the nation’s best land for generating carbon-free electricity.
“If a significant minority opposes and perhaps leads to additional moratoria, [developers] will lose a foot in the door for any future projects,” Shawn Rumery, SI2’s senior program director and the survey lead, told me. “They may not have access to that community any more because that moratoria is in place.”
SI2’s research comes on the heels of similar findings from Heatmap Pro. A poll conducted for the platform last month found 70% of respondents who had more than 50 acres of property — i.e. the kinds of large landowners sought after by energy developers — are concerned that renewable energy “takes up farmland,” by far the greatest objection among that cohort.
Good farmland is theoretically perfect for building solar farms. What could be better for powering homes than the same strong sunlight that helps grow fields of yummy corn, beans and vegetables? And there’s a clear financial incentive for farmers to get in on the solar industry, not just because of the potential cash in letting developers use their acres but also the longer-term risks climate change and extreme weather can pose to agriculture writ large.
But not all farmers are warming up to solar power, leading towns and counties across the country to enact moratoria restricting or banning solar and wind development on and near “prime farmland.” Meanwhile at the federal level, Republicans and Democrats alike are voicing concern about taking farmland for crop production to generate renewable energy.
Seeking to best understand this phenomena, SI2 put out a call out for ag industry representatives and solar developers to tell them how they feel about these two industries co-mingling. They received 355 responses of varying detail over roughly three months earlier this year, including 163 responses from agriculture workers, 170 from solar developers as well as almost two dozen individuals in the utility sector.
A key hurdle to development, per the survey, is local opposition in farm communities. SI2’s publicity announcement for the research focuses on a hopeful statistic: up to 70% of farmers surveyed said they were “open to large-scale solar.” But for many, that was only under certain conditions that allow for dual usage of the land or agrivoltaics. In other words, they’d want to be able to keep raising livestock, a practice known as solar grazing, or planting crops unimpeded by the solar panels.
The remaining percentage of farmers surveyed “consistently opposed large-scale solar under any condition,” the survey found.
“Some of the messages we got were over my dead body,” Rumery said.
Meanwhile a “non-trivial” number of solar developers reported being unwilling or disinterested in adopting the solar-ag overlap that farmers want due to the increased cost, Rumery said. While some companies expect large portions of their business to be on farmland in the future, and many who responded to the survey expect to use agrivoltaic designs, Rumery voiced concern at the percentage of companies unwilling to integrate simultaneous agrarian activities into their planning.
In fact, Rumery said some developers’ reticence is part of what drove him and his colleagues to release the survey while at RE+.
As we discussed last week, failing to address the concerns of local communities can lead to unintended consequences with industry-wide ramifications. Rumery said developers trying to build on farmland should consider adopting dual-use strategies and focus on community engagement and education to avoid triggering future moratoria.
“One of the open-ended responses that best encapsulated the problem was a developer who said until the cost of permitting is so high that it forces us to do this, we’re going to continue to develop projects as they are,” he said. “That’s a cold way to look at it.”
Meanwhile, who is driving opposition to solar and other projects on farmland? Are many small farm owners in rural communities really against renewables? Is the fossil fuel lobby colluding with Big Ag? Could building these projects on fertile soil really impede future prospects at crop yields?
These are big questions we’ll be tackling in far more depth in next week’s edition of The Fight. Trust me, the answers will surprise you.
Here are the most notable renewable energy conflicts over the past week.
1. Worcester County, Maryland –Ocean City is preparing to go to court “if necessary” to undo the Bureau of Ocean Energy Management’s approval last week of U.S. Wind’s Maryland Offshore Wind Project, town mayor Rick Meehan told me in a statement this week.
2. Magic Valley, Idaho – The Lava Ridge Wind Project would be Idaho’s biggest wind farm. But it’s facing public outcry over the impacts it could have on a historic site for remembering the impact of World War II on Japanese residents in the United States.
3. Kossuth County, Iowa – Iowa’s largest county – Kossuth – is in the process of approving a nine-month moratorium on large-scale solar development.
Here’s a few more hotspots I’m watching…
The most important renewable energy policies and decisions from the last few days.
Greenlink’s good day – The Interior Department has approved NV Energy’s Greenlink West power line in Nevada, a massive step forward for the Biden administration’s pursuit of more transmission.
States’ offshore muddle – We saw a lot of state-level offshore wind movement this past week… and it wasn’t entirely positive. All of this bodes poorly for odds of a kumbaya political moment to the industry’s benefit any time soon.
Chumash loophole – Offshore wind did notch one win in northern California by securing an industry exception in a large marine sanctuary, providing for farms to be built in a corridor of the coastline.
Here’s what else I’m watching …