You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
An age-old tension, resolved.

For as long as I’ve been an energy reporter, I’ve been asked a scoffing question by moderates and conservatives: If Democrats really cared about climate change, shouldn’t they embrace nuclear power?
It’s a fair question. Nuclear energy, after all, can produce vast amounts of electricity without emitting planet-warming greenhouse gas pollution. It already generates more zero-carbon electricity in America than wind turbines and solar panels do combined; unlike renewables, it can provide power all day and night, even when the sun isn’t shining and the wind isn’t blowing. The countries that have seen the largest year-over-year drops in carbon pollution — e.g. France — have generally done so by building a new fleet of nuclear reactors.
It’s also a factual question. For years, even as Democrats railed against fossil fuels, they dilly-dallied on nuclear issues. The party’s leaders in statehouses and legislative chambers around the country worked to shut down aging nuclear reactors or approved nuclear-skeptical regulators. President Barack Obama cheered next-generation nuclear in speeches, but appointed extremely nuclear-skeptical regulators to oversee the industry. (One of his first appointees to the Nuclear Regulatory Commission, Gregory Jaczko, has called for a global ban on nuclear energy since leaving the government.)
Even though nuclear reactors produced most of America’s zero-carbon electricity, they remained the, well, glowing-blue-haired step-child of America’s grid: Democrats regularly railed against fossil fuels, and they felt comfortable paying lip service to far-off atomic technologies, but they did not lavish nuclear with the unqualified support that they gave renewables. Instead, they let the nuclear industry slip into senescence. This mild toleration was punctuated by moments of extreme cognitive dissonance, such as when New York Governor Andrew Cuomo shut down the Indian Point nuclear power plant in 2021 without lining up new zero-carbon generation to replace it — leading the state’s carbon emissions to soar.
Of course, Democrats didn’t have to do much to kill nuclear: At the same time, the market was doing a perfectly good job of it. As cheap natural gas flooded the American energy system in the 2010s, more and more nuclear plants became too expensive to run. From 2012 to 2022, 12 nuclear reactors shut down in the U.S., taking nearly 10,000 megawatts of low-carbon generation offline.
That was the status quo as recently as 2020 or even 2022. And it has remained the status quo in energy commentary. “What role, if any, does [Vice President Kamala Harris] see for nuclear power in her energy and climate plans?” asked The New York Times columnist Bret Stephens last month, in a column titled “What Harris Must Do to Win Over Skeptics (Like Me).” At the vice presidential debate earlier this month, Republican nominee JD Vance even alluded to the argument amid a broader paean to fossil fuels. “If you really want to make the environment cleaner, you've got to invest in more energy production,” Vance said. “We haven't built a nuclear facility — I think one — in the past 40 years.”
In fact, Vance is wrong: The United States recently turned on two new nuclear reactors in Georgia — the first newly built reactors in America in 30 years. But this idea — Why aren’t we building more nuclear reactors? Why don’t Democrats do more to help nuclear? — has been a throughline of energy punditry since well before Vance was a best-selling author.
So I want to intervene in this conversation and note that the answer has now changed. Democrats are a pro-nuclear party now — not uniformly, but then again, neither are Republicans. Over the past several years, Democratic lawmakers and officials have adopted a slate of aggressively pro-nuclear policies and characterized the technology as pro-climate. Secretary of Energy Jennifer Granholm has called for America to build a new wave of conventional nuclear reactors — going much further than Obama ever did. Sometimes working with Republicans — but sometimes working alone, too — Democrats have pushed billions of dollars of support toward conventional nuclear reactors and the nascent advanced nuclear industry.
It’s worth stepping back here and going over what has actually changed.
For the past 10 years at least, both parties have been credibly committed to building up the advanced nuclear industry — the theoretical next generation of nuclear reactors that will be smaller, cleaner, and safer than the behemoths built during the Cold War. During the Trump administration, Congress passed a bipartisan bill meant to push along the advanced nuclear industry. It also passed the Energy Act of 2020, which authorized a demonstration program for advanced nuclear reactors.
The Biden administration has continued this support. The bipartisan infrastructure law created a $6 billion program that would pay existing nuclear power plants to stay open. At least $1.1 billion of that money will go to keeping Diablo Canyon, California’s only operating nuclear facility and its largest power plant, from shutting down; it was originally slated to close in 2025.
Earlier this year, Biden also extended a key program that indemnifies the nuclear industry for the cost of nuclear accidents and disasters above $16.1 billion.
But perhaps the most important nuclear law passed in the past five years is the Inflation Reduction Act, the Biden administration’s signature climate package. For the first time ever, that law embraced the idea of “technology neutrality,” which means that electricity generated by nuclear reactors is now on the same footing as power from wind turbines or solar panels. If a method of electricity generation emits almost no carbon, then the government subsidizes it under the IRA.
The law is already helping restart nuclear reactors that have recently closed such as the Palisades reactor in Michigan and Three Mile Island in Pennsylvania. The utility giant NextEra is also exploring plans to restart the Duane Arnold nuclear plant in Iowa, which closed in 2020. If those go through, then it will be able to take advantage of Inflation Reduction Act funding, as well.
Lawmakers from both parties have continued to back advanced nuclear research and deployment. Under Biden, Congress passed the ADVANCE Act, containing a hodgepodge of policies meant to help the advanced nuclear industry. Among other changes, it instructs the Nuclear Regulatory Commission to move faster when approving new reactor designs, and it changes that agency’s mission statement to more affirmatively support nuclear development.
Biden administration officials haven’t just backed that legislation, they’ve also asserted that it will “help us build new reactors at a clip that we haven’t seen since the 1970s,” as Michael Goff, who leads the Energy Department’s nuclear office, bragged in a statement.
The irony is that nuclear plants are now doing well enough that Congress has clawed back some of the money from the bipartisan infrastructure law. The industry, seemingly, doesn’t need it any more, and no additional nuclear reactors have been scheduled to shut down. In 2024, Congress stripped up to $3.7 billion to pay for a program to produce a type of high-assay used in next-generation nuclear reactors.
Democrats have begun to brag about their nuclear policymaking efforts on the campaign trail, as well. In her speech on economic policy earlier this month, Kamala Harris included “advanced nuclear” in a list of technologies that her administration would support.
“We will invest in biomanufacturing and aerospace; remain dominant in AI and quantum computing, blockchain and other emerging technologies; expand our lead in clean energy innovation and manufacturing,” she said, “so the next generation of breakthroughs — from advanced batteries to geothermal to advanced nuclear — are not just invented but built here in America by American workers.”
The party’s Senate candidates have become even more positive about nuclear energy. Candidates in Arizona, Michigan, Florida, and Texas have all backed nuclear power, as the reporter Alexander Kaufman at Huffpost has shown.
This transformation has happened even though the big big environmental groups that have historically set the party’s energy priorities have not changed their mind on nuclear. Although many green groups have scaled back or defunded their anti-nuclear activism, their rhetoric remains staunchly anti-nuclear. The Sierra Club calls nuclear power a “uniquely dangerous energy technology for humanity” and states on its website: “The Sierra Club remains unequivocally opposed to nuclear energy.”
The party’s approach to nuclear hasn’t informed all its policy yet. The Biden administration’s nominations to the Nuclear Regulatory Commission have been criticized by pro-nuclear advocates for continuing the status quo or for not knowing enough about the advanced nuclear industry.
But Democrats are, by any measure, much more pro-nuclear now than they were 10 years ago — and much more pro-nuclear than they were a decade before that. (It’s often forgotten now that President Bill Clinton’s would-be climate policy, the BTU tax, also would have levied a fee on nuclear reactors.) Republicans also remain fairly pro-nuclear: Donald Trump has promised to approve “hundreds of new power plants,” including “new reactors,” during his presidency.
What remains unclear is whether both parties can persist in this new pro-nuclear formation. Nuclear energy is popular with a majority of the public, but only just; 56% of Americans favor building more nuclear power plants, according to the Pew Research Center. And there are signs, if you squint, of a potential coming era of GOP skepticism of nuclear power — part of the party’s broader turn against science and high-trust institutions.
Signs like: Robert F. Kennedy, Jr., who has been added to Trump’s transition team, believes that nuclear power is unsafe and uneconomical. Even Trump himself, in conversation with Elon Musk, has worried about “nuclear warming” — it’s not clear what he was talking about, but it might be nuclear war — and said that nuclear has a “branding problem.” Even if Trump continues to support the idea of building “new reactors,” his potentially illegal plan to claw back the Inflation Reduction Act’s unspent funding may lead to pandemonium in the sector. If the nuclear industry is now planning on receiving IRA subsidies, then ending those subsidies — especially in a messy or chaotic way — could spell disaster.
There are identity-driven reasons for Republicans to turn on nuclear, too: The nuclear energy industry is more unionized than any other energy source, and it requires a highly institutionalized and educated workforce. (Yet not all the trends augur a realignment: Nuclear power remains much more popular with men than women.)
For now, though, both parties — including Democrats — support building new nuclear power plants. The economics are good for once, too. The question now is how long that will hold.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The Series E round will fund the enhanced geothermal company’s flagship Cape Station project.
The enhanced geothermal company Fervo is raising another $462 million, bringing on new investors in its Series E equity round.
The lead investor is a new one to the company’s books: venture capital firm B Capital, started by Facebook co-founder Eduardo Saverin. Fervo did not disclose a valuation, but Axios reported in March that it had been discussing an IPO in the next year or two at a $2 billion to $4 billion valuation.
Much of the capital will be devoted to further investments in its Cape Station facility in Utah, which is due to start generating 100 megawatts of grid power by the end of 2026. A smaller project in Nevada came online in 2023.
Fervo’s last equity round was early last year, when it raised $255 million led by oil and gas company Devon. It also raised another $206 million this past summer in debt and equity to finance the Cape Station project, specifically, and reported faster, deeper drilling numbers.
“I think putting pedal to the metal is a good way to put it. We are continuing to make progress at Cape station, which is our flagship project in Southwest Utah, and some of the funding will also be used for early stage development at other projects and locations to expand Fervo’s reach across the Western U.S.,” Sarah Jewett, Fervo’s senior vice president of strategy, told me
“Enhanced geothermal” refers to injecting fluid into hot, underground rocks using techniques borrowed from hydraulic fracturing for oil and gas. Along with the geothermal industry as a whole, Fervo has found itself in the sweet spot of energy politics. It can provide power for technology companies with sustainability mandates and states with decarbonization goals because it produces carbon-free electricity. And it can host Republican politicians at its facilities because the power is 24/7 and employs labor and equipment familiar to the oil and gas industry. While the Trump administration has been on a warpath against solar and (especially) wind, geothermal got a shoutout in the White House’s AI Action Report as an electricity source that should be nurtured.
“Being clean and operating around the clock is just a really strong value proposition to the market,” Jewett said. “Utilizing an oil and gas workforce is obviously a big part of that story; developing in rural America to serve grids across the West; producing clean, emissions-free energy. It's just a really nice, well-rounded value proposition that has managed to maintain really strong support across the aisle in Washington despite the administration shift.”
But bipartisan support on its own can’t lead to gigawatts of new, enhanced geothermal powering the American west. For that Fervo, like any venture-backed or startup energy developer, needs project finance, money raised for an individual energy project (like a solar farm or a power plant) that must be matched by predictable, steady cashflows. “That is, obviously the ultimate goal, is to bring the cost of capital down for these projects to what we call the ‘solar standard,’’’ Jewett said, referring to a minimum return to investors of below 10%, which solar projects can finance themselves at.
While solar power at this point is a mature technology using mass-manufactured, standardized parts having very good foreknowledge of where it will be most effective for generating electricity (it’s where the sun shines), enhanced geothermal is riskier, both in finding places to drill and in terms of drilling costs. Project finance investors tend to like what they can easily predict.
“We are well on our way to do it,” Jewett said of bringing down the perceived risk of enhanced geothermal. “This corporate equity helps us build the track record that we need to attract” project finance investors.
Whether enhanced geothermal is price competitive isn’t quite clear: Its levelized cost of energy is estimated to be around twice utility scale solar's, although that metric doesn’t give it credit for geothermal’s greater reliability and lack of dependence on the weather.
While Cape Station itself is currently covered in snow, Jewett said, construction is heating up. The facility has three power plants installed, a substation and transmission and distribution lines starting to be put up, putting the facility in line to start generating power next year, Jewett said.By the time it starts generating power for customers, Fervo hopes to have reduced costs even more.
“Cost reductions happen through learning by doing — doing it over and over and over again. We have now drilled over 30 wells at the Cape Station field and we’re learning over time what works best,” Jewett said.
Overview Energy has raised $20 million already and is targeting a Series A early next year.
When renowned sci-fi author Isaac Asimov first wrote about space-based solar power in the 1940s, it helped inspire engineers and the federal government alike to take the idea seriously. By the 1970s, a design had been patented and feasibility studies were underway. But those initial efforts didn’t get far — challenges with launch costs, constructing the necessary structures in space, and energy conversion efficiency proved too much for scientists to overcome.
Now the idea is edging ever closer to reality.
The space solar company Overview Energy emerged from stealth today, announcing its intention to make satellites that will transmit energy via lasers directly onto the Earth’s grid, targeting preexisting utility-scale solar installations. The startup has already raised $20 million in a seed round led by Lowercarbon Capital, Prime Movers Lab, and Engine Ventures, and is now working on raising a Series A.
The core thesis behind Overview is to allow solar farms to generate power when the sun isn’t shining, turning solar into a firm, 24/7 renewable resource. What’s more, the satellites could direct their energy anywhere in the world, depending on demand. California solar farms, for example, could receive energy in the early morning hours. Then, as the sun rises over the West Coast and sets in Europe, “we switch the beam over to Western Europe, Morocco, things in that area, power them through the evening peak,” Marc Berte, the founder and CEO of Overview Energy, explained. “It hits 10 p.m., 11 p.m., most people are starting to go to bed if it’s a weekday. Demand is going down. But it’s now 3 p.m. in California, so you switch the beam back.”
That so-called “geographic untethering” will be a key factor in making all of this economically feasible one day, Berte told me. The startup is targeting between $60 and $100 per megawatt-hour by 2035, when it aims to be putting gigawatts of commercial space solar on the grid. “It’s 5 o’clock somewhere,” Berte told me. “You’re profitable at $100 bucks a megawatt-hour somewhere, instantaneously, all the time.”
Making the math pencil out has also meant developing super-efficient lasers and eliminating all power electronics on its custom spacecraft. The type of light Overview beams to earth — called “near-infrared” and invisible to the naked eye — is also very efficiently converted into electricity on a solar cell. While pure sunlight is only converted at 20% efficient, near-infrared light is converted at 50% efficiency. Thus, Overview enables solar panels to operate even more efficiently during the night than during the day.
Today, the startup also announced the successful demonstration of its ability to transmit energy from a moving aircraft to a ground receiver three miles below — the first time anyone has beamed high power from a moving source. Although Overview’s satellites will eventually need to transmit light from much farther away — around 22,000 miles from Earth — the test proved that the fundamental technical components work together as planned.
“There’s no functional difference from what we just did from an airplane to what we’re going to do in 10 years at gigawatts from space,” Berte told me. “The same beacon, the same tracking, the same mirror, the same lasers, all the same stuff, just an airplane instead of space.”
Overview’s ultimate goal is ambitious to say the least: It’s aiming to design a system that can deliver the equivalent of 10% to 20% of all global electricity use by 2050. To get there, it’s aiming to put megawatts of power on the grid by 2030 and gigawatts by the mid-2030s. Its target customers include independent power producers, utilities, and data centers, and the company currently has a SpaceX launch booked for early 2028. At this point, Berte says Overview will likely be starting up its own prototype production line, which it will scale in the years to follow.
That certainly won’t be a simple undertaking. To produce a gigawatt of power, Overview will need to deploy 1,000 huge satellites, each measuring around 500 to 600 feet across and weighing about 8 to 10 tons. The largest satellites currently in space are about 100 to 150 feet across, and roughly 5 to 10 tons. “No one really mass-manufactures satellites in the kind of quantities required,” Berte explained, and nobody is producing the design and form factor that Overview requires. “So we are going to have to in-source a lot of the integration for that.”
But while the startup’s satellites will span the length of about two football fields, they fold up neatly into a package about the size of a shipping container, making it possible for them to fit on a SpaceX rocket, for example. When the satellites beam their power down to Earth, they’ll target a beacon — also shipping container-sized — that will be placed in the middle of the solar farm.
Initially, Berte told me, Overview will target deployment in places where logistical challenges make energy particularly expensive — think Alaska or island states and territories such as Guam, Hawaii, and Puerto Rico. But first, the company must demonstrate that its tech works from thousands of miles away. That’s what the funding from its forthcoming Series A, which Berte expects to close in spring of next year, is intended for.
“That is to take us to the next step, which is now do it in space. And after that, it’s now do it in space, but big,” he told me. “So it’s crawl, walk, run, but most importantly, the technology and how you do it doesn’t change.”
Rob catches up with the Center for Strategic and International Studies’ Ilaria Mazzocco.
China’s electric vehicle industry, it’s now well understood, is churning out cars that rival or exceed the best products coming out of the West. Chinese EVs are cheaper, cooler, more innovative, and have better range. And now they’re surging into car markets around the world — markets where consumers are hungry for clean, affordable transportation.
On this week’s episode of Shift Key, Rob talks to Ilaria Mazzocco about her new report on how six countries around the world are dealing with the rise of Chinese EVs. Why do countries welcome Chinese-made EVs, and why do countries resist them? How do domestic carmakers act when Chinese EVs come to town? And are climate concerns still driving uptake?
Mazzocco is the deputy director and senior fellow with the Trustee Chair in Chinese Business and Economics at the Center for Strategic and International Studies. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Ilaria Mazzocco: Chinese batterymakers have persisted in focusing on LFP batteries with some spectacular results, I would say. And partly I think that’s been thanks to just being able to deploy them at really large scale and just testing and getting them out there.
But I think BYD is really a great example of that. They invest so much in R&D that it’s really hard to compete with them on some of these things. That’s really the big challenge, where, if you want to make a cheap car, you need LFP. That’s why Ford sought out that licensing deal with CATL, was to acquire LFP battery technology. And LFP batteries are really something that Chinese batterymakers have really excelled at.
Now, there could be breakthroughs in other chemistries. There could be a catchup game with non-Chinese batterymakers that actually become good at making LFP. That’s entirely possible. But right now, if you’re an Indian carmaker and you want to make a cheap car, your best bet is probably to get it from BYD or CATL, or maybe Gotion or something like that. That’s really what you’re looking at.
Robinson Meyer: It also, though, really changes how we talk about a lot of the development of auto industries abroad. Because I mean, I realize this is how cars were made for a long time, but I think … basically like if you were to say, Oh yeah, we make our own internal combustion cars here, we simply import the engines from Detroit, and then we place them in our otherwise finished vehicles that we’ve made domestically, and then we put it under a domestic label. We’re very proud of that. That’s essentially what is happening when countries import batteries. The batteries are so central to the operation of the EVs and what the EVs are capable of that when you import your batteries, you’re really relying on your trade partner for a lot of the core physical capacity of that vehicle, and a lot of the core, underlying chemical engineering capability that that vehicle affords you.
It suggests to me that in terms of when you think about the global EV industry, there are companies that are dependent on some kind of Chinese battery export. There are companies that are dependent on some kind of Korean battery export. There’s a few American entrants — mostly Tesla. There’s a few European entrants. And that’s kind of it. Everyone else is piggybacking on the back of one of those core technologies.
Mentioned:
Ilaria’s new report: The Global EV Shift: The Role of China and Industrial Policy in Emerging Economies
Previously on Shift Key: How China’s EV Industry Got So Big
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.