You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Today’s lease auction actually went kinda well.

Just days before what is sure to be a close presidential election in which one of the candidates has promised to shut down the offshore wind industry “on day one,” an auction for the rights to develop wind energy projects in the Gulf of Maine on Tuesday was a surprise success.
Two developers, Avangrid and Invenergy, purchased four of the eight leases that were up for sale. If turned into wind farms, they have the potential to generate about 6.8 gigawatts, or enough electricity to power about 2.3 million homes, according to the Bureau of Ocean Energy Management.
Compared with the optimism on display just two years ago, when more than a dozen companies competed in a three-day bidding war for the right to develop six areas off the coast of New York and New Jersey, Tuesday’s sale was a flop. Just two companies participated. The bidding closed after one round. The leases sold for a flat $50 per acre, compared to an average of nearly $9,000 per acre in the New York sale.
But put in context of how things are going in 2024, it’s a miracle anyone showed up at all. The offshore wind industry has been struggling with supply chain issues and inflation, not to mention increasing opposition from coastal communities. Just a month ago, an offshore wind lease sale off the coast of Oregon was canceled after the Bureau of Ocean Energy Management learned that there was only one interested party. The agency also canceled an auction for the Gulf of Mexico earlier this year citing a lack of interest.
“It’ll be a win if anything gets leased,” Francis Eanes, executive director of the Maine Labor Climate Council, told me Tuesday morning before the results came in. “And honestly, it won’t be surprising if it doesn’t.”
Outside of the existential threat of a Trump presidency, developing wind projects in the Gulf of Maine was already a challenging prospect. The water is upwards of 200 meters deep — too deep to affix the foundation of a wind turbine to the seafloor. Instead, developers will need to build floating structures that are moored to the seabed with giant cables. Floating offshore wind is a proven technology — there are a handful of projects already operating around the world. But it is more expensive to build, and there are none yet operating in the U.S. The National Renewable Energy Laboratory estimates that floating offshore wind farms will have a levelized cost of energy that’s at least 40% higher than fixed-bottom projects.
On top of that, just days ago, the U.S. Department of Energy rejected Maine’s application for a $456 million grant to build a floating offshore wind assembly port on Sears Island, a protected area in Penobscot Bay about the size of New York City’s Central Park. A new port is a necessary prerequisite for developing projects in the Gulf of Maine, as floating offshore wind assembly requires different infrastructure than fixed-bottom projects.
Nonetheless, Tyler Hansen, a research associate studying offshore wind at Dartmouth College, told me he thought the results of the auction “make sense” when weighing the prospects for the technology against the political risks. He expects the cost of floating offshore wind to come down as governments around the world invest in research and development. The Department of Energy has a “Floating Offshore Wind Shot,” a program aimed at reducing the cost of floating technology 70% by 2030.
The winds that blow over the Gulf of Maine are especially strong and steady, making them one of the best potential renewable energy resources in the United States. The northeast is also “particularly blessed” with available substations where projects could connect to the grid, Eric Hines, a civil and environmental engineering professor at Tufts University told me. Several recent coal plant closures on the Massachusetts coast have created “an enormous amount of coastal transmission capacity that are prime locations for plugging in offshore wind,” he said.
The area also boasts favorable policy paired with relatively strong grassroots support. States in the Northeast are counting on floating offshore wind to hit their climate goals. Maine has set a goal of achieving 100% clean electricity by 2040, with at least 3 gigawatts of power prescribed to come from the Gulf. Massachusetts, too, anticipates needing some 23 gigawatts from offshore wind by 2050, with at least 10 coming from the Gulf of Maine.
Environmental groups in Maine have spent the past two years building political coalitions with fishermen, tribes, and labor unions in support of developing an offshore wind industry. Those efforts culminated in a major victory last summer when the state passed a bill that set strong labor standards for offshore wind development, created a requirement for tribal engagement in project development, and enshrined a policy of avoiding development in a key fishery known as Lobster Management Area One. Later, the Bureau of Ocean Energy Management amended its map of lease areas in the Gulf of Maine to exclude that management area.
“That was a huge win,” Eanes said, and never would have happened without the environmental and labor movement’s proactive efforts to build consensus around where offshore wind should happen, if it were going to happen. As a result, they’ve been able to cultivate a different attitude toward offshore wind in Maine than you will find right now in New Jersey, for example.
“To be clear, if you go to a coastal community in Maine, especially one that lands a lot of lobsters, you’re not going to find support for offshore wind,” he said. “But the level of organized opposition has not been as pitched as it would have been had we seen lease areas in Lobster Management Area One.”
In a press release, Avangrid touted the Gulf of Maine’s strong wind speeds and access to interconnection, as well as the fact that it was “largely deconflicted from other ocean users following a rigorous federal public engagement process.” The company is already developing more than 5 gigawatts of offshore wind along the East Coast, including Vineyard Wind, which is currently under construction. This will be its first project to utilize floating technologies, however it is also owned by Iberdrola, a Spanish company with a pipeline of floating offshore wind projects in Europe.
Maine officials celebrated the results of the auction on Tuesday.
“The federal lease sale represents a significant milestone for Maine and the region as we advance offshore wind in a responsible manner to help us reduce our reliance on expensive, harmful fossil fuels, diversify our sources of energy, grow our economy, and fight climate change,” said Dan Burgess, Director of the Maine Governor’s Energy Office, in an emailed statement.
The Maine Department of Transportation, the agency leading the development of the would-be port, emphasized that it's undeterred despite losing out on the federal grant. “Maine has a once-in-a-lifetime opportunity to develop a port facility to create good-paying jobs while serving the entire region as we harness abundant clean wind energy in the Gulf of Maine,” Bruce Van Note, the transportation commissioner, said in a statement last week. “Our work will continue as we examine other opportunities to secure funding to advance this critical port infrastructure.”
The agency anticipates filing federal permit applications for the project in the next few months, kicking off a process anticipated to take two years, and securing additional funding for it by the end of 2025. But that timeline may depend on the results of the presidential election next week.
While it’s not always the best advice to take Donald Trump at his word, the former president promised supporters at a rally in New Jersey in May that he would “end” offshore wind development. “You won’t have to worry about Governor Murphy’s 157 windmills,” he said. “I’m going to write it out in an executive order. It’s going to end on day one.”
In its most recent quarterly market report, the industry association Oceantic Network noted that private investment and activity in the offshore wind sector “are decelerating … due largely to the uncertainty around the presidential election.”
At the same time, developers are used to long time horizons. Offshore wind projects can take a decade to permit and build, and as long as state support doesn’t slide, a slowdown of four years isn’t make-or-break. Even with a supportive administration, it will likely be impossible for Avangrid or Invenergy to begin construction in the Gulf of Maine before 2030, as that’s the absolute soonest Maine expects to get its port built.
The fact that two developers took the leap now rather than waiting for 2028 — which is when the next lease sale in the Gulf of Maine is scheduled — shows some level of confidence in the long-term prospects for the industry.
“These leases don’t come up for auction very often,” Hines told me. “And if you don’t have a lease, you can’t build a project.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
In some ways, fossil fuels make snowstorms like the one currently bearing down on the U.S. even more dangerous.
The relationship between fossil fuels and severe weather is often presented as a cause-and-effect: Burning coal, oil, and gas for heat and energy forces carbon molecules into a reaction with oxygen in the air to form carbon dioxide, which in turn traps heat in the atmosphere and gradually warms our planet. That imbalance, in many cases, makes the weather more extreme.
But this relationship also goes the other way: We use fossil fuels to make ourselves more comfortable — and in some cases, keep us alive — during extreme weather events. Our dependence on oil and gas creates a grim ouroboros: As those events get more extreme, we need more fuel.
This weekend, some 200 million Americans will be cranking up the thermostats in their natural-gas-heated homes, firing up their propane generators, or hitting icy roads in their combustion-engine cars as a major winter storm brings record-low temperatures to 35 states, knocks out power, and grinds air travel to a halt.
Climate change deniers love to use major winter storms as “proof” that global warming isn’t real. But in the case of this weekend’s polar vortex, there is evidence that Arctic warming is responsible for the record cold temperature projections across the United States.
“In the Arctic, in the winter, the ocean is much, much warmer than the atmosphere,” Judah Cohen, a climatologist at MIT and the author of a 2021 paper linking Arctic variability to extreme weather in the U.S., told me. Sea ice acts as an insulating layer separating the warmer ocean water from the frigid air. But as it melts — as it is doing every month of the year — “all of this heat can now be extracted out of the ocean.” The reduced temperature difference between the ocean and atmosphere creates wavy high-pressure ridges and low-pressure troughs that are favorable to the formation of polar vortices, which can funnel extreme cold air down over North America, as they seemingly did over Texas in 2021’s Winter Storm Uri, when 246 people died.
The exact mechanisms and interactions of this phenomenon are still up for debate. “I am in the minority that argues that there is causal link between a warm Arctic and cold continents,” Cohen added to me via email. “Most others argue that it is a coincidental relationship.” Still, scientists generally agree that extreme cold events will persist in a warming world; they’ll just become rarer.
Cold kills more people in the United States than heat, but curiously, warmer winters aren’t likely to significantly reduce these seasonal deaths. That’s because about half of the cases of excess mortality in winter are from cardiovascular diseases, which are, by nature, “highly seasonal,” Kristie Ebi, a professor of global health at the University of Washington, told me. “Since people began studying these, there are more of them in the winter than there are in the summer.” Researchers still aren’t sure why that is — though since the 1940s, we’ve known that people’s blood pressure, cholesterol, and even blood viscosity go up during the colder and darker months, perhaps due to changes in diet or exercise. That also appears to be the case regardless of climate or temperature, holding true whether you’re in Yellowknife or Miami.
In other words, “if seasonal factors other than temperature are mainly responsible for winter excess mortality, then climate warming might have little benefit,” Patrick Kinney, the director of Columbia University’s Climate and Health Program, wrote in Environmental Research Letters back in 2015. Extreme heat-related deaths, by contrast, have no ceiling, meaning global warming will result in more temperature-related deaths than it will prevent.
Our anthropogenically warmer winters could even prove to be more deadly in certain ways. Dana Tobin is a researcher at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder who studies how weather affects traffic accidents. She’s found that driving in freezing rain is more dangerous than driving in snow “because of the ice glaze that it can produce on surfaces, especially those that are untreated,” she told me. As winters become warmer, there will, counterintuitively, be more ice on roads in many places, since freezing rain requires a bit of warm air before it hits the ground and becomes black ice.
Researchers working in Scandinavia have similarly found that as the atmosphere warms and more days hover around freezing, “there is a higher risk of icy conditions … which may lead to a predisposition to falls and road traffic accidents.” (As I’ve previously reported, milder winters might also make us even more depressed than very cold ones.)
There is something slightly karmic about the fact that cars become increasingly unsafe as the planet, warmed by their emissions, becomes more hazardous. But this connection gets even bleaker when carbon monoxide poisoning is factored in.
On Thursday, the North American Electric Reliability Corporation issued a statement warning that “much of North America is at an elevated risk of having insufficient energy supplies to meet demand in extreme operating conditions,” including “advancing winter weatherization of power plants and fuel acquisition to enable operations during cold temperatures.” Heavy ice can also snap branches above power lines, causing local outages.
When the power goes out or the gas lines freeze, desperate people will do anything to stay warm. That includes, in tragic cases, running improperly vented generators or plugging in propane heaters indoors, which can produce odorless and colorless CO — instead of the usual water and carbon dioxide — when fossil fuels don’t burn correctly. Accidental carbon monoxide poisoning is on the rise in the United States due to the proliferation of such appliances amid increasingly frequent extreme weather events, jumping 86% between 2012 and 2022. That’s even as, worldwide, carbon monoxide poisoning is decreasing.
Snow and ice are among the most dangerous weather conditions in the U.S., and people should take warnings of “life-threatening conditions” at face value. Tobin, the traffic researcher, stressed that one of the best protections from winter weather hazards is knowledge alone. “I believe the best thing that we can do when it comes to messaging to protect drivers from hazards is to empower motorists to make educated and informed decisions for their own safety and the safety of others,” she told me.
Winter storms highlight the entangled nature of our dependence on fossil fuels. We can’t separate extreme weather events from the energy required to survive them. But the dark irony is that, as the planet becomes more volatile, the most dangerous fossil fuels might be the ones meant to keep us warm and get us back home.
The cloak-and-dagger approach is turning the business into a bogeyman.
It’s time to call it like it is: Many data center developers seem to be moving too fast to build trust in the communities where they’re siting projects.
One of the chief complaints raised by data center opponents across the country is that companies aren’t transparent about their plans, which often becomes the original sin that makes winning debates over energy or water use near-impossible. In too many cases, towns and cities neighboring a proposed data center won’t know who will wind up using the project, either because a tech giant is behind it and keeping plans secret or a real estate firm refuses to disclose to them which company it’ll be sold to.
Making matters worse, developers large and small are requiring city and county officials to be tight-lipped through non-disclosure agreements. It’s safe to say these secrecy contracts betray a basic sense of public transparency Americans expect from their elected representatives and they become a core problem that lets activists critical of the data center boom fill in gaps for the public. I mean, why trust facts and figures about energy and water if the corporations won’t be up front about their plans?
“When a developer comes in and there’s going to be a project that has a huge impact on a community and the environment – a place they call home – and you’re not getting any kind of answers, you can tell they’re not being transparent with you,” Ginny Marcille-Kerslake, an organizer for Food and Water Watch in Pennsylvania, told me in an interview this week. “There’s an automatic lack of trust there. And then that extends to their own government.”
Let’s break down an example Marcille-Kerslake pointed me to, where Talen Energy is seeking to rezone hundreds of acres of agricultural land in Montour County, Pennsylvania, for industrial facilities. Montour County is already a high risk area for any kind of energy or data center development, ranking in the 86th percentile nationally for withdrawn renewable energy projects (more than 10 solar facilities have been canceled here for various reasons). So it didn’t help when individuals living in the area began questioning if this was for Amazon Web Services, similar to other nearby Talen-powered data center projects in the area?
Officials wouldn’t – or couldn’t – say if the project was for Amazon, in part because one of the county commissioners signed a non-disclosure agreement binding them to silence. Subsequently, a Facebook video from an activist fighting the rezoning went viral, using emails he claimed were obtained through public records requests to declare Amazon “is likely behind the scenes” of the zoning request.
Amazon did not respond to my requests for comment. But this is a very familiar pattern to us now. Heatmap Pro data shows that a lack of transparency consistently ranks in the top five concerns people raise when they oppose data center projects, regardless of whether they are approved or canceled. Heatmap researcher Charlie Clynes explained to me that the issue routinely crops up in the myriad projects he’s tracked, down to the first data center ever logged into the platform – a $100 million proposal by a startup in Hood County, Oregon, that was pulled after a community uproar.
“At a high level, I have seen a lack of transparency become more of an issue. It makes people angry in a very unique way that other issues don’t. Not only will they think a project is going to be bad for a community, but you’re not even telling them, the key stakeholder, what is going on,” Clynes said. “It’s not a matter of, are data centers good or bad necessarily, but whether people feel like they’re being heard and considered. And transparency issues make that much more difficult.”
My interview with Marcille-Kerslake exemplified this situation. Her organization is opposed to the current rapid pace of data center build-out and is supporting opposition in various localities. When we spoke, her arguments felt archetypal and representative of how easily those who fight projects can turn secrecy into a cudgel. After addressing the trust issues with me, she immediately pivoted to saying that those exist because “at the root of it, this lack of transparency to the community” comes from “the fact that what they have planned, people don’t want.”
“The answer isn’t for these developers to come in and be fully transparent in what they want to do, which is what you’d see with other kinds of developments in your community. That doesn’t help them because what they’re building is not wanted.”
I’m not entirely convinced by her point, that the only reason data center developers are staying quiet is because of a likelihood of community opposition. In fairness, the tech sector has long operated with a “move fast, break things” approach, and Silicon Valley companies long worked in privacy in order to closely guard trade secrets in a competitive marketplace. I also know from my previous reporting that before AI, data center developers were simply focused on building projects with easy access to cheap energy.
However, in fairness to opponents, I’m also not convinced the industry is adequately addressing its trust deficit with the public. Last week, I asked Data Center Coalition vice president of state policy Dan Diorio if there was a set of “best practices” that his large data center trade organization is pointing to for community relations and transparency. His answer? People are certainly trying their best as they move quickly to build out infrastructure for AI, but no, there is no standard for such a thing.
“Each developer is different. Each company is different. There’s different sizes, different structures,” he said. “There’s common themes of open and public meetings, sharing information about water use in particular, helping put it in the proper context as well.”
He added: “I wouldn’t categorize that as industry best practice, [but] I think you’re seeing common themes emerge in developments around the country.”
Plus more of the week’s biggest renewable energy fights.
Cole County, Missouri – The Show Me State may be on the precipice of enacting the first state-wide solar moratorium.
Clark County, Ohio – This county has now voted to oppose Invenergy’s Sloopy Solar facility, passing a resolution of disapproval that usually has at least some influence over state regulator decision-making.
Millard County, Utah – Here we have a case of folks upset about solar projects specifically tied to large data centers.
Orange County, California – Compass Energy’s large battery project in San Juan Capistrano has finally died after a yearslong bout with local opposition.
Hillsdale County, Michigan – Here’s a new one: Two county commissioners here are stepping back from any decision on a solar project because they have signed agreements with the developer.