You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Shorter “shoulder seasons” mean fewer opportunities for necessary grid maintenance. What could go wrong?
It’s getting hot in Texas. Forecast highs for Tuesday are 89 degrees Fahrenheit in Houston, 92 in San Antonio, and 90 in Dallas. ERCOT, which operates the energy market that covers around 90% of the state, issued an “extreme hot weather event” warning and a “weather watch” due to “unseasonably high temperatures” — and “high levels of expected maintenance outages.”
The whole country, but particularly Texas, is playing chicken with its existing fleet of natural gas-powered electricity infrastructure. While the weather-dependence of solar and wind are both obvious and well-known, gas, too, can be susceptible to nature’s fluctuations. High temperatures mean high demand, while very low temperatures can literally freeze whole gas production, distribution, and generation system, with catastrophic consequences.
Natural gas powers around 60% of Texas’ electricity. While Tuesday’s is far from the hottest weather the state will face this year, it comes at what can be a fragile time for the grid. This is the end of the spring maintenance season, when power plant operators have a window to schedule outages necessary to perform maintenance after winter and ahead of summer, when electricity demand spikes again — what ERCOT calls the “shoulder seasons.”
But weather increasingly does not conform to the plans of market regulators, with temperatures rising earlier in the year and falling later, impinging on that shoulder space. In April, ERCOT had to ask power plants to delay outages they had already planned due to high temperatures in parts of the state.
Shutting down a natural gas power plant can be fraught in Texas, where authorities are wary of destabilizing the grid. Other than 2021’s Winter Storm Uri, which caused days of blackouts and hundreds of deaths, one of the state’s worst-ever blackouts happened in April 2006, when high temperatures coincided with — you guessed it — planned outages for maintenance. Texas is not the only place that gets hot in the summer, of course, but its grid is both isolated from the rest of the country and is dealing with substantial growth in power demand, which means it’s more likely to bump up against its limits.
“We’ve had a couple of pretty hot days and have more hot weather this week,” University of Texas professor Hugh Daigle told me. “What’s happening is that we’ve been operating close to the limit of available supply at peak demand.”
While the grid in Texas has remained stable so far this spring — albeit with some wild price spikes at times — delaying planned outages risks future unplanned power failures if operators fall behind on maintenance. Those failures are most likely to occur during the summer months, when high demand from air conditioning adds to stresses caused by the heat and ERCOT is less likely to allow the plants to come offline. In the best case scenario, a strained grid “only” results in electricity prices spiking. In the worst, it leads to blackouts and deaths from extreme heat.
Along with three of his University of Texas colleagues, Joshua Rhodes, Aidan Pyrcz, and Michael Webber, Daigle recently published a paper showing that as Texas warms, the times when it’s “safe” to have a large number of planned outages may shrink.
Average temperatures in the state rose 0.8 degrees Celsius from 1895 to 2021, and are projected to go up another whole degree by 2036. While that may sound like a small change, this would increase the number of 100 degree Fahrenheit days — which often mean record-breaking electricity usage — by some 40%.
While it may seem like a warming trend could have a symmetric and offsetting effect on the grid — hotter summer days that lead to record air conditioning demand but also warmer winter days that create less strain on electric heat — the researchers found that instead, the shoulder seasons were getting impinged on both sides. Compared to the 1950s, mild spring weather has been starting and ending earlier. At mid-century, spring started near the beginning of March; now it’s closer to the beginning of February. The start of fall, meanwhile, slid from the beginning of November later toward the middle of the month.
If maintenance in the spring shoulder season can just occur just from March to May, “maintenance periods will no longer coincide with periods of low expected demand,” Daigle told me. And if it’s just in the fall season, which could shrink to October and November, “it may be unreasonable to expect power plants to be able to forgo spring maintenance.”
“If you look at climate models and how average temperatures change,” Daigle said, “those two periods” — before the cold of winter and the heat of summer — “could merge into a single period in December and January.”
Just one shoulder season introduces extreme risks, Daigle explained. “We still do get winter storms. It’s December and January and you have a lot of stuff down for planned maintenance, and something like Uri comes through — we’re up a creek.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Almost half of developers believe it is “somewhat or significantly harder to do” projects on farmland, despite the clear advantages that kind of property has for harnessing solar power.
The solar energy industry has a big farm problem cropping up. And if it isn’t careful, it’ll be dealing with it for years to come.
Researchers at SI2, an independent research arm of the Solar Energy Industries Association, released a study of farm workers and solar developers this morning that said almost half of all developers believe it is “somewhat or significantly harder to do” projects on farmland, despite the clear advantages that kind of property has for harnessing solar power.
Unveiled in conjunction with RE+, the largest renewable energy conference in the U.S., the federally-funded research includes a warning sign that permitting is far and away the single largest impediment for solar developers trying to build projects on farmland. If this trend continues or metastasizes into a national movement, it could indefinitely lock developers out from some of the nation’s best land for generating carbon-free electricity.
“If a significant minority opposes and perhaps leads to additional moratoria, [developers] will lose a foot in the door for any future projects,” Shawn Rumery, SI2’s senior program director and the survey lead, told me. “They may not have access to that community any more because that moratoria is in place.”
SI2’s research comes on the heels of similar findings from Heatmap Pro. A poll conducted for the platform last month found 70% of respondents who had more than 50 acres of property — i.e. the kinds of large landowners sought after by energy developers — are concerned that renewable energy “takes up farmland,” by far the greatest objection among that cohort.
Good farmland is theoretically perfect for building solar farms. What could be better for powering homes than the same strong sunlight that helps grow fields of yummy corn, beans and vegetables? And there’s a clear financial incentive for farmers to get in on the solar industry, not just because of the potential cash in letting developers use their acres but also the longer-term risks climate change and extreme weather can pose to agriculture writ large.
But not all farmers are warming up to solar power, leading towns and counties across the country to enact moratoria restricting or banning solar and wind development on and near “prime farmland.” Meanwhile at the federal level, Republicans and Democrats alike are voicing concern about taking farmland for crop production to generate renewable energy.
Seeking to best understand this phenomena, SI2 put out a call out for ag industry representatives and solar developers to tell them how they feel about these two industries co-mingling. They received 355 responses of varying detail over roughly three months earlier this year, including 163 responses from agriculture workers, 170 from solar developers as well as almost two dozen individuals in the utility sector.
A key hurdle to development, per the survey, is local opposition in farm communities. SI2’s publicity announcement for the research focuses on a hopeful statistic: up to 70% of farmers surveyed said they were “open to large-scale solar.” But for many, that was only under certain conditions that allow for dual usage of the land or agrivoltaics. In other words, they’d want to be able to keep raising livestock, a practice known as solar grazing, or planting crops unimpeded by the solar panels.
The remaining percentage of farmers surveyed “consistently opposed large-scale solar under any condition,” the survey found.
“Some of the messages we got were over my dead body,” Rumery said.
Meanwhile a “non-trivial” number of solar developers reported being unwilling or disinterested in adopting the solar-ag overlap that farmers want due to the increased cost, Rumery said. While some companies expect large portions of their business to be on farmland in the future, and many who responded to the survey expect to use agrivoltaic designs, Rumery voiced concern at the percentage of companies unwilling to integrate simultaneous agrarian activities into their planning.
In fact, Rumery said some developers’ reticence is part of what drove him and his colleagues to release the survey while at RE+.
As we discussed last week, failing to address the concerns of local communities can lead to unintended consequences with industry-wide ramifications. Rumery said developers trying to build on farmland should consider adopting dual-use strategies and focus on community engagement and education to avoid triggering future moratoria.
“One of the open-ended responses that best encapsulated the problem was a developer who said until the cost of permitting is so high that it forces us to do this, we’re going to continue to develop projects as they are,” he said. “That’s a cold way to look at it.”
Meanwhile, who is driving opposition to solar and other projects on farmland? Are many small farm owners in rural communities really against renewables? Is the fossil fuel lobby colluding with Big Ag? Could building these projects on fertile soil really impede future prospects at crop yields?
These are big questions we’ll be tackling in far more depth in next week’s edition of The Fight. Trust me, the answers will surprise you.
Here are the most notable renewable energy conflicts over the past week.
1. Worcester County, Maryland –Ocean City is preparing to go to court “if necessary” to undo the Bureau of Ocean Energy Management’s approval last week of U.S. Wind’s Maryland Offshore Wind Project, town mayor Rick Meehan told me in a statement this week.
2. Magic Valley, Idaho – The Lava Ridge Wind Project would be Idaho’s biggest wind farm. But it’s facing public outcry over the impacts it could have on a historic site for remembering the impact of World War II on Japanese residents in the United States.
3. Kossuth County, Iowa – Iowa’s largest county – Kossuth – is in the process of approving a nine-month moratorium on large-scale solar development.
Here’s a few more hotspots I’m watching…
The most important renewable energy policies and decisions from the last few days.
Greenlink’s good day – The Interior Department has approved NV Energy’s Greenlink West power line in Nevada, a massive step forward for the Biden administration’s pursuit of more transmission.
States’ offshore muddle – We saw a lot of state-level offshore wind movement this past week… and it wasn’t entirely positive. All of this bodes poorly for odds of a kumbaya political moment to the industry’s benefit any time soon.
Chumash loophole – Offshore wind did notch one win in northern California by securing an industry exception in a large marine sanctuary, providing for farms to be built in a corridor of the coastline.
Here’s what else I’m watching …