Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

Investors Are Expecting a Natural Gas Boom. Will They Get It?

Building new capacity isn’t always as straightforward as it sounds.

Pipelines and a graph.
Heatmap Illustration/Getty Images

When you think of companies whose valuations are soaring due to artificial intelligence, the ones that come to mind first are probably the chip designer Nvidia, whose shares are up 180% this year, or Elon Musk’s xAI, which its investors recently valued at $50 billion.

But aside from those, some of the best performing companies of this year have been those that own or supply equipment for the power plants that generate the energy to run all that AI infrastructure in the first place.

GE Vernova’s gas turbine orders have almost doubled so far this year, chief executive Scott Strazik said in an October earnings call; since then, the company has secured orders for another nearly 9 gigawatts’ worth of turbines in the U.S., the company said in an investor presentation Tuesday. “I can’t think of a time that the gas business has had more fun than they’re having right now,” Strazik told investors. The company’s stock is up almost 150% from the end of 2023.

Vistra, which owns over 40,000 megawatts of generation assets, including around 6,500 megawatts of nuclear power plants and more than two dozen gas-fired power plants, is planning on developing 2,000 megawatts of natural gas capacity, its chief executive Jim Burke said in November; its share price is up 272% for the year. The utility Entergy, which last week signed a deal with Meta to power a planned data center in northeastern Louisiana, is up 45%. Compare those impressive results to the S&P 500, which is up a healthy but comparatively modest 27% on the year.

Much of that enthusiasm comes from huge expected increases in energy demand. Grid Strategies, an energy policy consulting firm, last week updated its forecast for energy demand growth over the next five years, raising it from an increase of 39 gigawatts as of the end of 2023 to a rise of 128 gigawatts. That works out to annual projected growth of around 3%, compared to less than 1% annual growth in the first two decades of this century.

Where will all that additional energy come from? “Quite frankly, in the next five years, we’re going to see a lot of new gas turbines being built,” Cy McGeady, a fellow at the Center for Strategic and International Studies, told me, adding that the “prospects are good for a natural gas boom.”

The data centers that are driving renewable demand tend to require a constant flow of energy at all times — except when their power demands surge — while renewables are intermittent and may be far away from planned load growth. While so-called hyperscalers such as Amazon, Meta, and Google have made deals to support the development of 24/7 clean power sources like nuclear, the most optimistic time frame for any of these new developments to start producing power is sometime in the early 2030s.

Rob Gramlich, the president of Grid Strategies, told me the technology companies generating all this demand growth typically want it satisfied with renewables, but “they really need transmission in order to do that.”

“If everyone had done this 10 years ago, we could have connected a lot of generation a lot quicker. It could have been a lot cleaner generation mix,” Gramlich told me. Now, though, even if a utility wants to build solar, wind, and storage that can provide power at costs comparable to new gas, “it’s only available as an option if you build the grid infrastructure ahead of time,” he said.

McGeady agrees. “It’s the only path forward,” he said of natural gas. “Nobody is willing to not build the next data center because of inability to access renewables.”

But therein lies the difficulty: While natural gas plants are not as transmission-dependent as renewables, some analysts worry that even gas generators won’t be able to respond quickly enough to the increase in demand.

“When we look at the hot spots of Data Center development, in the U.S. and around the world, we see a significant overlap with regions that have favorable policy support for natural gas,” Morgan Stanley analysts wrote in a note to clients. And yet, “there will in our view be a significant shortfall in available U.S. power grid access relative to the magnitude of new data centers needed to ‘absorb’ the AI equipment purchases over the next several years, with the bottleneck becoming apparent in mid-to-late 2025,” the analysts wrote.

The utilities in these areas — places like Georgia, Arizona, and North Carolina — are indeed building new natural gas capacity. In other places where the laws and regulations aren’t as favorable to gas development, however, analysts expect to see more data centers sited at existing power plants. Some of those may be powered by fossil fuels, as in the case of a New Jersey facility recently taken over by the cloud computing company Core Weave, while others may wind up taking zero-carbon power off the grid, as Amazon attempted to do with the Susquehanna nuclear station in Pennsylvania.

Building new natural gas capacity is more difficult in the PJM Interconnection, the country’s largest electricity market, which spans the Eastern Seaboard and a large chunk of the Midwest. Its leadership is hoping high prices can lure new gas generation, but the complexity and uncertainty of the system’s reward structure for companies that agree to supply failsafe capacity has hindered the massive new investment PJM says it needs.

Some clean energy advocates argue that utilities are being short-sighted in their plans to develop new gas resources that could be around for decades — well past corporate, state, or national goals for electric system decarbonization.

“They’re used to building gas plants more so than they’re used to building other things. It reflects a lack of creativity on their part,” Michelle Solomon, a senior policy analyst at Energy Innovation, told me.

But until the system for building and paying for transmission can be reformed to clarify who pays for what and what transmission can be built where — as federal regulators and Congress are trying to do — utilities will likely default to what they know best.

“The difficulty of building transmission certainly can constrain utilities’ ability to serve new load, and it can constrain the ability to serve the load with clean generation,” Gramlich told me.

Chris Seiple, Wood Mackenzie’s vice president of energy transition and power and renewables, echoed Gramlich’s thought in a note from October. “The constraint is not the demand for renewables,” he wrote, “but the ability to get through permitting, interconnection, and building out the transmission system accordingly.”

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

Lunar Energy Raises $232 Million to Scale Virtual Power Plants

The startup — founded by the former head of Tesla Energy — is trying to solve a fundamental coordination problem on the grid.

A Lunar Energy module.
Heatmap Illustration/Lunar Energy

The concept of virtual power plants has been kicking around for decades. Coordinating a network of distributed energy resources — think solar panels, batteries, and smart appliances — to operate like a single power plant upends our notion of what grid-scale electricity generation can look like, not to mention the role individual consumers can play. But the idea only began taking slow, stuttering steps from theory to practice once homeowners started pairing rooftop solar with home batteries in the past decade.

Now, enthusiasm is accelerating as extreme weather, electricity load growth, and increased renewables penetration are straining the grid and interconnection queue. And the money is starting to pour in. Today, home battery manufacturer and VPP software company Lunar Energy announced $232 million in new funding — a $102 million Series D round, plus a previously unannounced $130 million Series C — to help deploy its integrated hardware and software systems across the U.S.

Keep reading...Show less
Blue
Adaptation

Why Driverless Cars Still Can’t Handle Snow

Black ice is dangerous, even for the robots.

A robotaxi in the snow.
Heatmap Illustration/Getty Images

If all the snow and ice over the past week has you fed up, you might consider moving to San Francisco, Los Angeles, Phoenix, Austin, or Atlanta. These five cities receive little to no measurable snow in a given year; subtropical Atlanta technically gets the most — maybe a couple of inches per winter, though often none. Even this weekend’s bomb cyclone, which dumped 7 inches across parts of northeastern Georgia, left the Atlanta suburbs with too little accumulation even to make a snowman.

San Francisco and the aforementioned Sun Belt cities are also the five pilot locations of the all-electric autonomous-vehicle company Waymo. That’s no coincidence. “There is no commercial [automated driving] service operating in winter conditions or freezing rain,” Steven Waslander, a University of Toronto robotics professor who leads WinTOR, a research program aimed at extending the seasonality of self-driving cars, told me. “We don’t have it completely solved.”

Keep reading...Show less
Yellow
AM Briefing

Courting a Win

On the FREEDOM Act, Siemens’ bet, and space data centers

Doug Burgum.
Heatmap Illustration/Getty Images

Current conditions: After a brief reprieve of temperatures hovering around freezing, the Northeast is bracing for a return to Arctic air and potential snow squalls at the end of the week • Cyclone Fytia’s death toll more than doubled to seven people in Madagascar as flooding continues • Temperatures in Mongolia are plunging below 0 degrees Fahrenheit for the rest of the workweek.

THE TOP FIVE

1. Interior Secretary suggests Supreme Court could step in to kill offshore wind

Secretary of the Interior Doug Burgum suggested the Supreme Court could step in to overturn the Trump administration’s unbroken string of losses in all five cases where offshore wind developers challenged its attempts to halt construction on turbines. “I believe President Trump wants to kill the wind industry in America,” Fox Business News host Stuart Varney asked during Burgum’s appearance on Tuesday morning. “How are you going to do that when the courts are blocking it?” Burgum dismissed the rulings by what he called “court judges” who “were all at the district level,” and said “there’s always the possibility to keep moving that up through the chain.” Burgum — who, as my colleague Robinson Meyer noted last month, has been thrust into an ideological crisis over Trump’s actions toward Greenland — went on to reiterate the claims made in a Department of Defense report in December that sought to justify the halt to all construction on offshore turbines on the grounds that their operation could “create radar interference that could represent a tremendous threat off our highly populated northeast coast.” The issue isn’t new. The Obama administration put together a task force in 2011 to examine the problem of “radar clutter” from wind turbines. The Department of Energy found that there were ways to mitigate the issue, and promoted the development of next-generation radar that could see past turbines.

Keep reading...Show less
Red