You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
An upcoming lease sale will be historic — but also quite risky for offshore wind.
The Biden administration will be holding the first ever auction for the right to develop offshore wind farms in the Gulf of Mexico on Tuesday. The sale represents a hopeful, historic shift for the region, where the economy has long been defined by oil and gas.
But wind energy is not a sure bet in the Gulf — at least not yet. Slower winds and frequent hurricanes will raise costs and require new turbine designs. Low power prices in the area and a lack of supportive policy make for an uncertain market. These hurdles mount on top of what is already a tumultuous time for the industry. Costs for offshore wind farms on the East Coast have soared due to high interest rates, inflation, and supply chain constraints.
“The business case in the Gulf of Mexico for offshore wind is very vague, and very uncertain,” Chelsea Jean-Michel, a wind analyst at BloombergNEF, told me. “It doesn't really make a lot of sense.”
The Bureau of Ocean Energy Management has put up three areas for sale in the Gulf, which it estimates will produce about 3.7 gigawatts of energy once developed, or enough to power nearly 1.3 million homes. Two of the areas are 30 to 40 miles off the coast of Galveston, Texas, while the third is closer to Lake Charles, Louisiana, just over 40 miles offshore.
Analysts expect Tuesday’s auction to be uncompetitive and the leases to sell for low prices that bake in uncertainty. Sixteen wind developers have signed up to participate, including legacy oil companies Shell, TotalEnergies (formerly known as Total), and Equinor, as well as renewable-focused companies that have offshore projects in the Northeast, like Invenergy, and newcomers, like energyRe. But they may not all end up putting in bids. More than 40 entities were registered to bid on offshore leases in California last December, but only seven ultimately took part in the auction.
The federal government has been studying offshore wind development in the Gulf of Mexico for years. In 2020, National Renewable Energy Lab scientists published an assessment of different types of energy resources that could go in the Gulf, including wave energy and ocean-based solar panels. The authors found that offshore wind had the most potential, by far, but would face numerous challenges, and likely be more expensive than offshore wind energy in the Northeast.
For one, engineers need to design turbines that can safely and economically produce energy in the Gulf’s unique weather conditions. Most of the time, the Gulf has lower wind speeds than the coasts, but other times, it has hurricane-force gales. The report called this “a challenging design optimization problem” and says that a new class of turbines will be needed. I spoke to Walter Musiel, one of the authors, who said that this was doable, and that turbines have since been installed in typhoon-prone areas in Asia that will provide some helpful data. The challenge, he said, will be building a supply chain for turbines with bigger rotors, and figuring out how intense future hurricanes could be in order to design blades that are strong enough.
The Gulf also has advantages that the report said could offset some of these expenses. Smaller waves and shallower water could lower capital costs for installation and maintenance. The report also cited “lower labor costs” in the region. However, workers there are currently fighting to ensure jobs in offshore wind depart from the low-wage, unsafe, exploitative conditions that pervade the local construction and offshore oil industries.
Another big advantage, though, is the maturity of the area’s offshore oil industry. “Despite low winds, the Gulf of Mexico is uniquely positioned,” wrote David Foulon, the managing director for offshore wind at TotalEnergies, in comments to BOEM, “thanks to its unequaled history of offshore expertise, established industrial supply chain, strength of workforce base, and maritime assets’ pool that can drive the growth of offshore wind in the U.S. to new heights and spread around the world thereafter.”
Justin Williams, the vice president of communications at the National Ocean Industries Association, told me Gulf Coast companies have already brought their expertise to offshore wind construction in the Northeast. “Take the Block Island Wind Farm offshore Rhode Island,” he said. “Gulf Island Fabrication built the steel jackets for its foundations and Montco Offshore provided heavy lift vessels to move the equipment on site.”
The National Renewable Energy Lab study took these benefits into account. But it still found that offshore wind energy would be pricier in the Gulf of Mexico than elsewhere. While the lab expects the average cost of offshore wind to land at $63 per megawatt-hour by 2030, it estimated that Gulf wind would cost in the range of $73 to $91 per megawatt-hour by that date. That could make it harder for Gulf wind projects to compete in local energy markets, which have lower power prices than the Northeast.
The region also lacks the policy support found in the Northeast. Massachusetts plans to contract 5,700 megawatts by 2027, New York has a goal of 9,000 megawatts by 2035, and New Jersey recently increased its goal to 11,000 megawatts by 2040. These policies gave developers a level of certainty that there would be a buyer for the electricity generated. Although Louisiana has a Climate Action Plan that recommends the state procure 5,000 megawatts of offshore wind energy by 2035, it’s not legally binding and no utilities have included offshore wind in their resource plans yet.
“They’re the only state down there that has expressed any interest,” Samantha Woodworth, a senior research analyst for North America wind at Wood Mackenzie, told me in an email. “Unless there are state-driven procurement targets or unless the project can produce power at significantly lower cost than what has bid elsewhere in the U.S. and somehow balance that with sufficient project returns, [offshore wind] projects down there are likely to be uneconomic.”
In public comments submitted to BOEM, the American Clean Power Association, the leading industry group for offshore wind, also warned that the leases would not provide developers with the certainty needed to establish a local workforce or supply chain. It urged the agency to either increase the number of leases or establish a regular leasing schedule. But this is the only such sale the agency has announced to date.
However, when I reached out to American Clean Power to ask how its members were approaching this uncertain environment, the group echoed Total’s optimism about the strengths of the local workforce and supply chain. “The region is eager to get into the offshore wind game, and developers understand both the challenges and opportunities that exist in building in the Gulf Coast,” spokesperson Phil Sgro said by email.
Jenny Netherton, a senior program manager at the Southeastern Wind Coalition, which is made up of nonprofits and energy companies, told me that there’s a lot of room for innovation and to try “different routes to market.” For example, developers could forgo the energy market altogether and sell their electricity directly to industrial clients, such as incoming green hydrogen production facilities. Louisiana currently produces 30% of the country’s hydrogen through a polluting process using natural gas. But the federal government has billions of dollars in grants and subsidies available to develop new facilities that produce it with renewable electricity.
If turbines do go up in the Gulf, it may not be until 2034-2035, according to BloombergNEF. This means that communities who are looking forward to the clean energy and economic benefits of a new offshore wind industry could end up waiting a lot longer than they might have hoped.
Local environmental justice groups are already frustrated that the BOEM did not include an incentive for developers to create community benefits in the lease terms. The lease terms for the recent offshore wind sale in California gave companies up to a 10% discount on their purchase if they pledged to spend a comparable amount on community benefits, such as hiring commitments, job training, or economic contributions. If fulfilled, nearly $53 million will go toward these agreements in California.
“It was disappointing to see,” said Jackson Voss, climate policy coordinator for the Louisiana-based Alliance for Affordable Energy. “I don't think that it makes very much sense for different regions of the country to receive different benefits, especially considering the Biden administration’s commitment to environmental justice.”
The Gulf lease terms have a similar provision but it is limited to investments in local workforce training, supply chains, and a fisheries fund that will be used to compensate fishermen for potential losses. A spokesperson for BOEM told me the agency determined it would be too challenging to implement community benefits agreements in the Gulf equitably “due to the number and variety of community groups.”
Overall, the challenges facing Gulf offshore wind are representative of a theme that runs through renewable energy development. As much as the costs for technologies like wind and solar have plunged, what works in one place may not work in another. The cost of offshore wind in the Gulf may never match the cost of offshore wind in the Atlantic. But as Netherton said, there’s still a lot of room for innovation.
Read more about wind power:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Elgin Energy Center is back from the dead.
At least one natural gas plant in America’s biggest energy market that was scheduled to shut down is staying open. Elgin Energy Center, an approximately 500 megawatt plant in Illinois approximately 40 miles northwest of downtown Chicago was scheduled to shut down next June, according to filings with the Federal Energy Regulatory Commission and officials from PJM Interconnection, the country’s largest regional transmission organization, which governs the relevant portion of the U.S. grid. Elgin’s parent company “no longer intends to deactivate and retire all four units ... at the Elgin Energy Center,” according to a letter dated September 4 and posted to PJM’s website Wednesday.
The Illinois plant is something of a poster child for PJM’s past few years. In 2022, it was one of many natural gas plants to shut down during Winter Storm Elliott as the natural gas distribution seized up. Its then-parent company, Lincoln Power — owned by Cogentrix, the Carlyle Group’s vehicle for its power business — filed for bankruptcy the following year, after PJM assessed almost $40 million in penalties for failing to operate during the storm. In June, a bankruptcy court approved the acquisition of the Elgin plant, along with one other, by Middle River Power, a generation business backed by Avenue Capital, a $12 billion investment firm, in a deal that was closed in December.
The decision to continue operating the plant past its planned deactivation comes as PJM set a new price record at its capacity auction in July, during which generators submitted bids for power that can be deployed when the grid is under stress due to high demand. The $14.7 billion auction was a massive jump from the previous one, which finished at just over $2 billion. Ironically, one reason the most recent auction was so expensive is that PJM gave less credit to natural gas generators for their capacity following Winter Storm Elliott, which then drove up auction prices, leading to large payouts for gas plants. PJM said the high auction prices were “caused primarily by a large number of generator retirements.”
In a bankruptcy court filing in 2023, Lincoln Power’s chief restructuring officer said that the company “was experiencing a liquidity crunch” due to low prices in past capacity auction, which meant that it had “received significantly less revenues for the capacity they sold in those Capacity Auctions as compared to previous Capacity Auctions.” With higher capacity revenues in PJM, presumably Elgin's business has improved.
Many analysts are skeptical that PJM can quickly get new load onto the system to bring prices down meaningfully in subsequent auctions — the next one is in December — and the PJM queue for new projects is absurdly clogged. This only juices the incentives for older fossil plants to stay open.
“This shortage of capacity is happening immediately,” Nicholas Freschi, senior associate at Gabel Associates, told me last week. “There might be more resources, and PJM might be able to coerce some retiring or not participating plants to make up for the shortfall. It’s an immediate problem.”
Neither Middle River nor its attorney representing the company before FERC returned requests for comment.
On the presidential debate, California’s wildfires, and the nuclear workforce
Current conditions: Hurricane Francine is approaching Louisiana as a Category 1 storm • The streets of Vietnam’s capital of Hanoi are flooded after Typhoon Yagi, and the death toll has reached 143 • Residents of Nigeria’s northern Borno state are urged to watch out for crocodiles and snakes that escaped from a zoo due to flooding.
Former President Trump and Vice President Kamala Harris squared off on the debate stage in Philadelphia last night. Here are some important climate and energy highlights from the evening:
Three large wildfires – the Line fire, the Bridge fire, and the Airport fire – are burning in Southern California, fueled by intense heat and thick, dry vegetation. Already more than 100,000 acres have been scorched. The Line fire is closing in on the popular vacation destination Big Bear, and is threatening some 65,000 structures. Los Angeles County Fire Chief Anthony Marrone said the scale of the emergencies is straining firefighting resources, and FEMA is sending financial aid to the state. In neighboring Nevada, the Davis Fire has grown to nearly 6,000 acres and is burning toward ski resorts in Tahoe. Temperatures in the region started to cool yesterday after a long and brutal heat wave. The weather shift could help firefighters bring the blazes under control.
The White House is launching an American Climate Corps national tour this fall to highlight the work being carried out by corps members in different communities and showcase important projects. The events will feature remarks from the administration and other officials, roundtable talks with ACC members, and swearing-in ceremonies. The tour began in Maine this week with a focus on climate resilience and urban forestry, and heads to Arizona next week. The rest of the schedule is as follows, with more dates to come:
The number of students studying to become nuclear engineers is declining as demand for carbon-free nuclear energy is on the rise, according toThe Wall Street Journal. Citing data from the Oak Ridge Institute for Science and Education, the Journal reported that just 454 students in the U.S. graduated with a degree in the field in 2022, down 25% from a decade earlier. Meanwhile, the industry’s workforce is aging. “We need nuclear expertise in order to combat climate change,” said Sara Pozzi, professor of nuclear engineering and radiological sciences at the University of Michigan. “We are at a crucial point where we need to produce the new generation of nuclear experts so that they can work with the older generation and learn from them.” The drop in new recruits comes down to nuclear’s image problem thanks to public disasters like Chernobyl and Fukushima, the Journal speculated.
Critical metal refining company Nth Cycle announced this week it has become the first company to produce nickel and cobalt mixed hydroxide precipitate (MHP) in the U.S. following the opening of its commercial-scale facility in Ohio. The company’s “Oyster” technology uses electricity to turn recyclable industrial scrap and mined ore into MHP, a key component in clean-energy technologies like batteries. “This revolutionary innovation replaces pyrometallurgy with one of the cleanest technologies in the world, and accelerates the net zero targets of the public and private sector,” the company said in a press release. It claims the Ohio unit can produce 900 metric tons of MHP per year, which would be enough to supply batteries for 22 million cell phones. The company says its process reduces emissions by 90% compared to traditional mining methods and can help EV manufacturers meet the IRA’s sourcing requirements.
A new nationwide poll of 1,000 registered U.S. voters found that 90% of respondents support President Biden’s federal clean energy incentives in the Inflation Reduction Act, including 78% of respondents who said they were Trump voters.
Maybe you’ve never heard of it. Maybe you know it too well. But to a certain type of clean energy wonk, it amounts to perhaps the three most dreaded words in climate policy: the interconnection queue.
The queue is the process by which utilities decide which wind and solar farms get to hook up to the power grid in the United States. Across much of the country, it has become so badly broken and clogged that it can take more than a decade for a given project to navigate.
On this week’s episode of Shift Key, Jesse and Rob speak with two experts about how to understand — and how to fix — what is perhaps the biggest obstacle to deploying more renewables on the U.S. power grid. Tyler Norris is a doctoral student at Duke University’s Nicholas School of the Environment. He was formerly vice president of development at Cypress Creek Renewables, and he served on North Carolina Governor Roy Cooper’s Carbon Policy Working Group. Claire Wayner is a senior associate at RMI’s carbon-free electricity program, where she works on the clean and competitive grids team. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Can I interject and just ask why, over the past decade, the interconnection queue got much longer — but also over the past decade, 15 years, the U.S. grid did change in character and in fuel type a lot, right? We went from burning a lot of coal to a lot of natural gas. And that transition is often cited as one of the model transitions, one of the few energy transitions to happen globally that happened at the speed with which we would need to decarbonize. Obviously, switching coal to gas is not decarbonizing, but it is a model — it happened fast enough that it is a good model for what decarbonizing would look like in order to meet climate goals.
Evidently, that did not run into these kind of same interconnection queue problems. Why is that? Is that because we were swapping in within individual power plants? We were just changing the furnace from a coal furnace to a gas furnace? Is that because these were larger projects and so it didn’t back up in the queue in the same way that a lot of smaller solar or wind farms do?
Claire Wayner: I would say all the reasons you just gave are valid, yeah. The coal to gas transition involved, likely, a lot of similar geographic locations. With wind and solar, we’re seeing them wanting to build on the grid and in a lot of cases in new, rather remote locations that are going to require new types of grid upgrades that the coal to gas transition just doesn’t have.
Jesse Jenkins: Maybe it is — to use a metaphor here — it’s a little bit like traffic congestion. If you add a generator to the grid, it’s trying to ship its power through the grid, and that decision to add your power mix to the grid combines with everyone else that’s also generating and consuming power to drive traffic jams or congestion in different parts of the grid, just like your decision to hop in the car and drive to work or to go into the city for the weekend to see a show or whatever you’re doing. It’s not just your decision. It’s everyone’s combined decisions that affects travel times on the grid.
Now, the big difference between the grid and travel on roads or most other forms of networks we’re used to is that you don’t get to choose which path to go down. If you’re sending electricity to the grid, electricity flows with physics down the path of least resistance or impedance, which is the alternating current equivalent of resistance. And so it’s a lot more like rivers flowing downhill from gravity, right? You don’t get to choose which branch of the river you go down. It’s just, you know, gravity will take you. And so you adding your power flows to the grid creates complicated flows based on the physics of this mesh network that spans a continent and interacts with everyone else on the grid.
And so when you’re going from probably a few dozen large natural gas generators added that operate very similarly to the plants that they’re replacing to hundreds of gigawatts across thousands of projects scattered all over the grid with very complicated generation profiles because they’re weather-dependent renewables, it’s just a completely different challenge for the utilities.
So the process that the regional grid operators developed in the 2000s, when they were restructuring and taking over that role of regional grid operator, it’s just not fit for purpose at all for what we face today. And I want to highlight another thing you mentioned, which is the software piece of it, too. These processes, they are using software and corporate processes that were also developed 10 or 20 years ago. And we all know that software and computing techniques have gotten quite a bit better over a decade or two. And rarely have utilities and grid operators really kept pace with those capabilities.
Wayner: Can I just say, I’ve heard that in some regions, interconnection consists of still sending back and forth Excel files. To Tyler’s point earlier that we only just now are getting data on the interconnection queue nationwide and how it stands, that’s one challenge that developers are facing is a lack of data transparency and rapid processing from the transmission providers and the grid operators.
And so, to use an analogy that my colleague Sarah Toth uses a lot, which I really love: Imagine if we had a Domino’s pizza tracker for the interconnection queue, and that developers could just log on and see how their projects are doing in many, if not most regions. They don’t even have that visibility. They don’t know when their pizza is going to get delivered, or if it’s in the oven.
This episode of Shift Key is sponsored by …
Watershed’s climate data engine helps companies measure and reduce their emissions, turning the data they already have into an audit-ready carbon footprint backed by the latest climate science. Get the sustainability data you need in weeks, not months. Learn more at watershed.com.
As a global leader in PV and ESS solutions, Sungrow invests heavily in research and development, constantly pushing the boundaries of solar and battery inverter technology. Discover why Sungrow is the essential component of the clean energy transition by visiting sungrowpower.com.
Antenna Group helps you connect with customers, policymakers, investors, and strategic partners to influence markets and accelerate adoption. Visit antennagroup.com to learn more.
Music for Shift Key is by Adam Kromelow.