You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Heat pumps are cool. Neighborhood geothermal might be cooler.

A landmark project with major implications for how Americans could cleanly heat and cool their homes broke ground in Framingham, Massachusetts, on Monday.
Eversource, the largest gas and electric utility in New England, began construction on its first “networked geothermal” system. The company will connect 32 residential and five commercial buildings in a single neighborhood to underground water pipes, which will draw on the steady temperature of the ground beneath the earth’s surface to air condition and heat the buildings without fossil fuels.
Clean energy advocates across the country are looking to the demonstration as a test of the idea that natural gas utilities can remain in business in a decarbonized world by managing a network of pipes filled with water instead of climate-warming gas.
“I would say it's not just being watched nationally, it's being watched globally,” Zeyneb Magavi, the co-executive director of the Massachusetts-based clean energy nonprofit HEET, told me. Magavi and her partner, Audrey Schulman, dreamed up the idea of transforming gas utilities into geothermal utilities several years ago, and were instrumental in getting Eversource to consider the project.
“If they succeed enough, and I have no doubt they will, they're gonna be the founding install of a new utility that's going to be the foundation of our future energy system,” she said. “It's not that often that you get to give birth to a new utility.”
Geothermal heating systems have been around for nearly a century, and are known for being incredibly efficient. You may have heard of air-source heat pumps, commonly referred to simply as heat pumps, which function like an air conditioner in the summer and a furnace in the winter by transferring heat inside and outside the building. Geothermal heat pumps work similarly, but they use the ground as a source and sink for heat, rather than the ambient air. (They are different, but related to geothermal power plants, which tap into much hotter reservoirs underground to generate electricity.) Since the ground is a more stable temperature than the air, geothermal heat pumps require less energy. Networked geothermal systems have the potential to reduce energy use even more.
Many individual homes and buildings run on geothermal heating systems today, but all the drilling and piping translates into big upfront costs. Magavi told me the spark of HEET’s idea for a neighborhood-wide system dates back to 2008, when she wanted to install geothermal at her own home, but couldn’t afford it. Later, when she joined HEET and began thinking about what a future without gas could look like, she and Schulman discovered geothermal projects elsewhere in the country, such as a small town in Iowa, and a college campus in Colorado, where multiple buildings were linked to the same pipes. The systems didn’t seem all that different from the gas distribution networks they were looking to replace.
The project in Framingham involves building a new set of pipelines alongside the gas system. Each participating building will get a service pipe connecting it to a main horizontal line that runs through the neighborhood, which is in turn connected to a series of vertical lines that go about 500 feet deep. Water runs through the system, bringing heat up from the ground and delivering it to heat pumps inside the buildings in the winter, or absorbing heat from the homes and dumping it back underground in the summer.

The whole system is expected to be up and running by the fall. Eversource estimates the project will cost $14.7 million, and has received approval from regulators to pay for it with ratepayer funds, spread across its entire customer base. Participants will not pay any additional fees on top of the cost to run the heat pump equipment on their electricity bill. They will retain their existing heating and cooling systems, and will have the option to go back to them after the two-year pilot period.
Residents could see a 20% reduction in energy costs, according to Eversource, and around a 60% decrease in carbon emissions, taking into account the current electricity supply. The company will be gathering data throughout the pilot to confirm the actual cost, energy, and carbon savings of the project. “We also want to make a strong business case for why this should be done by the utility and why it makes sense for us to be building out systems like this,” said Eric Bosworth, the senior program manager for clean technologies at Eversource.
Magavi and Schulman see networked geothermal as an elegant solution to one of the biggest challenges of tackling climate change: avoiding what’s known as the utility death-spiral. If people begin swapping out their natural gas heaters for electric heat pumps, they will drive up costs for remaining gas customers, which will motivate more people to go electric, and inflate gas bills even more.
Geothermal presents a path for utilities to retain their customers. They already have the expertise to build and manage underground pipelines and heating equipment. And Magavi argues that if utilities take on the up front costs, it would give people more equitable access to clean energy. “You can just sign up with the utility — you don't have to have upfront capital, knowledge, or time,” she said. “That equity of access is something that is necessary for a just transition.”
If geothermal heating and cooling were to really take off, it could also help with another major climate challenge — the electric grid. The switch to electric vehicles and heat pumps is going to require a massive expansion of clean electricity resources and transmission and distribution wires. Widespread adoption of geothermal heat pumps could minimize that buildout. Boswoth told me that geothermal networks could be strategically deployed in areas that are electrically constrained.
Many climate advocates also like the idea because it presents a clear transition opportunity for natural gas workers, like those in the Plumbers and Pipefitters Union that build and maintain gas pipelines. “Networked geothermal systems could be a promising option for providing high road job opportunities to these workers,” Jenna Tatum of the Building Electrification Institute told me.
But that’s one aspect of the promise of networked geothermal that the Framingham project won’t be demonstrating. Eversource hired a third party construction company and hasn’t entered an agreement with any unions yet, although Bosworth said the company was actively engaged with the Pipefitters Union regarding longer-term geothermal plans.
The pilot in Framingham will be the first networked geothermal system operated by a utility, but it definitely won’t be the last. Massachusetts regulators have approved a handful of additional networked geothermal projects to be owned and operated by Eversource and another gas utility, National Grid. New York State is also moving forward on a number of utility-owned pilots. Several other states, like Minnesota, have also passed laws that encourage gas utilities to pursue geothermal.
“We expect that we're going to see a pretty significant pilot proposal in [utility] plans modeled after the work that's been done out East,” Joe Dammel, managing director of buildings for Fresh Energy, a Minnesota-based clean energy nonprofit, told me.
One challenge that’s come up as the idea has taken off is that no one can seem to agree about what it should be called. While the term is “networked geothermal” in Massachusetts, New York is using “thermal energy network.” Magavi said it’s also been referred to as “community geothermal,” a “thermal highway,” an ATL or “ambient temperature loop,” a “heatnet” and a “5G” network. All of this is further complicated by the fact that the terms “geothermal energy,” “heat pumps,” and “district energy,” can all refer to fundamentally different technologies.
“It’s a nightmare,” she told me. She said she’s initiated a campaign with the National Renewable Energy Laboratory and the Department of Energy to set language standards. “There’s a survey currently going out to everyone to ask them what they think about all the different names.”
The Framingham pilot could be significantly expanded if all goes well. HEET collaborated with Eversource to apply for funding from the Department of Energy for a second networked geothermal system in the city that would be connected to the first one, and was recently awarded a $717,000 grant.
Advocates like Magavi hope these projects will turn into a full-on transition strategy for utilities to move away from a business model based on gas or other fuels. At the groundbreaking on Monday, Eversource chairman, president, and CEO Joe Nolan made a bold statement that seemed to support that notion. “As we transition to a carbon-free future, this is going to be the answer for everybody,” he said. “And it’s all starting right here.”
But when I talked to Bosworth, he qualified that at this point the company sees geothermal as one “tool in the proverbial toolbelt.” Like many utilities, Eversource is also exploring the potential to deliver lower-carbon fuels like biogas and hydrogen through its gas lines.
“We want to take a look at any and all potential pathways and really vet them for what is viable, and what works where,” Bosworth told me. “We will use a combined approach to get to our carbon neutrality goals.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Forget data centers. Fire is going to make electricity much more expensive in the western United States.
A tsunami is coming for electricity rates in the western United States — and it’s not data centers.
Across the western U.S., states have begun to approve or require utilities to prepare their wildfire adaptation and insurance plans. These plans — which can require replacing equipment across thousands of miles of infrastructure — are increasingly seen as non-negotiable by regulators, investors, and utility executives in an era of rising fire risk.
But they are expensive. Even in states where utilities have not yet caused a wildfire, costs can run into the tens or hundreds of millions of dollars. Of course, the cost of sparking a fire can be much higher.
At least 10 Western states have recently approved or are beginning to work on new wildfire mitigation plans, according to data from E9 Insights, a utility research and consulting firm. Some utilities in the Midwest and Southeast have now begun to put together their own proposals, although they are mostly at an earlier phase of planning.
“Almost every state in the West has some kind of wildfire plan or effort under way,” Sam Kozel, a researcher at E9, told me. “Even a state like Missouri is kicking the tires in some way.”
The costs associated with these plans won’t hit utility customers for years. But they reflect one more building cost pressure in the electricity system, which has been stressed by aging equipment and rising demand. The U.S. Energy Information Administration already expects wholesale electricity prices to increase 8.5% in 2026.
The past year has seen a new spate of plans. In October, Colorado’s largest utility Xcel Energy proposed more than $845 million in new spending to prepare for wildfires. The Oregon utility Portland General Electric received state approval to spend $635 million on “compliance-related upgrades” to its distribution system earlier this month. That category includes wildfire mitigation costs.
The Public Utility Commission of Texas issued its first mandatory wildfire-mitigation rules last month, which will require utilities and co-ops in “high-risk” areas to prepare their own wildfire preparedness programs.
Ultimately, more than 140 utilities across 19 states have prepared or are working on wildfire preparedness plans, according to the Pacific Northwest National Laboratory.
It will take years for this increased utility spending on wildfire preparedness to show up in customers’ bills. That’s because utilities can begin spending money for a specific reason, such as disaster preparedness, as soon as state regulators approve their plan to do so. But utilities can’t begin passing those costs to customers until regulators review their next scheduled rate hike through a special process known as a rate case.
When they do get passed through, the plans will likely increase costs associated with the distribution system, the network of poles and wires that deliver electricity “the last mile” from substations to homes and businesses. Since 2019, rising distribution-related costs has driven the bulk of electricity price inflation in the United States. One risk is that distribution costs will keep rising at the same time that electricity itself — as well as natural gas — get more expensive, thanks to rising demand from data centers and economic growth.
California offers a cautionary tale — both about what happens when you don’t prepare for fire, and how high those costs can get. Since 2018, the state has spent tens of billions to pay for the aftermath of those blazes that utilities did start and remake its grid for a new era of fire. Yet it took years for those costs to pass through to customers.
“In California, we didn’t see rate increases until 2023, but the spending started in 2018,” Michael Wara, a senior scholar at the Woods Institute for the Environment and director of the Climate and Energy Policy Program at Stanford University, told me.
The cost of failing to prepare for wildfires can, of course, run much higher. Pacific Gas and Electric paid more than $13.5 billion to wildfire victims in California after its equipment was linked to several deadly fires in the state. (PG&E underwent bankruptcy proceedings after its equipment was found responsible for starting the 2018 Camp Fire, which killed 85 people and remains the deadliest and most destructive wildfire in state history.)
California now has the most expensive electricity in the continental United States.
Even the risk of being associated with starting a fire can cost hundreds of millions. In September, Xcel Energy paid a $645 million settlement over its role in the 2021 Marshall fire, even though it has not admitted to any responsibility or negligence in the fire.
Wara’s group began studying the most cost-effective wildfire investments a few years ago, when he realized the wave of cost increases that had hit California would soon arrive for other utilities.
It was partly “informed by the idea that other utility commissions are not going to allow what California has allowed,” Wara said. “It’s too expensive. There’s no way.”
Utilities can make just a few cost-effective improvements to their systems in order to stave off the worst wildfire risk, he said. They should install weather stations along their poles and wires to monitor actual wind conditions along their infrastructure’s path, he said. They should also install “fast trip” conductors that can shut off powerlines as soon as they break.
Finally, they should prepare — and practice — plans to shut off electricity during high-wind events, he said. These three improvements are relatively cheap and pay for themselves much faster than upgrades like undergrounding lines, which can take more than 20 years to pay off.
Of course, the cost of failing to prepare for wildfires is much higher than the cost of preparation. From 2019 to 2023, California allowed its three biggest investor-owned utilities to collect $27 billion in wildfire preparedness and insurance costs, according to a state legislative report. These costs now make up as much as 13% of the bill for customers of PG&E, the state’s largest utility.
State regulators in California are currently considering the utility PG&E’s wildfire plan for 2026 to 2028, which calls for undergrounding 1,077 miles of power lines and expanding vegetation management programs. Costs from that program might not show up in bills until next decade.
“On the regulatory side, I don’t think a lot of these rate increases have hit yet,” Kozel said.
California may wind up having an easier time adapting to wildfires than other Western states. About half of the 80 million people who live in the west live in California, according to the Census Bureau, meaning that the state simply has more people who can help share the burden of adaptation costs. An outsize majority of the state’s residents live in cities — which is another asset, since wildfire adaptation usually involves getting urban customers to pay for costs concentrated in rural areas.
Western states where a smaller portion of residents live in cities, such as Idaho, might have a harder time investing in wildfire adaptation than California did, Wara said.
“The costs are very high, and they’re not baked in,” Wara said. “I would expect electricity cost inflation in the West to be driven by this broadly, and that’s just life. Climate change is expensive.”
The administration has already lost once in court wielding the same argument against Revolution Wind.
The Trump administration says it has halted all construction on offshore wind projects, citing “national security concerns.”
Interior Secretary Doug Burgum announced the move Monday morning on X: “Due to national security concerns identified by @DeptofWar, @Interior is PAUSING leases for 5 expensive, unreliable, heavily subsidized offshore wind farms!”
There are only five offshore wind projects currently under construction in U.S. waters: Vineyard Wind, Revolution Wind, Coastal Virginia Offshore Wind, Sunrise Wind, and Empire Wind. Burgum confirmed to Fox Business that these were the five projects whose leases have been targeted for termination, and that notices were being sent to the project developers today to halt work.
“The Department of War has come back conclusively that the issues related to these large offshore wind programs create radar interference, create genuine risk for the U.S., particularly related to where they are in proximity to our East Coast population centers,” Burgum told the network’s Maria Bartiromo.
David Schoetz, a spokesperson for Empire Wind's developer Equinor, told me the company is “aware of the stop work order announced by the Department of Interior,” and that the company is “evaluating the order and seeking further information from the federal government.” Schoetz added that we should ”expect more to come” from the company.
This action takes a kernel of truth — that offshore wind can cause interference with radar communication — and blows it up well beyond its apparent implications. Interior has cited reports from the military they claim are classified, so we can’t say what fresh findings forced defense officials to undermine many years of work to ensure that offshore wind development does not impede security or the readiness of U.S. armed forces.
The Trump administration has already lost once in court with a national security argument, when it tried to halt work on Revolution Wind citing these same concerns. The government’s case fell apart after project developer Orsted presented clear evidence that the government had already considered radar issues and found no reason to oppose the project. The timing here is also eyebrow-raising, as the Army Corps of Engineers — a subagency within the military — approved continued construction on Vineyard Wind just three days ago.
It’s also important to remember where this anti-offshore wind strategy came from. In January, I broke news that a coalition of activists fighting against offshore wind had submitted a blueprint to Trump officials laying out potential ways to stop projects, including those already under construction. Among these was a plan to cancel leases by citing national security concerns.
In a press release, the American Clean Power Association took the Trump administration to task for “taking more electricity off the grid while telling thousands of American workers to leave the job site.”
“The Trump Administration’s decision to stop construction of five major energy projects demonstrates that they either don’t understand the affordability crises facing millions of Americans or simply don't care,” the group said. “On the first day of this Administration, the President announced an energy emergency. Over the last year, they worked to create one with electricity prices rising faster under President Trump than any President in recent history."
What comes next will be legal, political and highly dramatic. In the immediate term, it’s likely that after the previous Revolution victory, companies will take the Trump administration to court seeking preliminary injunctions as soon as complaints can be drawn up. Democrats in Congress are almost certainly going to take this action into permitting reform talks, too, after squabbling over offshore wind nearly derailed a House bill revising the National Environmental Policy Act last week.
Heatmap has reached out to all of the offshore wind developers affected, and we’ll update this story if and when we hear back from them.
Editor’s note: This story has been updated to reflect comment from Equinor and ACP.
On Redwood Materials’ milestone, states welcome geothermal, and Indian nuclear
Current conditions: Powerful winds of up to 50 miles per hour are putting the Front Range states from Wyoming to Colorado at high risk of wildfire • Temperatures are set to feel like 101 degrees Fahrenheit in Santa Fe in northern Argentina • Benin is bracing for flood flooding as thunderstorms deluge the West African nation.

New York Governor Kathy Hochul inked a partnership agreement with Ontario Premier Doug Ford on Friday to work together on establishing supply chains and best practices for deploying next-generation nuclear technology. Unlike many other states whose formal pronouncements about nuclear power are limited to as-yet-unbuilt small modular reactors, the document promised to establish “a framework for collaboration on the development of advanced nuclear technologies, including large-scale nuclear” and SMRs. Ontario’s government-owned utility just broke ground on what could be the continent’s first SMR, a 300-megawatt reactor with a traditional, water-cooled design at the Darlington nuclear plant. New York, meanwhile, has vowed to build at least 1 gigawatt of new nuclear power in the state through its government-owned New York Power Authority. Heatmap’s Matthew Zeitlin wrote about the similarities between the two state-controlled utilities back when New York announced its plans. “This first-of-its-kind agreement represents a bold step forward in our relationship and New York’s pursuit of a clean energy future,” Hochul said in a press release. “By partnering with Ontario Power Generation and its extensive nuclear experience, New York is positioning itself at the forefront of advanced nuclear technology deployment, ensuring we have safe, reliable, affordable, and carbon-free energy that will help power the jobs of tomorrow.”
Hochul is on something of a roll. She also repealed a rule that’s been on the books for nearly 140 years that provided free hookups to the gas system for new customers in the state. The so-called 100-foot-rule is a reference to how much pipe the state would subsidize. The out-of-pocket cost for builders to link to the local gas network will likely be thousands of dollars, putting the alternative of using electric heat and cooking appliances on a level playing field. “It’s simply unfair, especially when so many people are struggling right now, to expect existing utility ratepayers to foot the bill for a gas hookup at a brand new house that is not their own,” Hochul said in a statement. “I have made affordability a top priority and doing away with this 40-year-old subsidy that has outlived its purpose will help with that.”
Redwood Materials, the battery recycling startup led by Tesla cofounder J.B. Straubel, has entered into commercial production at its South Carolina facility. The first phase of the $3.5 billion plant “has brought a system online that’s capable of recovering 20,000 metric tons of critical minerals annually, which isn’t full capacity,” Sawyer Merritt, a Tesla investor, posted on X. “Redwood’s goal is to keep these resources here; recovered, refined, and redeployed for America’s advantage,” the company wrote in a blog post on its website. “This strategy turns yesterday’s imports into tomorrow’s strategic stockpile, making the U.S. stronger, more competitive, and less vulnerable to supply chains controlled by China and other foreign adversaries.”
A 13-state alliance at the National Association of State Energy Officials launched a new accelerator program Friday that’s meant to “rapidly expand geothermal power development.” The effort, led by state energy offices in Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia, “will work to establish statewide geothermal power goals and to advance policies and programs that reduce project costs, address regulatory barriers, and speed the deployment of reliable, firm, flexible power to the grid.” Statements from governors of red and blue states highlighted the energy source’s bipartisan appeal. California Governor Gavin Newsom, a Democrat, called geothermal a key tool to “confront the climate crisis.” Idaho’s GOP Governor Brad Little, meanwhile, said geothermal power “strengthens communities, supports economic growth, and keeps our grid resilient.” If you want to review why geothermal is making a comeback, read this piece by Matthew.
Sign up to receive Heatmap AM in your inbox every morning:
Yet another pipeline is getting the greenlight. Last week, the Federal Energy Regulatory Commission approved plans for Mountain Valley’s Southgate pipeline, clearing the way for construction. The move to shorten the pipeline’s length from 75 miles down to 31 miles, while increasing the diameter of the project to 30 inches from between 16 and 23 inches, hinged on whether FERC deemed the gas conduit necessary. On Thursday, E&E News reported, FERC said the developers had demonstrated a need for the pipeline stretching from the existing Mountain Valley pipeline into North Carolina.
Last week, I told you about a bill proposed in India’s parliament to reform the country’s civil liability law and open the nuclear industry to foreign companies. In the 2010s, India passed a law designed to avoid another disaster like the 1984 Bhopal chemical leak that killed thousands but largely gave the subsidiary of the Dow Chemical Corporation that was responsible for the accident a pass on payouts to victims. As a result, virtually no foreign nuclear companies wanted to operate in India, lest an accident result in astronomical legal expenses in the country. (The one exception was Russia’s state-owned Rosatom.) In a bid to attract Western reactor companies, Indian lawmakers in both houses of parliament voted to repeal the liability provisions, NucNet reported.
The critically endangered Lesser Antillean iguana has made a stunning recovery on the tiny, uninhabited islet of Prickly Pear East near Anguilla. A population of roughly 10 breeding-aged lizards ballooned to 500 in the past five years. “Prickly Pear East has become a beacon of hope for these gorgeous lizards — and proves that when we give native wildlife the chance, they know what to do,” Jenny Daltry, Caribbean Alliance Director of nature charities Fauna & Flora and Re:wild, told Euronews.