You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Heat pumps are cool. Neighborhood geothermal might be cooler.
A landmark project with major implications for how Americans could cleanly heat and cool their homes broke ground in Framingham, Massachusetts, on Monday.
Eversource, the largest gas and electric utility in New England, began construction on its first “networked geothermal” system. The company will connect 32 residential and five commercial buildings in a single neighborhood to underground water pipes, which will draw on the steady temperature of the ground beneath the earth’s surface to air condition and heat the buildings without fossil fuels.
Clean energy advocates across the country are looking to the demonstration as a test of the idea that natural gas utilities can remain in business in a decarbonized world by managing a network of pipes filled with water instead of climate-warming gas.
“I would say it's not just being watched nationally, it's being watched globally,” Zeyneb Magavi, the co-executive director of the Massachusetts-based clean energy nonprofit HEET, told me. Magavi and her partner, Audrey Schulman, dreamed up the idea of transforming gas utilities into geothermal utilities several years ago, and were instrumental in getting Eversource to consider the project.
“If they succeed enough, and I have no doubt they will, they're gonna be the founding install of a new utility that's going to be the foundation of our future energy system,” she said. “It's not that often that you get to give birth to a new utility.”
Geothermal heating systems have been around for nearly a century, and are known for being incredibly efficient. You may have heard of air-source heat pumps, commonly referred to simply as heat pumps, which function like an air conditioner in the summer and a furnace in the winter by transferring heat inside and outside the building. Geothermal heat pumps work similarly, but they use the ground as a source and sink for heat, rather than the ambient air. (They are different, but related to geothermal power plants, which tap into much hotter reservoirs underground to generate electricity.) Since the ground is a more stable temperature than the air, geothermal heat pumps require less energy. Networked geothermal systems have the potential to reduce energy use even more.
Many individual homes and buildings run on geothermal heating systems today, but all the drilling and piping translates into big upfront costs. Magavi told me the spark of HEET’s idea for a neighborhood-wide system dates back to 2008, when she wanted to install geothermal at her own home, but couldn’t afford it. Later, when she joined HEET and began thinking about what a future without gas could look like, she and Schulman discovered geothermal projects elsewhere in the country, such as a small town in Iowa, and a college campus in Colorado, where multiple buildings were linked to the same pipes. The systems didn’t seem all that different from the gas distribution networks they were looking to replace.
The project in Framingham involves building a new set of pipelines alongside the gas system. Each participating building will get a service pipe connecting it to a main horizontal line that runs through the neighborhood, which is in turn connected to a series of vertical lines that go about 500 feet deep. Water runs through the system, bringing heat up from the ground and delivering it to heat pumps inside the buildings in the winter, or absorbing heat from the homes and dumping it back underground in the summer.
Illustration of a networked geothermal systemAnara Magavi/HEET
The whole system is expected to be up and running by the fall. Eversource estimates the project will cost $14.7 million, and has received approval from regulators to pay for it with ratepayer funds, spread across its entire customer base. Participants will not pay any additional fees on top of the cost to run the heat pump equipment on their electricity bill. They will retain their existing heating and cooling systems, and will have the option to go back to them after the two-year pilot period.
Residents could see a 20% reduction in energy costs, according to Eversource, and around a 60% decrease in carbon emissions, taking into account the current electricity supply. The company will be gathering data throughout the pilot to confirm the actual cost, energy, and carbon savings of the project. “We also want to make a strong business case for why this should be done by the utility and why it makes sense for us to be building out systems like this,” said Eric Bosworth, the senior program manager for clean technologies at Eversource.
Magavi and Schulman see networked geothermal as an elegant solution to one of the biggest challenges of tackling climate change: avoiding what’s known as the utility death-spiral. If people begin swapping out their natural gas heaters for electric heat pumps, they will drive up costs for remaining gas customers, which will motivate more people to go electric, and inflate gas bills even more.
Geothermal presents a path for utilities to retain their customers. They already have the expertise to build and manage underground pipelines and heating equipment. And Magavi argues that if utilities take on the up front costs, it would give people more equitable access to clean energy. “You can just sign up with the utility — you don't have to have upfront capital, knowledge, or time,” she said. “That equity of access is something that is necessary for a just transition.”
If geothermal heating and cooling were to really take off, it could also help with another major climate challenge — the electric grid. The switch to electric vehicles and heat pumps is going to require a massive expansion of clean electricity resources and transmission and distribution wires. Widespread adoption of geothermal heat pumps could minimize that buildout. Boswoth told me that geothermal networks could be strategically deployed in areas that are electrically constrained.
Many climate advocates also like the idea because it presents a clear transition opportunity for natural gas workers, like those in the Plumbers and Pipefitters Union that build and maintain gas pipelines. “Networked geothermal systems could be a promising option for providing high road job opportunities to these workers,” Jenna Tatum of the Building Electrification Institute told me.
But that’s one aspect of the promise of networked geothermal that the Framingham project won’t be demonstrating. Eversource hired a third party construction company and hasn’t entered an agreement with any unions yet, although Bosworth said the company was actively engaged with the Pipefitters Union regarding longer-term geothermal plans.
The pilot in Framingham will be the first networked geothermal system operated by a utility, but it definitely won’t be the last. Massachusetts regulators have approved a handful of additional networked geothermal projects to be owned and operated by Eversource and another gas utility, National Grid. New York State is also moving forward on a number of utility-owned pilots. Several other states, like Minnesota, have also passed laws that encourage gas utilities to pursue geothermal.
“We expect that we're going to see a pretty significant pilot proposal in [utility] plans modeled after the work that's been done out East,” Joe Dammel, managing director of buildings for Fresh Energy, a Minnesota-based clean energy nonprofit, told me.
One challenge that’s come up as the idea has taken off is that no one can seem to agree about what it should be called. While the term is “networked geothermal” in Massachusetts, New York is using “thermal energy network.” Magavi said it’s also been referred to as “community geothermal,” a “thermal highway,” an ATL or “ambient temperature loop,” a “heatnet” and a “5G” network. All of this is further complicated by the fact that the terms “geothermal energy,” “heat pumps,” and “district energy,” can all refer to fundamentally different technologies.
“It’s a nightmare,” she told me. She said she’s initiated a campaign with the National Renewable Energy Laboratory and the Department of Energy to set language standards. “There’s a survey currently going out to everyone to ask them what they think about all the different names.”
The Framingham pilot could be significantly expanded if all goes well. HEET collaborated with Eversource to apply for funding from the Department of Energy for a second networked geothermal system in the city that would be connected to the first one, and was recently awarded a $717,000 grant.
Advocates like Magavi hope these projects will turn into a full-on transition strategy for utilities to move away from a business model based on gas or other fuels. At the groundbreaking on Monday, Eversource chairman, president, and CEO Joe Nolan made a bold statement that seemed to support that notion. “As we transition to a carbon-free future, this is going to be the answer for everybody,” he said. “And it’s all starting right here.”
But when I talked to Bosworth, he qualified that at this point the company sees geothermal as one “tool in the proverbial toolbelt.” Like many utilities, Eversource is also exploring the potential to deliver lower-carbon fuels like biogas and hydrogen through its gas lines.
“We want to take a look at any and all potential pathways and really vet them for what is viable, and what works where,” Bosworth told me. “We will use a combined approach to get to our carbon neutrality goals.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Give the people what they want — big, family-friendly EVs.
The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.
I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.
The L.A. show is one the major events on the yearly circuit of car shows, where the car companies traditionally reveal new models for the media and show off their whole lineups of vehicles for the public. Given that California is the EV capital of America, carmakers like to talk up their electric models here.
Hyundai’s brand partner, Kia, debuted a GT performance version of its EV9, adding more horsepower and flashy racing touches to a giant family SUV. Jeep reminded everyone of its upcoming forays into full-size and premium electric SUVs in the form of the Recon and the Wagoneer S. VW trumpeted the ID.Buzz, the long-promised electrified take on the classic VW Microbus that has finally gone on sale in America. The VW is the quirkiest of the lot, but it’s a design we’ve known about since 2017, when the concept version was revealed.
Boring isn’t the worst thing in the world. It can be a sign of a maturing industry. At auto shows of old, long before this current EV revolution, car companies would bring exotic, sci-fi concept cars to dial up the intrigue compared to the bread-and-butter, conservatively styled vehicles that actually made them gobs of money. During the early EV years, electrics were the shiny thing to show off at the car show. Now, something of the old dynamic has come to the electric sector.
Acura and Chrysler brought wild concepts to Los Angeles that were meant to signify the direction of their EVs to come. But most of the EVs in production looked far more familiar. Beyond the new hulking models from Hyundai and Kia, much of what’s on offer includes long-standing models, but in EV (Chevy Equinox and Blazer) or plug-in hybrid (Jeep Grand Cherokee and Wrangler) configurations. One of the most “interesting” EVs on the show floor was the Cybertruck, which sat quietly in a barely-staffed display of Tesla vehicles. (Elon Musk reveals his projects at separate Tesla events, a strategy more carmakers have begun to steal as a way to avoid sharing the spotlight at a car show.)
The other reason boring isn’t bad: It’s what the people want. The majority of drivers don’t buy an exotic, fun vehicle. They buy a handsome, spacious car they can afford. That last part, of course, is where the problem kicks in.
We don’t yet know the price of the Ioniq 9, but it’s likely to be in the neighborhood of Kia’s three-row electric, the EV9, which starts in the mid-$50,000s and can rise steeply from there. Stellantis’ forthcoming push into the EV market will start with not only pricey premium Jeep SUVs, but also some fun, though relatively expensive, vehicles like the heralded Ramcharger extended-range EV truck and the Dodge Charger Daytona, an attempt to apply machismo-oozing, alpha-male muscle-car marketing to an electric vehicle.
You can see the rationale. It costs a lot to build a battery big enough to power a big EV, so they’re going to be priced higher. Helpfully for the car brands, Americans have proven they will pay a premium for size and power. That’s not to say we’re entering an era of nothing but bloated EV battleships. Models such as the overpowered electric Dodge Charger and Kia EV9 GT will reveal the appetite for performance EVs. Smaller models like the revived Chevy Bolt and Kia’s EV3, already on sale overseas, are coming to America, tax credit or not.
The question for the legacy car companies is where to go from here. It takes years to bring a vehicle from idea to production, so the models on offer today were conceived in a time when big federal support for EVs was in place to buoy the industry through its transition. Now, though, the automakers have some clear uncertainty about what to say.
Chevy, having revealed new electrics like the Equinox EV elsewhere, did not hold a media conference at the L.A. show. Ford, which is having a hellacious time losing money on its EVs, used its time to talk up combustion vehicles including a new version of the palatial Expedition, one of the oversized gas-guzzlers that defined the first SUV craze of the 1990s.
If it’s true that the death of federal subsidies will send EV sales into a slump, we may see messaging from Detroit and elsewhere that feels decidedly retro, with very profitable combustion front-and-center and the all-electric future suddenly less of a talking point. Whatever happens at the federal level, EVs aren’t going away. But as they become a core part of the car business, they are going to get less exciting.
Current conditions: Parts of southwest France that were freezing last week are now experiencing record high temperatures • Forecasters are monitoring a storm system that could become Australia’s first named tropical cyclone of this season • The Colorado Rockies could get several feet of snow today and tomorrow.
This year’s Atlantic hurricane season caused an estimated $500 billion in damage and economic losses, according to AccuWeather. “For perspective, this would equate to nearly 2% of the nation’s gross domestic product,” said AccuWeather Chief Meteorologist Jon Porter. The figure accounts for long-term economic impacts including job losses, medical costs, drops in tourism, and recovery expenses. “The combination of extremely warm water temperatures, a shift toward a La Niña pattern and favorable conditions for development created the perfect storm for what AccuWeather experts called ‘a supercharged hurricane season,’” said AccuWeather lead hurricane expert Alex DaSilva. “This was an exceptionally powerful and destructive year for hurricanes in America, despite an unusual and historic lull during the climatological peak of the season.”
AccuWeather
This year’s hurricane season produced 18 named storms and 11 hurricanes. Five hurricanes made landfall, two of which were major storms. According to NOAA, an “average” season produces 14 named storms, seven hurricanes, and three major hurricanes. The season comes to an end on November 30.
California Gov. Gavin Newsom announced yesterday that if President-elect Donald Trump scraps the $7,500 EV tax credit, California will consider reviving its Clean Vehicle Rebate Program. The CVRP ran from 2010 to 2023 and helped fund nearly 600,000 EV purchases by offering rebates that started at $5,000 and increased to $7,500. But the program as it is now would exclude Tesla’s vehicles, because it is aimed at encouraging market competition, and Tesla already has a large share of the California market. Tesla CEO Elon Musk, who has cozied up to Trump, called California’s potential exclusion of Tesla “insane,” though he has said he’s okay with Trump nixing the federal subsidies. Newsom would need to go through the State Legislature to revive the program.
President-elect Donald Trump said yesterday he would impose steep new tariffs on all goods imported from China, Canada, and Mexico on day one of his presidency in a bid to stop “drugs” and “illegal aliens” from entering the United States. Specifically, Trump threatened Canada and Mexico each with a 25% tariff, and China with a 10% hike on existing levies. Such moves against three key U.S. trade partners would have major ramifications across many sectors, including the auto industry. Many car companies import vehicles and parts from plants in Mexico. The Canadian government responded with a statement reminding everyone that “Canada is essential to U.S. domestic energy supply, and last year 60% of U.S. crude oil imports originated in Canada.” Tariffs would be paid by U.S. companies buying the imported goods, and those costs would likely trickle down to consumers.
Amazon workers across the world plan to begin striking and protesting on Black Friday “to demand justice, fairness, and accountability” from the online retail giant. The protests are organized by the UNI Global Union’s Make Amazon Pay Campaign, which calls for better working conditions for employees and a commitment to “real environmental sustainability.” Workers in more than 20 countries including the U.S. are expected to join the protests, which will continue through Cyber Monday. Amazon’s carbon emissions last year totalled 68.8 million metric tons. That’s about 3% below 2022 levels, but more than 30% above 2019 levels.
Researchers from MIT have developed an AI tool called the “Earth Intelligence Engine” that can simulate realistic satellite images to show people what an area would look like if flooded by extreme weather. “Visualizing the potential impacts of a hurricane on people’s homes before it hits can help residents prepare and decide whether to evacuate,” wrote Jennifer Chu at MIT News. The team found that AI alone tended to “hallucinate,” generating images of flooding in areas that aren’t actually susceptible to a deluge. But when combined with a science-backed flood model, the tool became more accurate. “One of the biggest challenges is encouraging people to evacuate when they are at risk,” said MIT’s Björn Lütjens, who led the research. “Maybe this could be another visualization to help increase that readiness.” The tool is still in development and is available online. Here is an image it generated of flooding in Texas:
Maxar Open Data Program via Gupta et al., CVPR Workshop Proceedings. Lütjens et al., IEEE TGRS
A new installation at the Centre Pompidou in Paris lets visitors listen to the sounds of endangered and extinct animals – along with the voice of the artist behind the piece, the one and only Björk.
How Hurricane Helene is still putting the Southeast at risk.
Less than two months after Hurricane Helene cut a historically devastating course up into the southeastern U.S. from Florida’s Big Bend, drenching a wide swath of states with 20 trillion gallons of rainfall in just five days, experts are warning of another potential threat. The National Interagency Fire Center’s forecast of fire-risk conditions for the coming months has the footprint of Helene highlighted in red, with the heightened concern stretching into the new year.
While the flip from intense precipitation to wildfire warnings might seem strange, experts say it speaks to the weather whiplash we’re now seeing regularly. “What we expect from climate change is this layering of weather extremes creating really dangerous situations,” Robert Scheller, a professor of forestry and environmental resources at North Carolina State University, explained to me.
Scheuller said North Carolina had been experiencing drought conditions early in the year, followed by intense rain leading up to Helene’s landfall. Then it went dry again — according to the U.S. Drought Monitor, much of the state was back to some level of drought condition as of mid-November. The NIFC forecast report says the same is true for much of the region, including Florida, despite its having been hit by Hurricane Milton soon after Helene.
That dryness is a particular concern due to the amount of debris left in Helene’s wake — another major risk factor for fire. The storm’s winds, which reached more than 100 miles per hour in some areas, wreaked havoc on millions of acres of forested land. In North Carolina alone, the state’s Forest Service estimates over 820,000 acres of timberland were damaged.
“When you have a catastrophic storm like [Helene], all of the stuff that was standing upright — your trees — they might be snapped off or blown over,” fire ecologist David Godwin told me. “All of a sudden, that material is now on the forest floor, and so you have a really tremendous rearrangement of the fuels and the vegetation within ecosystems that can change the dynamics of how fire behaves in those sites.”
Godwin is the director of the Southern Fire Exchange for the University of Florida, a program that connects wildland firefighters, prescribed burners, and natural resources managers across the Southeast with fire science and tools. He says the Southeast sees frequent, unplanned fires, but that active ecosystem management helps keep the fires that do spark from becoming conflagrations. But an increase like this in fallen or dead vegetation — what Godwin refers to as fire “fuel” — can take this risk to the next level, particularly as it dries out.
Godwin offered an example from another storm, 2018’s Hurricane Michael, which rapidly intensified before making landfall in Northern Florida and continuing inland, similar to Hurricane Helene. In its aftermath, there was a 10-fold increase in the amount of fuel on the ground, with 72 million tons of timber damaged in Florida. Three years later, the Bertha Swamp Road Fire filled the storm’s Florida footprint with flames, which consumed more than 30,000 acres filled with dried out forest fuel. One Florida official called the wildfire the “ghost” of Michael, nodding to the overlap of the impacted areas and speaking to the environmental threat the storm posed even years later.
Not only does this fuel increase the risk of fire, it changes the character of the fires that do ignite, Godwin said. Given ample ground fuel, flame lengths can grow longer, allowing them to burn higher into the canopy. That’s why people setting prescribed fires will take steps like raking leaf piles, which helps keep the fire intensity low.
These fires can also produce more smoke, Godwin said, which can mix with the mountainous fog in the region to deadly effect. According to the NIFC, mountainous areas incurred the most damage from Helene, not only due to downed vegetation, but also because of “washed out roads and trails” and “slope destabilization” from the winds and rain. If there is a fire in these areas, all these factors will also make it more challenging for firefighters to address it, the report adds.
In addition to the natural debris fire experts worry about, Helene caused extensive damage to the built environment, wrecking homes, businesses, and other infrastructure. Try imagining four-and-a-half football fields stacked 10 feet tall with debris — that’s what officials have removed so far just in Asheville, North Carolina. In Florida’s Treasure Island, there were piles 50 feet high of assorted scrap materials. Officials have warned that some common household items, such as the lithium-ion batteries used in e-bikes and electric vehicles, can be particularly flammable after exposure to floodwaters. They are also advising against burning debris as a means of managing it due to all the compounding risks.
Larry Pierson, deputy chief of the Swannanoa Fire Department in North Carolina, told Blueridge Public Radio that his department’s work has “grown exponentially since the storm.” While cooler, wetter winter weather could offer some relief, Scheuller said the area will likely see heightened fire behavior for years after the storm, particularly if the swings between particularly wet and particularly dry periods continue.
Part of the challenge moving forward, then, is to find ways to mitigate risk on this now-hazardous terrain. For homeowners, that might mean exercising caution when dealing with debris and considering wildfire risk as part of rebuilding plans, particularly in more wooded areas. On a larger forest management scale, this means prioritizing safe debris collection and finding ways to continue the practice of prescribed burns, which are utilized more in the Southeast than in any other U.S. region. Without focused mitigation efforts, Godwin told me the area’s overall fire outlook would be much different.
“We would have a really big wildfire issue,” he said, “perhaps even bigger than what we might see in parts of the West.”