You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Heat pumps are cool. Neighborhood geothermal might be cooler.

A landmark project with major implications for how Americans could cleanly heat and cool their homes broke ground in Framingham, Massachusetts, on Monday.
Eversource, the largest gas and electric utility in New England, began construction on its first “networked geothermal” system. The company will connect 32 residential and five commercial buildings in a single neighborhood to underground water pipes, which will draw on the steady temperature of the ground beneath the earth’s surface to air condition and heat the buildings without fossil fuels.
Clean energy advocates across the country are looking to the demonstration as a test of the idea that natural gas utilities can remain in business in a decarbonized world by managing a network of pipes filled with water instead of climate-warming gas.
“I would say it's not just being watched nationally, it's being watched globally,” Zeyneb Magavi, the co-executive director of the Massachusetts-based clean energy nonprofit HEET, told me. Magavi and her partner, Audrey Schulman, dreamed up the idea of transforming gas utilities into geothermal utilities several years ago, and were instrumental in getting Eversource to consider the project.
“If they succeed enough, and I have no doubt they will, they're gonna be the founding install of a new utility that's going to be the foundation of our future energy system,” she said. “It's not that often that you get to give birth to a new utility.”
Geothermal heating systems have been around for nearly a century, and are known for being incredibly efficient. You may have heard of air-source heat pumps, commonly referred to simply as heat pumps, which function like an air conditioner in the summer and a furnace in the winter by transferring heat inside and outside the building. Geothermal heat pumps work similarly, but they use the ground as a source and sink for heat, rather than the ambient air. (They are different, but related to geothermal power plants, which tap into much hotter reservoirs underground to generate electricity.) Since the ground is a more stable temperature than the air, geothermal heat pumps require less energy. Networked geothermal systems have the potential to reduce energy use even more.
Many individual homes and buildings run on geothermal heating systems today, but all the drilling and piping translates into big upfront costs. Magavi told me the spark of HEET’s idea for a neighborhood-wide system dates back to 2008, when she wanted to install geothermal at her own home, but couldn’t afford it. Later, when she joined HEET and began thinking about what a future without gas could look like, she and Schulman discovered geothermal projects elsewhere in the country, such as a small town in Iowa, and a college campus in Colorado, where multiple buildings were linked to the same pipes. The systems didn’t seem all that different from the gas distribution networks they were looking to replace.
The project in Framingham involves building a new set of pipelines alongside the gas system. Each participating building will get a service pipe connecting it to a main horizontal line that runs through the neighborhood, which is in turn connected to a series of vertical lines that go about 500 feet deep. Water runs through the system, bringing heat up from the ground and delivering it to heat pumps inside the buildings in the winter, or absorbing heat from the homes and dumping it back underground in the summer.

The whole system is expected to be up and running by the fall. Eversource estimates the project will cost $14.7 million, and has received approval from regulators to pay for it with ratepayer funds, spread across its entire customer base. Participants will not pay any additional fees on top of the cost to run the heat pump equipment on their electricity bill. They will retain their existing heating and cooling systems, and will have the option to go back to them after the two-year pilot period.
Residents could see a 20% reduction in energy costs, according to Eversource, and around a 60% decrease in carbon emissions, taking into account the current electricity supply. The company will be gathering data throughout the pilot to confirm the actual cost, energy, and carbon savings of the project. “We also want to make a strong business case for why this should be done by the utility and why it makes sense for us to be building out systems like this,” said Eric Bosworth, the senior program manager for clean technologies at Eversource.
Magavi and Schulman see networked geothermal as an elegant solution to one of the biggest challenges of tackling climate change: avoiding what’s known as the utility death-spiral. If people begin swapping out their natural gas heaters for electric heat pumps, they will drive up costs for remaining gas customers, which will motivate more people to go electric, and inflate gas bills even more.
Geothermal presents a path for utilities to retain their customers. They already have the expertise to build and manage underground pipelines and heating equipment. And Magavi argues that if utilities take on the up front costs, it would give people more equitable access to clean energy. “You can just sign up with the utility — you don't have to have upfront capital, knowledge, or time,” she said. “That equity of access is something that is necessary for a just transition.”
If geothermal heating and cooling were to really take off, it could also help with another major climate challenge — the electric grid. The switch to electric vehicles and heat pumps is going to require a massive expansion of clean electricity resources and transmission and distribution wires. Widespread adoption of geothermal heat pumps could minimize that buildout. Boswoth told me that geothermal networks could be strategically deployed in areas that are electrically constrained.
Many climate advocates also like the idea because it presents a clear transition opportunity for natural gas workers, like those in the Plumbers and Pipefitters Union that build and maintain gas pipelines. “Networked geothermal systems could be a promising option for providing high road job opportunities to these workers,” Jenna Tatum of the Building Electrification Institute told me.
But that’s one aspect of the promise of networked geothermal that the Framingham project won’t be demonstrating. Eversource hired a third party construction company and hasn’t entered an agreement with any unions yet, although Bosworth said the company was actively engaged with the Pipefitters Union regarding longer-term geothermal plans.
The pilot in Framingham will be the first networked geothermal system operated by a utility, but it definitely won’t be the last. Massachusetts regulators have approved a handful of additional networked geothermal projects to be owned and operated by Eversource and another gas utility, National Grid. New York State is also moving forward on a number of utility-owned pilots. Several other states, like Minnesota, have also passed laws that encourage gas utilities to pursue geothermal.
“We expect that we're going to see a pretty significant pilot proposal in [utility] plans modeled after the work that's been done out East,” Joe Dammel, managing director of buildings for Fresh Energy, a Minnesota-based clean energy nonprofit, told me.
One challenge that’s come up as the idea has taken off is that no one can seem to agree about what it should be called. While the term is “networked geothermal” in Massachusetts, New York is using “thermal energy network.” Magavi said it’s also been referred to as “community geothermal,” a “thermal highway,” an ATL or “ambient temperature loop,” a “heatnet” and a “5G” network. All of this is further complicated by the fact that the terms “geothermal energy,” “heat pumps,” and “district energy,” can all refer to fundamentally different technologies.
“It’s a nightmare,” she told me. She said she’s initiated a campaign with the National Renewable Energy Laboratory and the Department of Energy to set language standards. “There’s a survey currently going out to everyone to ask them what they think about all the different names.”
The Framingham pilot could be significantly expanded if all goes well. HEET collaborated with Eversource to apply for funding from the Department of Energy for a second networked geothermal system in the city that would be connected to the first one, and was recently awarded a $717,000 grant.
Advocates like Magavi hope these projects will turn into a full-on transition strategy for utilities to move away from a business model based on gas or other fuels. At the groundbreaking on Monday, Eversource chairman, president, and CEO Joe Nolan made a bold statement that seemed to support that notion. “As we transition to a carbon-free future, this is going to be the answer for everybody,” he said. “And it’s all starting right here.”
But when I talked to Bosworth, he qualified that at this point the company sees geothermal as one “tool in the proverbial toolbelt.” Like many utilities, Eversource is also exploring the potential to deliver lower-carbon fuels like biogas and hydrogen through its gas lines.
“We want to take a look at any and all potential pathways and really vet them for what is viable, and what works where,” Bosworth told me. “We will use a combined approach to get to our carbon neutrality goals.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The most popular scope 3 models assume an entirely American supply chain. That doesn’t square with reality.
“You can’t manage what you don’t measure,” the adage goes. But despite valiant efforts by companies to measure their supply chain emissions, the majority are missing a big part of the picture.
Widely used models for estimating supply chain emissions simplify the process by assuming that companies source all of their goods from a single country or region. This is obviously not how the world works, and manufacturing in the United States is often cleaner than in countries with coal-heavy grids, like China, where many of the world’s manufactured goods actually come from. A study published in the journal Nature Communications this week found that companies using a U.S.-centric model may be undercounting their emissions by as much as 10%.
“We find very large differences in not only the magnitude of the upstream carbon footprint for a given business, but the hot spots, like where there are more or less emissions happening, and thus where a company would want to gather better data and focus on reducing,” said Steven Davis, a professor of Earth system science in the Stanford Doerr School of Sustainability and lead author of the paper.
Several of the authors of the paper, including Davis, are affiliated with the software startup Watershed, which helps companies measure and reduce their emissions. Watershed already encourages its clients to use its own proprietary multi-region model, but the company is now working with Stanford and the consulting firm ERG to build a new and improved tool called Cornerstone that will be freely available for anyone to use.
“Our hope is that with the release of scientific papers like this one and with the launch of Cornerstone, we can help the ecosystem transition to higher quality open access datasets,” Yohanna Maldonado, Watershed’s Head of Climate Data told me in an email.
The study arrives as the Greenhouse Gas Protocol, a nonprofit that publishes carbon accounting standards that most companies voluntarily abide by, is in the process of revising its guidance for calculating “scope 3” emissions. Scope 3 encompasses the carbon that a company is indirectly responsible for, such as from its supply chain and from the use of its products by customers. Watershed is advocating that the new standard recommend companies use a multi-region modeling approach, whether Watershed’s or someone else’s.
Davis walked me through a hypothetical example to illustrate how these models work in practice. Imagine a company that manufactures exercise bikes — it assembles the final product in a factory in the U.S., but sources screws and other components from China. The typical way this company would estimate the carbon footprint of its supply chain would be to use a dataset published by the U.S. Environmental Protection Agency that estimates the average emissions per dollar of output for about 400 sectors of the U.S. economy. The EPA data doesn’t get down to the level of detail of a specific screw, but it does provide an estimate of emissions per dollar of output for, say, hardware manufacturing. The company would then multiply the amount of money it spent on screws by that emissions factor.
Companies take this approach because real measurements of supply chain emissions are rare. It’s not yet common practice for suppliers to provide this information, and supply chains are so complex that a product might pass through several different hands before reaching the company trying to do the calculation. There are emerging efforts to use remote sensing and other digital data collection and monitoring systems to create more accurate, granular datasets, Alexia Kelly, a veteran corporate sustainability executive and current director at the High Tide Foundation, told me. In the meantime, even though sector-level emissions estimates are rough approximations, they can at least give a company an indication of which parts of their supply chain are most problematic.
When those estimates don’t take into account country of origin, however, they don’t give companies an accurate picture of which parts of their supply chains need the most attention.
The new study used Watershed’s multi-region model to look at how different types of companies’ emissions would change if they used supply chain data that better reflected the global nature of supply chains. Davis is the first to admit that the study’s findings of higher emissions are not surprising. The carbon accounting field has long been aware of the shortcomings of single-region models. There hasn’t been a big push to change that, however, because the exercise is already voluntary and taking into account global supply chains is significantly more difficult. Many countries don’t publish emissions and economic data, and those that do use a variety of methods to report it. Reconciling those differences adds to the challenge.
While the overall conclusion isn’t surprising, the study may be the first to show the magnitude of the problem and illustrate how more accurate modeling could redirect corporate sustainability efforts. “As far as I know, there is no similar analysis like this focused on corporate value chain emissions,” Derik Broekhoff, a senior scientist at the Stockholm Environment Institute, told me in an email. “The research is an important reminder for companies (and standard setters like the Greenhouse Gas Protocol), who in practice appear to be overlooking foreign supply chain emissions in large numbers.”
Broekhoff said Watershed’s upcoming open-source model “could provide a really useful solution.” At the same time, he said, it’s worth noting that this whole approach of calculating emissions based on dollars spent is subject to significant uncertainty. “Using spending data to estimate supply chain emissions provides only a first-order approximation at best!”
The decision marks the Trump administration’s second offshore wind defeat this week.
A federal court has lifted Trump’s stop work order on the Empire Wind offshore wind project, the second defeat in court this week for the president as he struggles to stall turbines off the East Coast.
In a brief order read in court Thursday morning, District Judge Carl Nichols — a Trump appointee — sided with Equinor, the Norwegian energy developer building Empire Wind off the coast of New York, granting its request to lift a stop work order issued by the Interior Department just before Christmas.
Interior had cited classified national security concerns to justify a work stoppage. Now, for the second time this week, a court has ruled the risks alleged by the Trump administration are insufficient to halt an already-permitted project midway through construction.
Anti-offshore wind activists are imploring the Trump administration to appeal this week’s injunctions on the stop work orders. “We are urging Secretary Burgum and the Department of Interior to immediately appeal this week’s adverse federal district court rulings and seek an order halting all work pending appellate review,” Robin Shaffer, president of Protect Our Coast New Jersey, said in a statement texted to me after the ruling came down.
Any additional delays may be fatal for some of the offshore wind projects affected by Trump’s stop work orders, irrespective of the rulings in an appeal. Both Equinor and Orsted, developer of the Revolution Wind project, argued for their preliminary injunctions because even days of delay would potentially jeopardize access to vessels necessary for construction. Equinor even told the court that if the stop work order wasn’t lifted by Friday — that is, January 16 — it would cancel Empire Wind. Though Equinor won today, it is nowhere near out of the woods.
More court action is coming: Dominion will present arguments on Friday in federal court against the stop work order halting construction of its Coastal Virginia offshore wind project.
On Heatmap's annual survey, Trump’s wind ‘spillover,’ and Microsoft’s soil deal
Current conditions: A polar vortex is sweeping frigid air back into the Northeast and bringing up to 6 inches of snow to northern parts of New England • Temperatures in the Southeast are set to plunge 25 degrees Fahrenheit below last week’s averages, with highs below freezing in Atlanta • Temperatures in the Nigerian capital of Abuja, meanwhile, are nearing 100 degrees.

To comically understate the obvious, it’s been a big year for climate. So Heatmap called up 55 of the most discerning and disputatious experts — scientists, researchers, innovators, and reformers; some of whom led the Biden administration’s policy efforts, some of whom are harsh or heterodox critics of mainstream environmentalism. We asked them to take stock of everything going on now, from the Trump administration’s shifting policy landscape to China’s evolving place in the world.
The results of that inquiry are now out. You can check out everything on this homepage.
Or see:
Wyoming is inching closer to building what could be the United States’ largest data center after commissioners in Laramie County last week unanimously approved construction of a complex designed to scale from an initial 1.8 gigawatts to 10 gigawatts. The facility, called Project Jade, is set to be built by the data center giant Crusoe, with the neighboring gas turbines to power the plant provided by BFC Power and Cheyenne Power Hub. Crusoe’s chief real estate officer, Matt Field, told commissioners last week that the first phase would “leverage natural gas with a potential pathway for CO2 sequestration in the future” by tapping into developer Tallgrass Energy Partners’ existing carbon well hub, Inside Climate News wrote Wednesday.
While the potential for renewables is under discussion, a separate state hearing last week highlighted mounting opposition to the most prolific source of clean power in the state: Wind energy. Nearly two dozen residents from central and southeast Wyoming lambasted a growing “wall” of wind turbines in what Wyofile described as “emotional pleas.” One Cheyenne resident named Wendy Volk said: “This is no longer a series of isolated projects. It is a continuous, or near continuous, industrial corridor stretching across multiple counties and landscapes.”

Global wind executives are warning of “negative spillover” effects on investor sentiment from the Trump administration’s suspended leases on all large U.S. offshore wind projects. In an interview with the Financial Times, Vestas CEO Henrik Andersen, who also serves as the president of the industry group WindEurope, called 2025 a “rollercaster” year. “When you have a 20- to 30-year investment program, the only way you can cover yourself for risk is to ask for a higher return,” he said. “When you get impairments in an industry, everyone would start saying, ‘could that hit us as well?’”
The British government seems willing to reduce that risk. On Wednesday, the United Kingdom handed out record subsidy contracts for offshore wind projects. At the same time, however, oil giant BP wrote down the value of its low-carbon business — which includes wind, solar, and hydrogen — by upward of $5 billion, according to The Wall Street Journal.
Sign up to receive Heatmap AM in your inbox every morning:
Microsoft on Thursday announced one of the largest soil-based deals to remove carbon from the atmosphere. Under a 12-year agreement, the tech giant will purchase 2.85 million credits from the startup Indigo Carbon PBC, which sequesters carbon dioxide in soil through regenerative agricultural practices. It’s the third deal between Indigo and Microsoft, building on 40,000 metric tons in 2024 and 60,000 last year. “Microsoft is pleased by Indigo’s approach to regenerative agriculture that delivers measurable results through verified credits and payments to growers, while advancing soil carbon science with advanced modeling and academic partnerships,” Phillip Goodman, Microsoft’s director of carbon removal, said in a statement. Microsoft, as my colleague Emily Pontecorvo wrote recently, has “dominated” carbon removal over the past year, increasing its purchases more than fivefold in 2025 compared to 2024.
Despite major progress on clean energy, especially with solar and batteries, a new report by McKinsey & Company found big gaps between current deployments and 2030 goals. The analysis, the first from the megaconsultancy to include China and nuclear power, highlighted “notable discrepancies between announced projects and those with committed funding,” and warned that less than “15% of low-emissions technologies required to meet Paris-aligned goals have been deployed.” In a statement, Diego Hernandez Diaz, McKinsey partner and co-author of the report, said the “progress landscape is nuanced by region and technology and while achieving energy transition commitments remain paramount for countries and companies alike, recent announcements indicate that shifting priorities and slowing momentum have led to project pauses and cancellations across technologies.”
The findings come as emissions are rising. As I wrote in yesterday’s newsletter, the latest Rhodium Group estimate of U.S. emissions notched a reversal of the last two years of declines. In a new Carbon Brief analysis, climate scientist Zeke Hausfather found that 2025 was in the top-three warmest years on record with average surface temperatures reaching 1.44 Celsius above pre-industrial averages across eight independent datasets.
China just installed the most powerful turbine ever built offshore. The 20-megawatt turbine off the coast of Fujian Province set a record for both capacity and rotor diameter, 300 meters from its 147-meter blades. “Compared with offshore wind farms with 16-megawatt units, 20-megawatt units can help wind farms reduce the number of units by 25%, save sea area, dilute development costs, and open up economic blockages for the large-scale development of deep-sea wind power,” the manufacturer, Goldwind, said in a statement.