Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

EVs Will Save the Planet — But Not Roadkill

A conversation with Ben Goldfarb about his road ecology book Crossings.

A deer at a fork in a road.
Heatmap Illustration/Getty Images

An alternative title for journalist Ben Goldfarb’s fantastic new book, Crossings, could have been Squashings. “Wait a minute,” I thought to myself about 25 pages in. “Have I been duped into reading a book about … roadkill?!

The answer wasn’t precisely no, although Crossings is also about so much more (its subtitle: How Road Ecology Is Shaping the Future of Our Planet). From cliff swallows that have evolved to have shorter wings to better avoid zooming cars, to Oedipal cougars stranded in the highway-wrapped Santa Monica Mountains, to the trials of one surprisingly charismatic anteater named Evelyn, Crossings observes that “the repercussions of roads are so complex that it’s hard to pinpoint where they end.”

Goldfarb, though, attempts valiantly to untangle them, and the result is as funny, heartbreaking, enraging, and enlightening as anything I’ve read this year. “There may be nothing humans do that causes more misery to more wild animals than driving,” he writes, but planet-warming emissions are only the most prominent part of that story. Ahead of Crossings’ publication next Tuesday, Goldfarb and I discussed the promise (and drawbacks) of the EV transition and autonomous cars on road ecology; the short-sightedness of infrastructure budgets; and how bad people are at driving. Our conversation has been condensed and edited for clarity.

When you told people you were working on a book about road ecology, did they take it as an invitation to share their personal, unsolicited roadkill stories with you?

Absolutely, they did. I wouldn’t say it was unsolicited: I’m always — I don’t want to say I’m happy to hear roadkill stories — but I’m certainly interested in stories and there were lots of them. One of my favorite ones was a guy who told me that he’d recently hit a squirrel and he was so confused and upset and unhappy about it that he actually called 911. He didn’t know what else to do. And the 911 operator basically said, “Uh yeah, the squirrel is dead.” I mean, to me, that sort of gets at how viscerally upsetting and disturbing roadkill can be. It’s something we see constantly and ultimately take for granted in a lot of ways but committing it ourselves is, of course, a miserable feeling. I just hit an owl a few nights ago and I’m still losing sleep.

One of the things I was most astonished by while reading this book is how well-sourced it is — the texts and interviews you bring together are so broad and enriching. Do you have any idea how many books you read? Tell me a little about how you approached the research. 

Oh, geez. Let’s see — two shelves of that bookshelf [behind me] are road ecology reference books. So, several dozen. I can’t claim that I read them all cover to cover, but certainly I drew a lot from other books. I think I ultimately had close to 300 sources in the book who were just invaluable founts of help and knowledge and information.

One of the challenges of writing about road ecology is it’s not necessarily a single discipline. It’s really an umbrella that covers many different disciplines. Roadkill science is its own sort of subset. The impact of forest service roads on contributing erosion to streams is a whole science unto itself. The impact of improperly built road culverts as fish passage barriers — I mean, there are 10,000 papers about that alone. So every chapter was sort of learning a new science unto itself.

You write that “among all the road’s ecological disasters … the most vexing may be noise pollution.” We do a lot of coverage of the future of driving here at Heatmap, and I suppose I was hoping to learn that electric vehicles and cutting-edge advances in automotive technology would help solve at least this problem. Can you tell me why you’re less optimistic?

EVs are much quieter; their engines are silent, which is helpful, especially in an urban context. They’ll ultimately reduce noise pollution and that’s profoundly important. We tend to overlook noise pollution because we’re so awash in it but it’s one of the great public health crises of our time. You read the literature about the health impacts of road noise and it’s horrifying — I mean, literally, it’s elevating our stress levels, it’s increasing our risk of heart attack and diabetes and stroke, it’s taking years off of our lives, mostly without our noticing it. So anything we can do to reduce noise is fundamentally positive. And EVs are part of that.

The drawback, the reason that EVs aren’t a panacea, is that engines aren’t the only thing that makes noise on a car. Above 35 mph, most of what you’re hearing is tire noise: the grinding of the tire itself against the pavement and the little air pockets in the tread popping — “pattern noise” is what that’s called. I wrote most of this book while living a half mile or so from I-90 in eastern Washington state and I could just hear, every time I stepped out of my house, that monotonous hiss of the interstate. That’s tire noise, not engine noise. And tires have gotten much quieter over time, which is good, and hopefully they’ll continue to get quieter, but just electrifying vehicles is not going to solve the problem of road noise even if it does help in urban settings.

Not to keep raining on the parade, but you also write that autonomous vehicles could be “the gravest challenge to road ecology since, well, roads.” How do driverless cars change the road ecology calculus?

I think the answer is, we don’t know yet. From a large animal avoidance perspective, I think they’re ultimately going to be really helpful. Yes, it’s fun right now to dunk on Tesla and Waymo and all of these autonomous vehicle companies whose products are still very buggy, but, you know — probably there are people who will read this and take exception with this idea, but I’m ultimately pretty optimistic that the AVs will solve most of those problems and become better drivers than human beings.

And that’s the thing that always gets lost when somebody posts a video of an AV doing something stupid — human drivers do stupid things constantly, right? We’re horrifically bad drivers. Tens of thousands of people die in the U.S. every year because of it. And one of the things that we’re really bad at is avoiding large animals. We don’t see that well at night, they jump out unexpectedly, and our reflexes are too slow to slam on the brakes. I think that AVs will be much, much better at avoiding those deer and elk and moose than we are because those are large animals and all of [the AV] sensors that are designed to avoid pedestrians will be triggered by those large animals.

But, of course, that doesn’t really help a rattlesnake or a prairie dog or any smaller creature. I, for one, go out of my way to avoid hitting those animals, and when my car is piloted by a robot, that’s not going to help; that robot will have no reason to avoid those small animals if engineers don’t design it to do so.

And the broader problem is that autonomy is likely to lead to a whole lot more vehicles on the road. When you can get in your car and it drives itself and you can spend that time watching movies or doing work or what have you, commuting becomes a lot less onerous. Every autonomous vehicle could have a kid in it who’s not able to drive currently. Most of the modeling suggests that there’s going to be a dramatic increase in vehicle miles traveled as a result of autonomous cars. And that’s going to be bad for wildlife, that’s going to make the barrier effect of roads even more severe and make it even harder for animals to migrate across highways.

And commuting traffic, human traffic, is really just the tip of the iceberg when it comes to autonomy. The autonomous delivery fleet, in some ways, is the bigger concern. A lot of the early AVs are going to be delivery vehicles; it’s going to be so easy to summon products to us. So it’s hard to imagine a scenario where AVs lead to less driving rather than more of it, unfortunately.

How did you navigate striking the right balance between the ideals of conservation and the realities of politics and economics in this book? I found myself getting so frustrated reading about the frogs trying to cross Highway 30 in Portland, Oregon, only to then learn that SP-139 in Brazil actually closes a section between 8 p.m. and 6 a.m., when animals are most active. I was like, “Why can’t we do that!”

We do have this very constrained idea of what is possible and that’s why I like drawing upon other countries. You mentioned that road in Brazil that is closed at night through a park; another great anecdote is that in India, they built a new highway through a tiger sanctuary and they just elevated the entire highway on pilings so that animals can come and go underneath the lifted freeway. Of course, that made the project vastly more expensive, but it’s ecologically the right thing to do and is much more radical than anything we’ve done in this country.

I was just talking about this the other day with somebody in the bird ecology world: how our sense of what we can afford is so skewed. I think that people hear the price tag of a wildlife crossing structure and they think, “Oh my gosh, $10 million just to help elk cross the highway, what an extravagant expenditure.” But that’s beyond nothing in the context of national, state, and federal transportation budgets. I mean, $10 million for a wildlife crossing, that’s not even a drop in the bucket. That’s like a molecule of H2O in the bucket. It costs a million dollars to pave a mile of highway, let alone add a bunch of lanes to it. So to me, the notion that we can’t make our infrastructure better for nature because it costs money is incredibly short-sighted and fails to consider how much money we’re spending on our roads already.

A great example of that was the Infrastructure Act, which contains $350 million for wildlife crossings — which is great and wonderful and a step in the right direction. But it also contains billions of dollars for highway expansions and repaving and bridge repairs. And one bird ecologist described that $350 million as “decimal dust,” you know, just nothing in the context of federal transportation. The politics of the possible can definitely be frustrating.

Not to mention, you have a statistic in Crossings that animal crashes cost America something like $8 billion per year.

And that was $8 billion in 2009. So for inflation and accounting for increased collisions over time — yeah, it’s an enormous number that we’re not doing a whole lot about.

Your book is full of so much humor and cautious optimism but when I was reading it, I would sometimes get overwhelmed just thinking about how many roads exist and how many more roads are going to exist and the awful ends so many living things meet because of them. How did you stay hopeful while immersed in these stories?

I think that the book comes off as humorous and optimistic because that’s just my natural register as a writer, but I’m not sure I actually always feel that way. There are times that I feel totally desperate about the future of conservation. One of the challenges of writing about this topic is that there’s no perfect solution, there’s no panacea. We could say “we need more mass transit,” and certainly we need to get people out of cars, but I live in rural Colorado: It’s hard to imagine a public transportation system that is going to meaningfully change driving rates in this kind of very rural, dispersed area that was built around the automobile.

Wildlife crossings are the same thing. They help a specific set of problems, which is roadkill and the curtailment of animal migration. But they don’t reduce road noise, they don’t prevent tire particles from spewing into the environment and killing salmon, they don’t do anything about road salts being applied in ridiculous quantities and destroying freshwater ecosystems. So, again, there is no panacea here and it can be really challenging to confront the scale and the number of different solutions needed to make our roads lie more lightly on the planet.

Is there anything else you would want readers to know about Crossings?

You mentioned EVs in the context of road noise and one of the things that I almost wish I had emphasized more in the book is that when people tend to think about the environmental impacts of transportation, they think about the carbon emissions, right? And the solutions tend to be things like the electrification of vehicle fleets and fuel standards. And certainly, those are good things. But the electrification of the fleet is going to do absolutely nothing for wild animals. In fact, just as AVs could lead to more driving, EVs can do the same thing when it becomes much cheaper to drive your car because you just have to plug it in — the whole Jevons paradox idea that a million EV scholars have written about.

I feel like part of the purpose of the book is to say, look, the carbon emissions from transportation are an enormous problem. But they’re only one of the many, many ecological problems that our car-centered transportation network causes. You can strip the carbon out of our transportation and still not make it benign for the environment.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
A heat dome.
Heatmap Illustration/Getty Images

Like a bomb cyclone, a polar vortex, or an atmospheric river, a heat dome is a meteorological phenomenon that feels, well, a little made up. I hadn’t heard the term before I found myself bottled beneath one in the Pacific Northwest in 2021, where I saw leaves and needles brown on living trees. Ultimately, some 1,400 people died from the extreme heat in British Columbia, Washington, and Oregon that summer weekend.

Since that disaster, there have been a number of other high-profile heat dome events in the United States, including this week, over the Midwest and now Eastern and Southeastern parts of the country. On Monday, roughly 150 million people — about half the nation’s population — faced extreme or major heat risks.

Keep reading...Show less
Climate

AM Briefing: Congress Saves Energy Star

On betrayed regulatory promises, copper ‘anxiety,’ and Mercedes’ stalled EV plans

Congress Balks at Trump’s Bid to Shoot Down Energy Star
Heatmap Illustration/Getty Images

Current conditions: New York City is once again choking on Canadian wildfire smoke • Torrential rain is flooding southeastern Slovenia and northern Croatia • Central Asia is bracing for the hottest days of the year, with temperatures nearing 100 degrees Fahrenheit in Uzbekistan’s capital of Tashkent all week.


THE TOP FIVE

1. Congress pushes back on Trump’s plan to kill Energy Star

In May, the Trump administration signaled its plans to gut Energy Star, the energy efficiency certification program administered by the Environmental Protection Agency. Energy Star is extremely popular — its brand is recognized by nearly 90% of Americans — and at a cost to the federal government of just $32 million per year, saves American households upward of $40 billion in energy costs per year as of 2024, for a total of more than $500 billion saved since its launch in 1992, by the EPA’s own estimate. Not only that, as one of Energy Star’s architects told Heatmap’s Jeva Lange back in May, more energy efficient appliances and buildings help reduce strain on the grid. “Think about the growing demands of data center computing and AI models,” RE Tech Advisors’ Deb Cloutier told Jeva. “We need to bring more energy onto the grid and make more space for it.”

Keep reading...Show less
Yellow
Climate

The West Is Primed for a Megafire

Oregon’s Cram Fire was a warning — the Pacific Northwest is ready to ignite.

The Cram fire.
Heatmap Illustration/Getty Images, Jefferson County Sheriff's Office

What could have been the country’s first designated megafire of 2025 spluttered to a quiet, unremarkable end this week. Even as national headlines warned over the weekend that central Oregon’s Cram Fire was approaching the 100,000-acre spread usually required to achieve that status, cooler, damper weather had already begun to move into the region. By the middle of the week, firefighters had managed to limit the Cram to 95,736 acres, and with mop-up operations well underway, crews began rotating out for rest or reassignment. The wildfire monitoring app Watch Duty issued what it said would be its final daily update on the Cram Fire on Thursday morning.

By this time in 2024, 10 megafires had already burned or ignited in the U.S., including the more-than-million-acre Smokehouse Creek fire in Texas last spring. While it may seem wrong to describe 2025 as a quieter fire season so far, given the catastrophic fires in the Los Angeles area at the start of the year, it is currently tracking below the 10-year average for acres burned at this point in the season. Even the Cram, a grassland fire that expanded rapidly due to the hot, dry conditions of central Oregon, was “not [an uncommon fire for] this time of year in the area,” Bill Queen, a public information officer with the Pacific Northwest Complex Incident Management Team 3, told me over email.

Keep reading...Show less
Blue