Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

Oversize EVs Have Some Big Issues

Any EV is better for the planet than a gas-guzzler, but size still matters for energy use.

A very large Ford F-150 Lightning.
Heatmap Illustration/Ford, Tesla, Getty Images

A few Super Bowls ago, when General Motors used its ad spots to pitch Americans on the idea of the GMC Hummer EV, it tried to flip the script on the stereotypes that had always dogged the gas-guzzling SUV. Yes, it implied, you can drive a military-derived menace to society and still do your part for the planet, as long as it’s electric.

You don’t hear much about the Hummer anymore — it didn’t sell especially well, and the Tesla Cybertruck came along to fill the tank niche in the electric car market. But the reasoning behind its launch endures. Any EV, even a monstrous one, is a good EV if it convinces somebody, somewhere, to give up gasoline.

This line of thinking isn’t wrong. A fully electric version of a big truck or SUV is far better, emissions-wise, than a gas-powered vehicle of equivalent size. It’s arguably superior to a smaller and efficient combustion car, too. A Ford F-150 Lightning, for example, scores nearly 70 in the Environmental Protection Agency’s miles per gallon equivalent metric, abbreviated MPGe, that’s meant to compare the energy consumption of EVs and other cars. That blows away the 20-some miles per gallon that the gas F-150 gets and even exceeds the 57 combined miles per gallon of the current Toyota Prius hybrid.

In terms of America’s EV adoption, then, we’ve come to see all EVs as being created equal. Yet our penchant for large EVs that aren’t particularly efficient at squeezing miles from their batteries will become a problem as more Americans go electric.

Big, heavy cars use more energy. This is how we worried about the greenness of cars back in the days before the EV: Needlessly enormous models such as the Ford Expedition and the Hummer H2 deserved to be shamed, while owning a fuel-sipping hybrid or a dinky subcompact was the height of virtue.

This logic has gotten a bit lost in the scale-up phase of electric vehicles going mainstream. We talk at length about EV sales and how fast their numbers are growing; we rarely talk about whether the EVs we buy are as energy-efficient as they could be. As a new white paper from the American Council for an Energy-Efficient Economy points out, though, getting more miles out of our EV batteries would save drivers money and reduce the strain on the grid that will come from millions of people charging their cars.

The simplest way to measure an EV’s fuel efficiency is to know how many miles it travels per kilowatt-hour of electricity. Popular crossovers like Tesla’s Model Y and Kia’s EV6 achieve a pretty-good 3.5 miles per kilowatt-hour. Look at bigger, heavier vehicles and you’ll see a major fall-off. InsideEVs found that Rivian’s R1S gets between 2.1 and 2.4 miles per kilowatt-hour. The hulking Hummer EV scores just 1.5, according to Motor Trend’s testing. The EPA’s MPGe data is another way to see the same story. The 60-some miles per gallon equivalent of an electric pickup like the Rivian R1T or Chevy Silverado EV crushes the mileage of petro trucks, but pales next to the 140-plus MPGe that an electric sedan from Hyundai or Lucid can claim. (Those EVs can deliver 4 or more miles per kilowatt-hour.)

Even modest gains in EV efficiency could cause beneficial ripple effects, the ACEEE says. Drivers who own a 3.5 miles per kilowatt-hour car would save hundreds of dollars on fuel annually compared to those whose vehicles get 2.5 miles per kilowatt-hour. More efficient cars should be less expensive, as well. Huge, inefficient EVs need to carry enormous batteries just to reach an adequate range, and the bigger the battery, the bigger the cost. Whereas a Model Y’s battery capacity ranges from 60 kilowatt-hours for standard range to 81 kilowatt-hours for long range, a Rivian’s runs from 92 to 141.5 kilowatt-hours. ACEEE calculates that the jump from 2.5 to 3.5 kilowatt-hours could shave nearly $5,000 from the cost of making a car because it would need so much less battery.

Making EVs more efficient would mean faster charging stops, too, since drivers wouldn’t need to cram so many kilowatt-hours into their batteries. It would ease demand for electricity, making it easier for the grid to keep pace with an electrifying society. But convincing Americans to buy smaller, more efficient vehicles has been an uphill battle for decades.

Earlier this summer, Ford CEO Jim Farley called for a return to smaller vehicles as more of the U.S. car fleet turns over to electric. Yet it was Ford that just a few years ago quit making cars altogether (outside of the Mustang) because it reaped so much more profit on the pricier crossovers, SUVs, and pickups that Americans have voted for with their wallets. And not long after Farley’s speech, the company scaled back its EV ambitions, clearly struggling to find a way to sell electric vehicles profitably.

The issue is not only carbuyers’ preference for big, heavy vehicles. ACEEE points out that public policy doesn’t punish big electric cars. “The EPA standard treats all EVs as having zero emissions. It therefore provides no incentive to improve EV efficiency since inefficient and efficient EVs are treated the same for compliance purposes,” the paper says.

That is why ACEEE floats the idea of a policy change. For example, its paper suggests the fees some states levy against EVs (ostensibly to make up for the lost revenue from those cars avoiding the gas tax) could be tweaked to charge more for inefficient EVs. Rebates for purchasing an EV could be changed in the same manner.

It was, after all, regulatory loopholes and misplaced incentives that helped big gas guzzlers conquer the roads in the first place. With better rules about big EVs, perhaps we could avoid repeating the mistakes of the past.

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

Exxon Counterattacks

On China’s rare earths, Bill Gates’ nuclear dream, and Texas renewables

An Exxon sign.
Heatmap Illustration/Getty Images

Current conditions: Hurricane Melissa exploded in intensity over the warm Caribbean waters and has now strengthened into a major storm, potentially slamming into Cuba, the Dominican Republic, Haiti, and Jamaica as a Category 5 in the coming days • The Northeast is bracing for a potential nor’easter, which will be followed by a plunge in temperatures of as much as 15 degrees Fahrenheit lower than average • The northern Australian town of Julia Creek saw temperatures soar as high as 106 degrees.

THE TOP FIVE

1. Exxon sued California

Exxon Mobil filed a lawsuit against California late Friday on the grounds that two landmark new climate laws violate the oil giant’s free speech rights, The New York Times reported. The two laws would require thousands of large companies doing business in the state to calculate and report the greenhouse gas pollution created by the use of their products, so-called Scope 3 emissions. “The statutes compel Exxon Mobil to trumpet California’s preferred message even though Exxon Mobil believes the speech is misleading and misguided,” Exxon complained through its lawyers. California Governor Gavin Newsom’s office said the statutes “have already been upheld in court and we continue to have confidence in them.” He condemned the lawsuit, calling it “truly shocking that one of the biggest polluters on the planet would be opposed to transparency.”

Keep reading...Show less
Red
The Aftermath

How to Live in a Fire-Scarred World

The question isn’t whether the flames will come — it’s when, and what it will take to recover.

Wildfire aftermath.
Heatmap Illustration/Getty Images

In the two decades following the turn of the millennium, wildfires came within three miles of an estimated 21.8 million Americans’ homes. That number — which has no doubt grown substantially in the five years since — represents about 6% of the nation’s population, including the survivors of some of the deadliest and most destructive fires in the country’s history. But it also includes millions of stories that never made headlines.

For every Paradise, California, and Lahaina, Hawaii, there were also dozens of uneventful evacuations, in which regular people attempted to navigate the confusing jargon of government notices and warnings. Others lost their homes in fires that were too insignificant to meet the thresholds for federal aid. And there are countless others who have decided, after too many close calls, to move somewhere else.

By any metric, costly, catastrophic, and increasingly urban wildfires are on the rise. Nearly a third of the U.S. population, however, lives in a county with a high or very high risk of wildfire, including over 60% of the counties in the West. But the shape of the recovery from those disasters in the weeks and months that follow is often that of a maze, featuring heart-rending decisions and forced hands. Understanding wildfire recovery is critical, though, for when the next disaster follows — which is why we’ve set out to explore the topic in depth.

Keep reading...Show less
The Aftermath

The Surprisingly Tricky Problem of Ordering People to Leave

Wildfire evacuation notices are notoriously confusing, and the stakes are life or death. But how to make them better is far from obvious.

Wildfire evacuation.
Heatmap Illustration/Getty Images

How many different ways are there to say “go”? In the emergency management world, it can seem at times like there are dozens.

Does a “level 2” alert during a wildfire, for example, mean it’s time to get out? How about a “level II” alert? Most people understand that an “evacuation order” means “you better leave now,” but how is an “evacuation warning” any different? And does a text warning that “these zones should EVACUATE NOW: SIS-5111, SIS-5108, SIS-5117…” even apply to you?

Keep reading...Show less