Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

Oversize EVs Have Some Big Issues

Any EV is better for the planet than a gas-guzzler, but size still matters for energy use.

A very large Ford F-150 Lightning.
Heatmap Illustration/Ford, Tesla, Getty Images

A few Super Bowls ago, when General Motors used its ad spots to pitch Americans on the idea of the GMC Hummer EV, it tried to flip the script on the stereotypes that had always dogged the gas-guzzling SUV. Yes, it implied, you can drive a military-derived menace to society and still do your part for the planet, as long as it’s electric.

You don’t hear much about the Hummer anymore — it didn’t sell especially well, and the Tesla Cybertruck came along to fill the tank niche in the electric car market. But the reasoning behind its launch endures. Any EV, even a monstrous one, is a good EV if it convinces somebody, somewhere, to give up gasoline.

This line of thinking isn’t wrong. A fully electric version of a big truck or SUV is far better, emissions-wise, than a gas-powered vehicle of equivalent size. It’s arguably superior to a smaller and efficient combustion car, too. A Ford F-150 Lightning, for example, scores nearly 70 in the Environmental Protection Agency’s miles per gallon equivalent metric, abbreviated MPGe, that’s meant to compare the energy consumption of EVs and other cars. That blows away the 20-some miles per gallon that the gas F-150 gets and even exceeds the 57 combined miles per gallon of the current Toyota Prius hybrid.

In terms of America’s EV adoption, then, we’ve come to see all EVs as being created equal. Yet our penchant for large EVs that aren’t particularly efficient at squeezing miles from their batteries will become a problem as more Americans go electric.

Big, heavy cars use more energy. This is how we worried about the greenness of cars back in the days before the EV: Needlessly enormous models such as the Ford Expedition and the Hummer H2 deserved to be shamed, while owning a fuel-sipping hybrid or a dinky subcompact was the height of virtue.

This logic has gotten a bit lost in the scale-up phase of electric vehicles going mainstream. We talk at length about EV sales and how fast their numbers are growing; we rarely talk about whether the EVs we buy are as energy-efficient as they could be. As a new white paper from the American Council for an Energy-Efficient Economy points out, though, getting more miles out of our EV batteries would save drivers money and reduce the strain on the grid that will come from millions of people charging their cars.

The simplest way to measure an EV’s fuel efficiency is to know how many miles it travels per kilowatt-hour of electricity. Popular crossovers like Tesla’s Model Y and Kia’s EV6 achieve a pretty-good 3.5 miles per kilowatt-hour. Look at bigger, heavier vehicles and you’ll see a major fall-off. InsideEVs found that Rivian’s R1S gets between 2.1 and 2.4 miles per kilowatt-hour. The hulking Hummer EV scores just 1.5, according to Motor Trend’s testing. The EPA’s MPGe data is another way to see the same story. The 60-some miles per gallon equivalent of an electric pickup like the Rivian R1T or Chevy Silverado EV crushes the mileage of petro trucks, but pales next to the 140-plus MPGe that an electric sedan from Hyundai or Lucid can claim. (Those EVs can deliver 4 or more miles per kilowatt-hour.)

Even modest gains in EV efficiency could cause beneficial ripple effects, the ACEEE says. Drivers who own a 3.5 miles per kilowatt-hour car would save hundreds of dollars on fuel annually compared to those whose vehicles get 2.5 miles per kilowatt-hour. More efficient cars should be less expensive, as well. Huge, inefficient EVs need to carry enormous batteries just to reach an adequate range, and the bigger the battery, the bigger the cost. Whereas a Model Y’s battery capacity ranges from 60 kilowatt-hours for standard range to 81 kilowatt-hours for long range, a Rivian’s runs from 92 to 141.5 kilowatt-hours. ACEEE calculates that the jump from 2.5 to 3.5 kilowatt-hours could shave nearly $5,000 from the cost of making a car because it would need so much less battery.

Making EVs more efficient would mean faster charging stops, too, since drivers wouldn’t need to cram so many kilowatt-hours into their batteries. It would ease demand for electricity, making it easier for the grid to keep pace with an electrifying society. But convincing Americans to buy smaller, more efficient vehicles has been an uphill battle for decades.

Earlier this summer, Ford CEO Jim Farley called for a return to smaller vehicles as more of the U.S. car fleet turns over to electric. Yet it was Ford that just a few years ago quit making cars altogether (outside of the Mustang) because it reaped so much more profit on the pricier crossovers, SUVs, and pickups that Americans have voted for with their wallets. And not long after Farley’s speech, the company scaled back its EV ambitions, clearly struggling to find a way to sell electric vehicles profitably.

The issue is not only carbuyers’ preference for big, heavy vehicles. ACEEE points out that public policy doesn’t punish big electric cars. “The EPA standard treats all EVs as having zero emissions. It therefore provides no incentive to improve EV efficiency since inefficient and efficient EVs are treated the same for compliance purposes,” the paper says.

That is why ACEEE floats the idea of a policy change. For example, its paper suggests the fees some states levy against EVs (ostensibly to make up for the lost revenue from those cars avoiding the gas tax) could be tweaked to charge more for inefficient EVs. Rebates for purchasing an EV could be changed in the same manner.

It was, after all, regulatory loopholes and misplaced incentives that helped big gas guzzlers conquer the roads in the first place. With better rules about big EVs, perhaps we could avoid repeating the mistakes of the past.

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Economy

The Climate Tech Startup Betting Against Greenwashing

Isometric is trying to become the most trusted name in the scandal-plagued carbon market.

A $100 bill.
Heatmap Illustration/Getty Images

Regulations are probably coming for the scandal-plagued voluntary carbon market. After years of mounting skepticism and reports of greenwashing, governments are now attempting to rein in the historically unchecked web of platforms, registries, protocols, and verification bodies offering ways to offset a company’s emissions that vary tremendously in price and quality. Europe has developed its own rules, the Carbon Removal Certification Framework, while the Biden administration earlier this year announced a less comprehensive set of general principles. Plus, there are already mandatory carbon credit schemes around the world, such as California’s cap-and-trade program and the E.U. Emissions Trading System.

“The idea that a voluntary credit should be a different thing than a compliance credit, obviously doesn’t make sense, right?” Ryan Orbuch, Lowercarbon Capital’s carbon removal lead, told me. “You want it to be as likely as possible that the thing you’re buying today is going to count in a compliance regime.”

Keep reading...Show less
Green
Electric Vehicles

America’s National Treasure Goes Electric

On the U.S. Postal Service’s wonderfully weird shift to electric cars

A postal worker.
Heatmap Illustration/Getty Images

When you think of a gas-guzzler, what comes to mind is probably a gigantic pickup like the Ram 1500 TRX, which gets a combined 12 miles per gallon, or a sports car like the Ferrari Daytona, which manages a less-than-impressive 13 mpg. But you may not think about a vehicle you’ve likely seen a thousand times: the small trucks driven by most local mail carriers, known as the Grumman Long Life Vehicle. They lived up to their name, since they’ve been in service since the mid-80s; the newest of them were built 30 years ago. But they get an abysmal 9 miles per gallon, burning fuel by the tankful and spewing emissions as they go about their appointed rounds.

So after a long and winding journey to a replacement for the LLV, the first of the Postal Service’s Next Generation Delivery Vehicles — most of which will be electric — just hit the road. And they are beautiful.

Keep reading...Show less
Green
Climate

AM Briefing: Greenland’s Mega-Tsunami

On strange vibrations, a White House heat summit, and asthma inhalers

How Climate Change Triggered a Mega-Tsunami
Heatmap Illustration/Getty Images

Current conditions: Extreme rainfall in the Czech Republic could trigger some of the worst flooding in decades • South America has recorded more than 346,000 fire hotspots this year • A 4.7 magnitude earthquake rattled Los Angeles yesterday, followed by several aftershocks.

THE TOP FIVE

1. Global warming triggered a mega-tsunami that made the Earth vibrate for days

Back in September of last year, seismic sensors all over the world began detecting strange signals, the source of which researchers couldn’t identify. For nine days, the whole Earth appeared to vibrate at regular 90-second intervals. Now, scientists say they’ve figured out what happened: A massive landslide in Greenland, caused by a melting glacier, sent huge volumes of debris plummeting into a fjord and triggered a mega-tsunami. The energy from the wave remained trapped in the fjord for nine days, the water sloshing back and forth and sending vibrations rippling out across the entire globe. Here you can see before and after pictures of the glacier and the mountain:

Keep reading...Show less
Yellow