You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Any EV is better for the planet than a gas-guzzler, but size still matters for energy use.
A few Super Bowls ago, when General Motors used its ad spots to pitch Americans on the idea of the GMC Hummer EV, it tried to flip the script on the stereotypes that had always dogged the gas-guzzling SUV. Yes, it implied, you can drive a military-derived menace to society and still do your part for the planet, as long as it’s electric.
You don’t hear much about the Hummer anymore — it didn’t sell especially well, and the Tesla Cybertruck came along to fill the tank niche in the electric car market. But the reasoning behind its launch endures. Any EV, even a monstrous one, is a good EV if it convinces somebody, somewhere, to give up gasoline.
This line of thinking isn’t wrong. A fully electric version of a big truck or SUV is far better, emissions-wise, than a gas-powered vehicle of equivalent size. It’s arguably superior to a smaller and efficient combustion car, too. A Ford F-150 Lightning, for example, scores nearly 70 in the Environmental Protection Agency’s miles per gallon equivalent metric, abbreviated MPGe, that’s meant to compare the energy consumption of EVs and other cars. That blows away the 20-some miles per gallon that the gas F-150 gets and even exceeds the 57 combined miles per gallon of the current Toyota Prius hybrid.
In terms of America’s EV adoption, then, we’ve come to see all EVs as being created equal. Yet our penchant for large EVs that aren’t particularly efficient at squeezing miles from their batteries will become a problem as more Americans go electric.
Big, heavy cars use more energy. This is how we worried about the greenness of cars back in the days before the EV: Needlessly enormous models such as the Ford Expedition and the Hummer H2 deserved to be shamed, while owning a fuel-sipping hybrid or a dinky subcompact was the height of virtue.
This logic has gotten a bit lost in the scale-up phase of electric vehicles going mainstream. We talk at length about EV sales and how fast their numbers are growing; we rarely talk about whether the EVs we buy are as energy-efficient as they could be. As a new white paper from the American Council for an Energy-Efficient Economy points out, though, getting more miles out of our EV batteries would save drivers money and reduce the strain on the grid that will come from millions of people charging their cars.
The simplest way to measure an EV’s fuel efficiency is to know how many miles it travels per kilowatt-hour of electricity. Popular crossovers like Tesla’s Model Y and Kia’s EV6 achieve a pretty-good 3.5 miles per kilowatt-hour. Look at bigger, heavier vehicles and you’ll see a major fall-off. InsideEVs found that Rivian’s R1S gets between 2.1 and 2.4 miles per kilowatt-hour. The hulking Hummer EV scores just 1.5, according to Motor Trend’s testing. The EPA’s MPGe data is another way to see the same story. The 60-some miles per gallon equivalent of an electric pickup like the Rivian R1T or Chevy Silverado EV crushes the mileage of petro trucks, but pales next to the 140-plus MPGe that an electric sedan from Hyundai or Lucid can claim. (Those EVs can deliver 4 or more miles per kilowatt-hour.)
Even modest gains in EV efficiency could cause beneficial ripple effects, the ACEEE says. Drivers who own a 3.5 miles per kilowatt-hour car would save hundreds of dollars on fuel annually compared to those whose vehicles get 2.5 miles per kilowatt-hour. More efficient cars should be less expensive, as well. Huge, inefficient EVs need to carry enormous batteries just to reach an adequate range, and the bigger the battery, the bigger the cost. Whereas a Model Y’s battery capacity ranges from 60 kilowatt-hours for standard range to 81 kilowatt-hours for long range, a Rivian’s runs from 92 to 141.5 kilowatt-hours. ACEEE calculates that the jump from 2.5 to 3.5 kilowatt-hours could shave nearly $5,000 from the cost of making a car because it would need so much less battery.
Making EVs more efficient would mean faster charging stops, too, since drivers wouldn’t need to cram so many kilowatt-hours into their batteries. It would ease demand for electricity, making it easier for the grid to keep pace with an electrifying society. But convincing Americans to buy smaller, more efficient vehicles has been an uphill battle for decades.
Earlier this summer, Ford CEO Jim Farley called for a return to smaller vehicles as more of the U.S. car fleet turns over to electric. Yet it was Ford that just a few years ago quit making cars altogether (outside of the Mustang) because it reaped so much more profit on the pricier crossovers, SUVs, and pickups that Americans have voted for with their wallets. And not long after Farley’s speech, the company scaled back its EV ambitions, clearly struggling to find a way to sell electric vehicles profitably.
The issue is not only carbuyers’ preference for big, heavy vehicles. ACEEE points out that public policy doesn’t punish big electric cars. “The EPA standard treats all EVs as having zero emissions. It therefore provides no incentive to improve EV efficiency since inefficient and efficient EVs are treated the same for compliance purposes,” the paper says.
That is why ACEEE floats the idea of a policy change. For example, its paper suggests the fees some states levy against EVs (ostensibly to make up for the lost revenue from those cars avoiding the gas tax) could be tweaked to charge more for inefficient EVs. Rebates for purchasing an EV could be changed in the same manner.
It was, after all, regulatory loopholes and misplaced incentives that helped big gas guzzlers conquer the roads in the first place. With better rules about big EVs, perhaps we could avoid repeating the mistakes of the past.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The Loan Programs Office is good for more than just nuclear funding.
That China has a whip hand over the rare earths mining and refining industry is one of the few things Washington can agree on.
That’s why Alex Jacquez, who worked on industrial policy for Joe Biden’s National Economic Council, found it “astounding”when he read in the Washington Post this week that the White House was trying to figure out on the fly what to do about China restricting exports of rare earth metals in response to President Trump’s massive tariffs on the country’s imports.
Rare earth metals have a wide variety of applications, including for magnets in medical technology, defense, and energy productssuch as wind turbines and electric motors.
Jacquez told me there has been “years of work, including by the first Trump administration, that has pointed to this exact case as the worst-case scenario that could happen in an escalation with China.” It stands to reason, then, that experienced policymakers in the Trump administration might have been mindful of forestalling this when developing their tariff plan. But apparently not.
“The lines of attack here are numerous,” Jacquez said. “The fact that the National Economic Council and others are apparently just thinking about this for the first time is pretty shocking.”
And that’s not the only thing the Trump administration is doing that could hamper American access to rare earths and critical minerals.
Though China still effectively controls the global pipeline for most critical minerals (a broader category that includes rare earths as well as more commonly known metals and minerals such as lithium and cobalt), the U.S. has been at work for at least the past five years developing its own domestic supply chain. Much of that work has fallen to the Department of Energy, whose Loan Programs Office has funded mining and processing facilities, and whose Office of Manufacturing and Energy Supply Chains hasfunded and overseen demonstration projects for rare earths and critical minerals mining and refining.
The LPO is in line for dramatic cuts, as Heatmap has reported. So, too, are other departments working on rare earths, including the Office of Manufacturing and Energy Supply Chains. In its zeal to slash the federal government, the Trump administration may have to start from scratch in its efforts to build up a rare earths supply chain.
The Department of Energy did not reply to a request for comment.
This vulnerability to China has been well known in Washington for years, including by the first Trump administration.
“Our dependence on one country, the People's Republic of China (China), for multiple critical minerals is particularly concerning,” then-President Trump said in a 2020 executive order declaring a “national emergency” to deal with “our Nation's undue reliance on critical minerals.” At around the same time, the Loan Programs Office issued guidance “stating a preference for projects related to critical mineral” for applicants for the office’s funding, noting that “80 percent of its rare earth elements directly from China.” Using the Defense Production Act, the Trump administration also issued a grant to the company operating America's sole rare earth mine, MP Materials, to help fund a processing facility at the site of its California mine.
The Biden administration’s work on rare earths and critical minerals was almost entirely consistent with its predecessor’s, just at a greater scale and more focused on energy. About a month after taking office, President Bidenissued an executive order calling for, among other things, a Defense Department report “identifying risks in the supply chain for critical minerals and other identified strategic materials, including rare earth elements.”
Then as part of the Inflation Reduction Act in 2022, the Biden administration increased funding for LPO, which supported a number of critical minerals projects. It also funneled more money into MP Materials — including a $35 million contract from the Department of Defense in 2022 for the California project. In 2024, it awarded the company a competitive tax credit worth $58.5 million to help finance construction of its neodymium-iron-boron magnet factory in Texas. That facilitybegan commercial operation earlier this year.
The finished magnets will be bought by General Motors for its electric vehicles. But even operating at full capacity, it won’t be able to do much to replace China’s production. The MP Metals facility is projected to produce 1,000 tons of the magnets per year.China produced 138,000 tons of NdFeB magnets in 2018.
The Trump administration is not averse to direct financial support for mining and minerals projects, but they seem to want to do it a different way. Secretary of the Interior Doug Burgum has proposed using a sovereign wealth fund to invest in critical mineral mines. There is one big problem with that plan, however: the U.S. doesn’t have one (for the moment, at least).
“LPO can invest in mining projects now,” Jacquez told me. “Cutting 60% of their staff and the experts who work on this is not going to give certainty to the business community if they’re looking to invest in a mine that needs some government backstop.”
And while the fate of the Inflation Reduction Act remains very much in doubt, the subsidies it provided for electric vehicles, solar, and wind, along with domestic content requirements have been a major source of demand for critical minerals mining and refining projects in the United States.
“It’s not something we’re going to solve overnight,” Jacquez said. “But in the midst of a maximalist trade with China, it is something we will have to deal with on an overnight basis, unless and until there’s some kind of de-escalation or agreement.”
A conversation with VDE Americas CEO Brian Grenko.
This week’s Q&A is about hail. Last week, we explained how and why hail storm damage in Texas may have helped galvanize opposition to renewable energy there. So I decided to reach out to Brian Grenko, CEO of renewables engineering advisory firm VDE Americas, to talk about how developers can make sure their projects are not only resistant to hail but also prevent that sort of pushback.
The following conversation has been lightly edited for clarity.
Hiya Brian. So why’d you get into the hail issue?
Obviously solar panels are made with glass that can allow the sunlight to come through. People have to remember that when you install a project, you’re financing it for 35 to 40 years. While the odds of you getting significant hail in California or Arizona are low, it happens a lot throughout the country. And if you think about some of these large projects, they may be in the middle of nowhere, but they are taking hundreds if not thousands of acres of land in some cases. So the chances of them encountering large hail over that lifespan is pretty significant.
We partnered with one of the country’s foremost experts on hail and developed a really interesting technology that can digest radar data and tell folks if they’re developing a project what the [likelihood] will be if there’s significant hail.
Solar panels can withstand one-inch hail – a golfball size – but once you get over two inches, that’s when hail starts breaking solar panels. So it’s important to understand, first and foremost, if you’re developing a project, you need to know the frequency of those events. Once you know that, you need to start thinking about how to design a system to mitigate that risk.
The government agencies that look over land use, how do they handle this particular issue? Are there regulations in place to deal with hail risk?
The regulatory aspects still to consider are about land use. There are authorities with jurisdiction at the federal, state, and local level. Usually, it starts with the local level and with a use permit – a conditional use permit. The developer goes in front of the township or the city or the county, whoever has jurisdiction of wherever the property is going to go. That’s where it gets political.
To answer your question about hail, I don’t know if any of the [authority having jurisdictions] really care about hail. There are folks out there that don’t like solar because it’s an eyesore. I respect that – I don’t agree with that, per se, but I understand and appreciate it. There’s folks with an agenda that just don’t want solar.
So okay, how can developers approach hail risk in a way that makes communities more comfortable?
The bad news is that solar panels use a lot of glass. They take up a lot of land. If you have hail dropping from the sky, that’s a risk.
The good news is that you can design a system to be resilient to that. Even in places like Texas, where you get large hail, preparing can mean the difference between a project that is destroyed and a project that isn’t. We did a case study about a project in the East Texas area called Fighting Jays that had catastrophic damage. We’re very familiar with the area, we work with a lot of clients, and we found three other projects within a five-mile radius that all had minimal damage. That simple decision [to be ready for when storms hit] can make the complete difference.
And more of the week’s big fights around renewable energy.
1. Long Island, New York – We saw the face of the resistance to the war on renewable energy in the Big Apple this week, as protestors rallied in support of offshore wind for a change.
2. Elsewhere on Long Island – The city of Glen Cove is on the verge of being the next New York City-area community with a battery storage ban, discussing this week whether to ban BESS for at least one year amid fire fears.
3. Garrett County, Maryland – Fight readers tell me they’d like to hear a piece of good news for once, so here’s this: A 300-megawatt solar project proposed by REV Solar in rural Maryland appears to be moving forward without a hitch.
4. Stark County, Ohio – The Ohio Public Siting Board rejected Samsung C&T’s Stark Solar project, citing “consistent opposition to the project from each of the local government entities and their impacted constituents.”
5. Ingham County, Michigan – GOP lawmakers in the Michigan State Capitol are advancing legislation to undo the state’s permitting primacy law, which allows developers to evade municipalities that deny projects on unreasonable grounds. It’s unlikely the legislation will become law.
6. Churchill County, Nevada – Commissioners have upheld the special use permit for the Redwood Materials battery storage project we told you about last week.