Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

Oversize EVs Have Some Big Issues

Any EV is better for the planet than a gas-guzzler, but size still matters for energy use.

A very large Ford F-150 Lightning.
Heatmap Illustration/Ford, Tesla, Getty Images

A few Super Bowls ago, when General Motors used its ad spots to pitch Americans on the idea of the GMC Hummer EV, it tried to flip the script on the stereotypes that had always dogged the gas-guzzling SUV. Yes, it implied, you can drive a military-derived menace to society and still do your part for the planet, as long as it’s electric.

You don’t hear much about the Hummer anymore — it didn’t sell especially well, and the Tesla Cybertruck came along to fill the tank niche in the electric car market. But the reasoning behind its launch endures. Any EV, even a monstrous one, is a good EV if it convinces somebody, somewhere, to give up gasoline.

This line of thinking isn’t wrong. A fully electric version of a big truck or SUV is far better, emissions-wise, than a gas-powered vehicle of equivalent size. It’s arguably superior to a smaller and efficient combustion car, too. A Ford F-150 Lightning, for example, scores nearly 70 in the Environmental Protection Agency’s miles per gallon equivalent metric, abbreviated MPGe, that’s meant to compare the energy consumption of EVs and other cars. That blows away the 20-some miles per gallon that the gas F-150 gets and even exceeds the 57 combined miles per gallon of the current Toyota Prius hybrid.

In terms of America’s EV adoption, then, we’ve come to see all EVs as being created equal. Yet our penchant for large EVs that aren’t particularly efficient at squeezing miles from their batteries will become a problem as more Americans go electric.

Big, heavy cars use more energy. This is how we worried about the greenness of cars back in the days before the EV: Needlessly enormous models such as the Ford Expedition and the Hummer H2 deserved to be shamed, while owning a fuel-sipping hybrid or a dinky subcompact was the height of virtue.

This logic has gotten a bit lost in the scale-up phase of electric vehicles going mainstream. We talk at length about EV sales and how fast their numbers are growing; we rarely talk about whether the EVs we buy are as energy-efficient as they could be. As a new white paper from the American Council for an Energy-Efficient Economy points out, though, getting more miles out of our EV batteries would save drivers money and reduce the strain on the grid that will come from millions of people charging their cars.

The simplest way to measure an EV’s fuel efficiency is to know how many miles it travels per kilowatt-hour of electricity. Popular crossovers like Tesla’s Model Y and Kia’s EV6 achieve a pretty-good 3.5 miles per kilowatt-hour. Look at bigger, heavier vehicles and you’ll see a major fall-off. InsideEVs found that Rivian’s R1S gets between 2.1 and 2.4 miles per kilowatt-hour. The hulking Hummer EV scores just 1.5, according to Motor Trend’s testing. The EPA’s MPGe data is another way to see the same story. The 60-some miles per gallon equivalent of an electric pickup like the Rivian R1T or Chevy Silverado EV crushes the mileage of petro trucks, but pales next to the 140-plus MPGe that an electric sedan from Hyundai or Lucid can claim. (Those EVs can deliver 4 or more miles per kilowatt-hour.)

Even modest gains in EV efficiency could cause beneficial ripple effects, the ACEEE says. Drivers who own a 3.5 miles per kilowatt-hour car would save hundreds of dollars on fuel annually compared to those whose vehicles get 2.5 miles per kilowatt-hour. More efficient cars should be less expensive, as well. Huge, inefficient EVs need to carry enormous batteries just to reach an adequate range, and the bigger the battery, the bigger the cost. Whereas a Model Y’s battery capacity ranges from 60 kilowatt-hours for standard range to 81 kilowatt-hours for long range, a Rivian’s runs from 92 to 141.5 kilowatt-hours. ACEEE calculates that the jump from 2.5 to 3.5 kilowatt-hours could shave nearly $5,000 from the cost of making a car because it would need so much less battery.

Making EVs more efficient would mean faster charging stops, too, since drivers wouldn’t need to cram so many kilowatt-hours into their batteries. It would ease demand for electricity, making it easier for the grid to keep pace with an electrifying society. But convincing Americans to buy smaller, more efficient vehicles has been an uphill battle for decades.

Earlier this summer, Ford CEO Jim Farley called for a return to smaller vehicles as more of the U.S. car fleet turns over to electric. Yet it was Ford that just a few years ago quit making cars altogether (outside of the Mustang) because it reaped so much more profit on the pricier crossovers, SUVs, and pickups that Americans have voted for with their wallets. And not long after Farley’s speech, the company scaled back its EV ambitions, clearly struggling to find a way to sell electric vehicles profitably.

The issue is not only carbuyers’ preference for big, heavy vehicles. ACEEE points out that public policy doesn’t punish big electric cars. “The EPA standard treats all EVs as having zero emissions. It therefore provides no incentive to improve EV efficiency since inefficient and efficient EVs are treated the same for compliance purposes,” the paper says.

That is why ACEEE floats the idea of a policy change. For example, its paper suggests the fees some states levy against EVs (ostensibly to make up for the lost revenue from those cars avoiding the gas tax) could be tweaked to charge more for inefficient EVs. Rebates for purchasing an EV could be changed in the same manner.

It was, after all, regulatory loopholes and misplaced incentives that helped big gas guzzlers conquer the roads in the first place. With better rules about big EVs, perhaps we could avoid repeating the mistakes of the past.

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate

AM Briefing: Trump Grants Regulatory Break to Coal Plants

On presidential proclamations, Pentagon pollution, and cancelled transmission

Trump Grants Regulatory Break to Coal Plants, Iron Ore Processing Facilities
Heatmap Illustration/Getty Images

Current conditions: Over 1,000 people have evacuated the region of Seosan in South Korea following its heaviest rainfall since 1904Forecasts now point toward the “surprising return” of La Niña this fallMore than 30 million people from Louisiana through the Appalachians are at risk of flash flooding this weekend due to an incoming tropical rainstorm.

THE TOP FIVE

1. Trump signs proclamations granting regulatory breaks to coal plants, iron processing facilities

  The Hugh L. Spurlock Generating Station in Maysville, Kentucky.Jeff Swensen/Getty Images

Keep reading...Show less
Yellow
Spotlight

The Moss Landing Battery Backlash Has Spread Nationwide

New York City may very well be the epicenter of this particular fight.

Moss Landing.
Heatmap Illustration/Getty Images, Library of Congress

It’s official: the Moss Landing battery fire has galvanized a gigantic pipeline of opposition to energy storage systems across the country.

As I’ve chronicled extensively throughout this year, Moss Landing was a technological outlier that used outdated battery technology. But the January incident played into existing fears and anxieties across the U.S. about the dangers of large battery fires generally, latent from years of e-scooters and cellphones ablaze from faulty lithium-ion tech. Concerned residents fighting projects in their backyards have successfully seized upon the fact that there’s no known way to quickly extinguish big fires at energy storage sites, and are winning particularly in wildfire-prone areas.

Keep reading...Show less
Yellow
Hotspots

The Race to Qualify for Renewable Tax Credits Is on in Wisconsin

And more on the biggest conflicts around renewable energy projects in Kentucky, Ohio, and Maryland.

The United States.
Heatmap Illustration/Getty Images

1. St. Croix County, Wisconsin - Solar opponents in this county see themselves as the front line in the fight over Trump’s “Big Beautiful” law and its repeal of Inflation Reduction Act tax credits.

  • Xcel’s Ten Mile Creek solar project doesn’t appear to have begun construction yet, and like many facilities it must begin that process by about this time next year or it will lose out on the renewable energy tax credits cut short by the new law. Ten Mile Creek has essentially become a proxy for the larger fight to build before time runs out to get these credits.
  • Xcel told county regulators last month that it hoped to file an application to the Wisconsin Public Services Commission by the end of this year. But critics of the project are now telling their allies they anticipate action sooner in order to make the new deadline for the tax credit — and are campaigning for the county to intervene if that occurs.
  • “Be on the lookout for Xcel to accelerate the PSC submittal,” Ryan Sherley, a member of the St. Croix Board of Supervisors, wrote on Facebook. “St. Croix County needs to legally intervene in the process to ensure the PSC properly hears the citizens and does not rush this along in order to obtain tax credits.”

2. Barren County, Kentucky - How much wood could a Wood Duck solar farm chuck if it didn’t get approved in the first place? We may be about to find out.

Keep reading...Show less
Yellow