Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

‘Pain at the Plug’ Is Coming for Big EV Owners

Big electric vehicles need big batteries — and as electricity gets more expensive, charging them is getting pricier.

‘Pain at the Plug’ Is Coming for Big EV Owners
Juliet O'Connor

As the cost to charge the Rivian R1S ticked up over $50, then $60, I couldn’t help but recall those “Pain at the Pump” segments from the local news. Perhaps you’ve seen the familiar clips where reporters camp out at the local filling station to interview locals fed up with high gas prices. I watched the Rivian charger’s touchscreen as the cost to refuel my weekend test-driver ballooned and imagined the chemically dewrinkled TV anchors doing their first story on “Pain at the Plug.”

I should have been ready for this. Back in the 90s, I remember the shock of filling my parents’ gas-guzzling Ford Explorer, which cost two or three times as much as it took to fill my dinky Escort hatchback. The story isn’t the same in the age of electric vehicles, but it rhymes. It rarely costs more than $20 to top off the small battery in my Tesla Model 3, so my eyes popped a little at the price of refueling a massive EV.

This isn’t a one-to-one comparison, of course: the R1S also goes farther on a charge because of how much energy its huge battery can store, so it’s a bit like comparing a compact car to a Ford F-150 and its 36-gallon gas tank — you’re spending much, much, more, but you’re going a little farther, too. Still, it is a reminder that size matters, whether you’re talking about gas or electric. Under a Trump administration where electricity prices are forecasted to spike, EV shoppers might find themselves thinking the way Americans often have during oil crises and gas price hikes: taking a long look at smaller and lighter vehicles to save money.

The EV weight problem is well-known. To summarize: EVs tend to be weighty because of their massive battery packs. Making electrified versions of the big trucks and SUVs Americans love amplifies the problem. You need very big batteries to store enough energy to give them a decent range, and adding a large lithium-ion unit along the bottom adds even more girth.

Weighty EVs have raised concerns over public safety, since they could be more dangerous to pedestrians, cyclists, and other cars during collisions. Their bulk leads to prematurely worn-out tires, which potentially creates more tire dust and forces drivers to replace their rubber sooner. Bigger batteries need larger amounts of rare metals to make them. And now, in a world of expensive electricity, a heavy EV could hammer a driver’s wallet.

Those of us raised on miles per gallon must learn a new statistical vocabulary to think about the efficiency of EVs. The simplest stat is the number of miles traveled per kilowatt-hour of energy. Lucid, the luxury EV-only startup, has been gunning for the efficiency title with its streamlined Air sedan and has bragged about making 5 miles per kilowatt-hour. By comparison, the current Tesla Model 3 makes around 4 miles per kilowatt-hour, while a big, heavy Rivian gets somewhere in the 2s. (Using a conversion formula from the Environmental Protection Agency to calculate the energy present in a gallon of gas shows that a relatively efficient sedan like the Honda Civic scores around 1, by Lucid’s math, and a big pickup truck even worse.)

These numbers are context-dependent, of course. Just as a gas car or hybrid is judged by its city, highway, and combined mileage, an electric car goes much farther at slow speeds than it does on the highway. A big three-row Hyundai Ioniq 9 EV that can deliver 3 miles or more per kilowatt-hour at slower speeds made right around 2.0 when I sped down Interstate 5, the AC blasting to keep the baby comfortable on a hot California day. The Supercharger bill was enough to make me miss my little Tesla.

The dollars-and-cents calculation is a little different with all-electric vehicles than it was in the all-gasoline era. Drive a gas car and you pay whatever the gas station charges; there is little recourse beyond knowing which service station in your city is the cheapest. With EVs, however, most drivers do their charging primarily at home, where the cost per kilowatt-hour for residential energy is much lower than the inflated cost to refill the battery at a public fast-charger. (Even California’s high cost for home electricity amounts to just half of what some EV fast-chargers cost during afternoon and evening times of peak demand.) But there’s no way to beat the system entirely. Drive a giant, electron-guzzling EV and you’ll be much more vulnerable to a spike in electricity prices.

And it’s not just the cost of recharging a battery — size also matters a lot for the up-front cost of the EV. Americans have become accustomed to paying a premium for larger vehicles, but for combustion cars, this is simply a market phenomenon. It doesn’t cost that much more to build a crossover instead of a sedan, or to give a vehicle a bigger gas tank. The car companies know you’ll pay thousands more for a Toyota RAV4 than for a Corolla. With electric vehicles, however, you’re paying for size in a much more direct fashion. That huge battery needed to move a Rivian is simply much more expensive to build than the one in a Chevy Bolt.

Carmakers are now confronting this problem as they try to crack the affordable EV problem. A subtle detail in Ford’s big announcement last week that it would build a $30,000 mid-size electric pickup is that the vehicle would have a battery perhaps half as big as the one in the F-150 Lightning EV and four times smaller than the biggest one you can get with Chevy’s Silverado EV.

Building a truck with a relatively small battery will undoubtedly slash costs compared to the monster units we’ve seen in full-size electric pickups. It also means that Ford will have to be especially conscious of the vehicle’s weight to maximize the range that can be squeezed out of those few kilowatt-hours. Until battery production costs tumble, that is the way to the more-affordable EV — do more with less.

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

Exxon Counterattacks

On China’s rare earths, Bill Gates’ nuclear dream, and Texas renewables

An Exxon sign.
Heatmap Illustration/Getty Images

Current conditions: Hurricane Melissa exploded in intensity over the warm Caribbean waters and has now strengthened into a major storm, potentially slamming into Cuba, the Dominican Republic, Haiti, and Jamaica as a Category 5 in the coming days • The Northeast is bracing for a potential nor’easter, which will be followed by a plunge in temperatures of as much as 15 degrees Fahrenheit lower than average • The northern Australian town of Julia Creek saw temperatures soar as high as 106 degrees.

THE TOP FIVE

1. Exxon sued California

Exxon Mobil filed a lawsuit against California late Friday on the grounds that two landmark new climate laws violate the oil giant’s free speech rights, The New York Times reported. The two laws would require thousands of large companies doing business in the state to calculate and report the greenhouse gas pollution created by the use of their products, so-called Scope 3 emissions. “The statutes compel Exxon Mobil to trumpet California’s preferred message even though Exxon Mobil believes the speech is misleading and misguided,” Exxon complained through its lawyers. California Governor Gavin Newsom’s office said the statutes “have already been upheld in court and we continue to have confidence in them.” He condemned the lawsuit, calling it “truly shocking that one of the biggest polluters on the planet would be opposed to transparency.”

Keep reading...Show less
Red
The Aftermath

How to Live in a Fire-Scarred World

The question isn’t whether the flames will come — it’s when, and what it will take to recover.

Wildfire aftermath.
Heatmap Illustration/Getty Images

In the two decades following the turn of the millennium, wildfires came within three miles of an estimated 21.8 million Americans’ homes. That number — which has no doubt grown substantially in the five years since — represents about 6% of the nation’s population, including the survivors of some of the deadliest and most destructive fires in the country’s history. But it also includes millions of stories that never made headlines.

For every Paradise, California, and Lahaina, Hawaii, there were also dozens of uneventful evacuations, in which regular people attempted to navigate the confusing jargon of government notices and warnings. Others lost their homes in fires that were too insignificant to meet the thresholds for federal aid. And there are countless others who have decided, after too many close calls, to move somewhere else.

By any metric, costly, catastrophic, and increasingly urban wildfires are on the rise. Nearly a third of the U.S. population, however, lives in a county with a high or very high risk of wildfire, including over 60% of the counties in the West. But the shape of the recovery from those disasters in the weeks and months that follow is often that of a maze, featuring heart-rending decisions and forced hands. Understanding wildfire recovery is critical, though, for when the next disaster follows — which is why we’ve set out to explore the topic in depth.

Keep reading...Show less
The Aftermath

The Surprisingly Tricky Problem of Ordering People to Leave

Wildfire evacuation notices are notoriously confusing, and the stakes are life or death. But how to make them better is far from obvious.

Wildfire evacuation.
Heatmap Illustration/Getty Images

How many different ways are there to say “go”? In the emergency management world, it can seem at times like there are dozens.

Does a “level 2” alert during a wildfire, for example, mean it’s time to get out? How about a “level II” alert? Most people understand that an “evacuation order” means “you better leave now,” but how is an “evacuation warning” any different? And does a text warning that “these zones should EVACUATE NOW: SIS-5111, SIS-5108, SIS-5117…” even apply to you?

Keep reading...Show less