You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The research instead suggests the opposite is true.
When former President Donald Trump was campaigning in Michigan last week, he warned autoworkers that President Biden’s electric vehicle policies would “put an end” to their “way of life.”
“Hundreds of thousands of American jobs, your jobs, will be gone forever,” he said. “By most estimates, under Biden’s electric vehicle mandate, 40% of all U.S. auto jobs will disappear.”
Trump may be exaggerating, but the underlying idea, that electric vehicles require less labor to manufacture than internal combustion engine cars, is the conventional wisdom. It has been circulated for years by automakers, autoworkers, politicians, and journalists. EVs contain fewer parts, the thinking goes, so naturally they will require fewer workers.
That logic seems obvious, which might be why it hasn’t received much scrutiny. But when I tried to find any research supporting it, what I found instead suggested the opposite. A number of analyses showed that electric vehicles could actually require more labor to build than gas-powered cars in the U.S., at least for the foreseeable future.
There are countless news articles and studies that reiterate the point that electric vehicles “have fewer moving parts” or are “less complex” and therefore pose a threat to autoworkers’ jobs. Many cite a 2017 Ford presentation that mentioned a “30% reduction in hours per unit” as a benefit of producing EVs, or former Volkswagen CEO Herbert Diess, who said in 2019 the company would need to make job cuts due to its switch to EVs, which “involve some 30% less effort.” More recently, as the United Auto Workers strike has ramped up, a 2022 quote from Ford’s CEO Jim Farley that “it takes 40% less labor to make an electric car,” has been circulating.
But I couldn’t find any data, research, or even further explanation backing up these figures. Part of the challenge of digging into these claims is that it’s not clear what they even refer to. Are the CEOs talking about the labor required for final assembly, like dropping in the motor and putting on the doors? Are they taking into account the production of components, like the EV battery? Where do they draw the line on what constitutes EV manufacturing?
Get one great climate story in your inbox every day:
Ford didn’t respond directly to my request for more information about its public estimates. Instead, spokesperson Dan Barbossa replied that if I was going to quote Farley, I needed to include his entire quote. After dropping the “40% less labor” statistic, Farley had continued, “So as a family company, we have to insource so that everyone has a role in this world. We have a whole new supply chain to fill out, in batteries and motors and electronics.”
There may be more to Farley’s words than a bit of public relations fluff. His suggestion that building out new supply chains will help people find “a role” aligns with the conclusions of a study that Volkswagen’s independent Sustainability Council commissioned in 2020. It was conducted by the Fraunhofer Institute for Industrial Engineering, a German research group, using Volkswagen company data, and found only minor impacts on employment due to the transition. Losses can be mitigated by “shifting to the production of new components,” it said, like the individual battery cells that make up the battery packs.
One of the findings was that “employment intensity” for the final manufacturing of Volkswagen’s electric ID.3 is only 3% lower than that of the conventional Golf Mk8. The bigger gap is in the labor required to produce the individual components of each car’s drivetrain. The employment intensity of the battery system and electric motor, combined, was about 40% lower than that of the combustion engine and transmission system.
Notably, the study did not include the jobs required to produce the individual battery cells which make up the battery system, because Volkswagen wasn’t producing them at the time. But a more recent analysis of the U.S. manufacturing landscape found that cell production holds the most potential for job creation, and concluded that if you account for this, the transition to EVs could actually result in significantly more jobs.
Turner Cotterman, a McKinsey consultant, led the research as part of his Ph.D. in public policy and engineering at Carnegie Mellon under Associate Professor Kate Whitefoot. He sought out partnerships with U.S.-based automakers and electric vehicle component manufacturers and collected original data from nine companies on the number of hours it takes to complete more than 250 process steps. In some cases he visited the shop floors and personally gathered the data himself. In his final analysis, he also incorporated public data for an additional 78 production process steps. He used the data to model three scenarios where EV and combustion engine powertrains are produced at the average efficiency, as well as a “most efficient” case and a “least efficient” case.
In every case, EV manufacturing required more hours. The conventional powertrains took 4 to 11 worker hours, while the EV powertrains took 15 to 24. “A lot of the confusion sits around, what parts are you counting in this evaluation?” Cotterman told me. “We’re saying that if you were to produce every single component in an EV in the U.S., that the total sum of those powertrain components will be higher than the equivalent ICE components.”
Cotterman, Turner and Fuchs, Erica Renee and Whitefoot, Kate, The transition to electrified vehicles: Evaluating the labor demand of manufacturing conventional versus battery electric vehicle powertrains (June 4, 2022)
There are a few important caveats to the research. For one, Cotterman stressed that these are present-day numbers, and they might change as EV plants scale up and learn to be more efficient. When he looked at data from Chinese manufacturing plants, they were a lot more efficient than what he saw in the U.S. And that relates to his other point. Currently, most battery components are not made in the U.S.
“With so many battery components made in China and South Korea, a lot of those potential labor hours are being captured by other countries,” he said. “So it's a question of the future American manufacturing workforce — how do we value them? How many opportunities do we want to extend to them?”
Another report published in 2021 by the Economic Policy Institute, a nonpartisan think tank, reached a similar conclusion. It found that the stakes for workers in the EV transition depend largely on public policy efforts to shore up U.S. manufacturing and enhance job quality. “The real challenge is making sure U.S.-based producers can invest enough to become competitive in battery production, and claw back some of the overall sales market share they lost since the Great Recession,” Josh Bivens, chief economist at the institute, told me in an email. “These are much bigger deals than anything about the inherent production process of EVs — and they’re very amenable to policy.”
Automakers have claimed that paying workers more would put them at a disadvantage and hinder their ability to invest in the EV transition. But in a recent blog post, the Economic Policy Institute argued that with the help of subsidies from President Biden’s signature climate law, the Inflation Reduction Act, automakers have “more than enough money” to invest in EVs, pay workers a fair share, and maintain healthy profits.
The IRA created a domestic manufacturing tax credit that subsidizes the production of battery cells to the tune of $35 per kilowatt-hour of capacity. It offers an additional $10 per kilowatt-hour tax credit for the domestic production of battery modules, or the process of assembling the cells into arrays that later get put into battery packs. And there’s another incentive for automakers to onshore battery production — it will help their vehicles qualify for the IRA’s consumer tax credit.
According to a database maintained by the advocacy group Climate Power, there have been about 10 EV battery manufacturing plant projects announced in the U.S. since the IRA was passed, at least some of which will produce cells.
So is the crux of the matter that EV job losses or gains all come down to batteries? Not necessarily.
Whether or not the U.S. is able to build up domestic battery production, early evidence of the EV transition in the United States shows that EVs may require more labor, even in the final assembly stages.
Anna Stefanopoulou, a professor of mechanical engineering at the University of Michigan, has been investigating three manufacturing sites that used to produce conventional cars and are now producing EVs: A Tesla factory in California that used to be a jointly-owned facility between GM and Toyota that produced Pontiacs and Corollas; a Rivian plant in Illinois that previously produced Mitsubishis; and the Orion Assembly plant in Michigan, where GM transitioned from producing Chevy Sonics and Buick Veranos to electric Chevy Bolts.
Her research has not been peer reviewed or published yet, but Stefanopoulou told me that after analyzing publicly available data sources for employment and output at each plant, she found that productivity had gone down in all three cases. Each one is producing fewer vehicles per worker than they were before, meaning it’s taking more people per vehicle to produce electric cars. The California site, which has been producing EVs for the longest out of the three, showed the most dramatic change. At its peak, the GM/Toyota plant produced 80 vehicles per person per year. The Tesla plant averages 30.
Stefanopoulou believes the data reflects the nascent state of U.S. electric vehicle manufacturing. She predicts that after a decade or so, as processes become more streamlined, the commonly-held belief that EV assembly requires less labor will turn out to be correct. However, she also said that if she were to consider battery cell production, as Cotterman did, EV production on the whole could require more people.
She also stressed that her data is not conclusive, and poses many more questions. For example, she found that overall production per worker in the U.S. is falling. So does the labor intensity at the EV plants reflect something specific about those factories, or a bigger issue in U.S. manufacturing productivity?
It’s also been hard for her team to identify what was actually being produced at each plant at any given time. For example, the previous owners of the California plant did not assemble engines there, but the Tesla factory is assembling battery packs. So that might explain why productivity is so much lower now. But there are a lot of unknowns. “Over the years, they changed their patterns,” she told me. “They take the cells and assemble the pack, or occasionally they manufacture cells. So we don’t know exactly what kind of work the plants include. We know the outputs are vehicles, but what does assembly include?”
In any case, Stefanopoulou is torn about what conclusion to draw from her findings on productivity. “Sometimes I don’t know if what I will present in my paper will be good news or bad news,” she told me. “Maybe it’s good news for our people that are involved, but at the end, you know, we need to be productive also, so that we can actually lower the costs so people can afford buying electric vehicles.”
What seems clear is that whether the transition results in more jobs or fewer depends a lot on which processes you’re including, how many of them will ultimately be done domestically, and how much will get streamlined through automation and other efficiency measures.
At the same time, topline job numbers aren’t the full story. The jobs created in the EV transition will certainly not all resemble the jobs that are lost. They may not be located in the same places, or require the same set of skills. Workers are right to be worried about upheaval.
But these are things that can be managed, if automakers are willing to come to the table with workers, and vice versa. For example, when Ford negotiated the closure of its Romeo Engine Plant at the end of last year, every employee was offered either a buyout or a transfer to another facility. Barbossa, the Ford spokesperson, told me many are now working about 20 minutes away, at the Van Dyke Electric Powertrain Center, building EV power units for the F-150 Lightning and hybrid powertrains for the Maverick and F-150.
I reached out to the United Autoworkers to get their thoughts on these studies, but the union did not respond to my questions. The UAW does appear to have a good handle on the stakes of battery manufacturing, however. Last week, Jim Farley of Ford provided an update on the negotiations, and said that “the UAW is holding the deal hostage over the battery plants.”
Farley vowed that none of its workers will lose their jobs due to battery plants during the next contract period. “In fact, for the foreseeable future we will have to hire more workers as some workers retire, in order to keep up with demand,” he said. “We are open to working with the union on a fair deal for battery plants, but these are multi-billion investments and they have to make business sense.”
Read more about electric vehicles and labor:
What the UAW Wants Exactly — and What It Means for Electric Cars
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Kettle offers parametric insurance and says that it can cover just about any home — as long as the owner can afford the premium.
Los Angeles is on fire, and it’s possible that much of the city could burn to the ground. This would be a disaster for California’s already wobbly home insurance market and the residents who rely on it. Kettle Insurance, a fintech startup focused on wildfire insurance for Californians, thinks that it can offer a better solution.
The company, founded in 2020, has thousands of customers across California, and L.A. County is its largest market. These huge fires will, in some sense, “be a good test, not just for the industry, but for the Kettle model,” Brian Espie, the company’s chief underwriting officer, told me. What it’s offering is known as “parametric” insurance and reinsurance (essentially insurance for the insurers themselves.) While traditional insurance claims can take years to fully resolve — as some victims of the devastating 2018 Camp Fire know all too well — Kettle gives policyholders 60 days to submit a notice of loss, after which the company has 15 days to validate the claim and issue payment. There is no deductible.
As Espie explained, Kettle’s AI-powered risk assessment model is able to make more accurate and granular calculations, taking into account forward-looking, climate change-fueled challenges such as out-of-the-norm weather events, which couldn’t be predicted by looking at past weather patterns alone (e.g. wildfires in January, when historically L.A. is wet). Traditionally, California insurers have only been able to rely upon historical datasets to set their premiums, though that rule changed last year and never applied to parametric insurers in the first place.
“We’ve got about 70 different inputs from global satellite data and real estate ground level datasets that are combining to predict wildfire ignition and spread, and then also structural vulnerability,” Espie told me. “In total, we’re pulling from about 130 terabytes of data and then simulating millions of fires — so using technology that, frankly, wouldn’t have been possible 10 or maybe five years ago, because either the data didn’t exist, or it just wasn’t computationally possible to run a model like we are today.”
As of writing, it’s estimated that more than 2,000 structures have burned in Los Angeles. Whenever a fire encroaches on a parcel of Kettle-insured land, the owner immediately qualifies for a payout. Unlike most other parametric insurance plans, which pay a predetermined amount based on metrics such as the water level during a flood or the temperature during a heat wave regardless of damages, Kettle does require policyholders to submit damage estimates. The company told me that’s usually pretty simple: If a house burns, it’s almost certain that the losses will be equivalent to or exceed the policy limit, which can be up to $10 million. While the company can always audit a property to prevent insurance fraud, there are no claims adjusters or other third parties involved, thus expediting the process and eliminating much of the back-and-forth wrangling residents often go through with their insurance companies.
So how can Kettle afford to do all this while other insurers are exiting the California market altogether or pulling back in fire-prone regions? “We like to say that we can put a price on anything with our model,” Espie told me. “But I will say there are parts of the state that our model sees as burning every 10 to 15 years, and premiums may be just practically too expensive for insurance in those areas.” Kettle could also be an option for homeowners whose existing insurance comes with a very high wildfire deductible, Espie explained, as buying Kettle’s no-deductible plan in addition to their regular plan could actually save them money were a fire to occur.
But just because an area has traditionally been considered risky doesn’t mean that Kettle’s premiums will necessarily be exorbitant. The company’s CEO, Isaac Espinoza, told me that Kettle’s advanced modeling allows it to drill down on the risk to specific properties rather than just general regions. “We view ourselves as ensuring the uninsurable,” Espinoza said. “Other insurers just blanket say, we don’t want to touch it. We don’t touch anything in the area. We might say, ’Hey, that’s not too bad.’”
Espie told me that the wildly destructive fires in 2017 and 2018 “gave people a wake up call that maybe some of the traditional catastrophe models out there just weren’t keeping up with science and natural hazards in the face of climate change.” He thinks these latest blazes could represent a similar turning point for the industry. “This provides an opportunity for us to prove out that models built with AI and machine learning like ours can be more predictive of wildfire risk in the changing climate, where we’re getting 100 mile per hour winds in January.”
Everyone knows the story of Mrs. O’Leary’s cow, the one that allegedly knocked over a lantern in 1871 and burned down 2,100 acres of downtown Chicago. While the wildfires raging in Los Angeles County have already far exceeded that legendary bovine’s total attributed damage — at the time of this writing, on Thursday morning, five fires have burned more than 27,000 acres — the losses had centralized, at least initially, in the secluded neighborhoods and idyllic suburbs in the hills above the city.
On Wednesday, that started to change. Evacuation maps have since extended into the gridded streets of downtown Santa Monica and Pasadena, and a new fire has started north of Beverly Hills, moving quickly toward an internationally recognizable street: Hollywood Boulevard. The two biggest fires, Palisades and Eaton, remain 0% contained, and high winds have stymied firefighting efforts, all leading to an exceedingly grim question: Exactly how much of Los Angeles could burn. Could all of it?
“I hate to be doom and gloom, but if those winds kept up … it’s not unfathomable to think that the fires would continue to push into L.A. — into the city,” Riva Duncan, a former wildland firefighter and fire management specialist who now serves as the executive secretary of Grassroots Wildland Firefighters, an advocacy group, told me.
When a fire is burning in the chaparral of the hills, it’s one thing. But once a big fire catches in a neighborhood, it’s a different story. Houses, with their wood frames, gas lines, and cheap modern furniture, might as well be Duraflame. Embers from one burning house then leap to the next and alight in a clogged gutter or on shrubs planted too close to vinyl siding. “That’s what happened with the Great Chicago Fire. When the winds push fires like that, it’s pushing the embers from one house to the others,” Duncan said. “It’s a really horrible situation, but it’s not unfathomable to think about that [happening in L.A.] — but people need to be thinking about that, and I know the firefighters are thinking about that.”
Once flames engulf a block, it will “overpower” the capabilities of firefighters, Arnaud Trouvé, the chair of the Department of Fire Protection Engineering at the University of Maryland, told me in an email. If firefighters can’t gain a foothold, the fire will continue to spread “until a change in driving conditions,” such as the winds weakening to the point that a fire isn’t igniting new fuel or its fuel source running out entirely, when it reaches something like an expansive parking lot or the ocean.
This waiting game sometimes leads to the impression that firefighters are standing around, not doing anything. But “what I know they’re doing is they’re looking ahead to places where maybe there’s a park, or some kind of green space, or a shopping center with big parking lots — they’re looking for those places where they could make a stand,” Duncan told me. If an entire city block is already on fire, “they’re not going to waste precious water there.”
Urban firefighting is a different beast than wildland firefighting, but Duncan noted that Forest Service, CALFIRE, and L.A. County firefighters are used to complex mixed environments. “This is their backyard, and they know how to fight fire there.”
“I can guarantee you, many of them haven’t slept 48 hours,” she went on. “They’re grabbing food where they can; they’re taking 15-minute naps. They’re in this really horrible smoke — there are toxins that come off burning vehicles and burning homes, and wildland firefighters don’t wear breathing apparatus to protect the airways. I know they all have horrible headaches right now and are puking. I remember those days.”
If there’s a sliver of good news, it’s that the biggest fire, Palisades, can’t burn any further to the west, the direction the wind is blowing — there lies the ocean — meaning its spread south into Santa Monica toward Venice and Culver City or Beverly Hills is slower than it would be if the winds shifted. The westward-moving Santa Ana winds, however, could conceivably fan the Eaton fire deeper into eastern Los Angeles if conditions don’t let up soon. “In many open fires, the most important factor is the wind,” Trouvé explained, “and the fire will continue spreading until the wind speed becomes moderate-to-low.”
Though the wind died down a bit on Wednesday night, conditions are expected to deteriorate again Thursday evening, and the red flag warning won’t expire until Friday. And “there are additional winds coming next week,” Kristen Allison, a fire management specialist with the Southern California Geographic Area Coordination Center, told me Wednesday. “It’s going to be a long duration — and we’re not seeing any rain anytime soon.”
Editor’s note: Firefighting crews made “big gains” overnight against the Sunset fire, which threatened famous landmarks like the TLC Chinese Theater and the Dolby Theatre, which will host the Academy Awards in March. Most of the mandatory evacuation notices remaining in Hollywood on Thursday morning were out of precaution, the Los Angeles Times reported. Meanwhile, the Palisades and Eaton fires have burned a combined 27,834 acres, destroyed 2,000 structures, killed at least five people, and remain unchecked as the winds pick up again. This piece was last updated on January 9 at 10:30 a.m. ET.
On greenhouse gases, LA’s fires, and the growing costs of natural disasters
Current conditions: Winter storm Cora is expected to disrupt more than 5,000 U.S. flights • Britain’s grid operator is asking power plants for more electricity as temperatures plummet • Parts of Australia could reach 120 degrees Fahrenheit in the coming days because the monsoon, which usually appears sometime in December, has yet to show up.
The fire emergency in Los Angeles continues this morning, with at least five blazes raging in different parts of the nation’s second most-populated city. The largest, known as the Palisades fire, has charred more than 17,000 acres near Malibu and is now the most destructive fire in the county’s history. The Eaton fire near Altadena and Pasadena has grown to 10,600 acres. Both are 0% contained. Another fire ignited in Hollywood but is reportedly being contained. At least five people have died, more than 2,000 structures have been destroyed or damaged, 130,000 people are under evacuation warnings, and more than 300,000 customers are without power. Wind speeds have come down from the 100 mph gusts reported yesterday, but “high winds and low relative humidity will continue critical fire weather conditions in southern California through Friday,” the National Weather Service said.
Apu Gomes/Getty Images
As the scale of this disaster comes into focus, the finger-pointing has begun. President-elect Donald Trump blamed California Gov. Gavin Newsom, suggesting his wildlife protections have restricted the city’s water access. Many people slammed the city’s mayor for cutting the fire budget. Some suspect power lines are the source of the blazes, implicating major utility companies. And of course, underlying it all, is human-caused climate change, which researchers warn is increasing the frequency and severity of wildfires. “The big culprit we’re suspecting is a warming climate that’s making it easier to burn fuels when conditions are just right,” said University of Colorado fire scientist Jennifer Balch.
America’s greenhouse gas emissions were down in 2024 compared to 2023, but not by much, according to the Rhodium Group’s annual report, released this morning. The preliminary estimates suggest emissions fell by just 0.2% last year. In other words, they were basically flat. That’s good news in the sense that emissions didn’t rise, even as the economy grew by an estimated 2.7%. But it’s also a little worrying given that in 2023, emissions dropped by 3.3%.
Rhodium Group, EPA
The transportation, power, and buildings sectors all saw upticks in emissions last year. But there are some bright spots in the report. Emissions fell across the industrial sector (down 1.8%) and oil and gas sector (down 3.7%). Solar and wind power generation surpassed coal for the first time, and coal production fell by 12% to its lowest level in decades, resulting in fewer industrial methane emissions. Still, “the modest 2024 decline underscores the urgency of accelerating decarbonization in all sectors,” Rhodium’s report concluded. “To meet its Paris Agreement target of a 50-52% reduction in emissions by 2030, the U.S. must sustain an ambitious 7.6% annual drop in emissions from 2025 to 2030, a level the U.S. has not seen outside of a recession in recent memory.”
Insured losses from natural disasters topped $140 billion last year, up significantly from $106 billion in 2023, according to Munich Re, the world’s largest insurer. That makes 2024 the third most expensive year in terms of insured losses since 1980. Weather disasters, and especially major U.S. hurricanes, accounted for a large chunk ($47 billion) of these costs: Hurricanes Helene and Milton were the most devastating natural disasters of 2024. “Climate change is taking the gloves off,” the insurer said. “Hardly any other year has made the consequences of global warming so clear.”
Munich Re
A new study found that a quarter of all the world’s freshwater animals are facing a high risk of extinction due to pollution, farming, and dams. The research, published in the journal Nature, explained that freshwater sources – like rivers, lakes, marshes, and swamps – support over 10% of all known species, including fish, shrimps, and frogs. All these creatures support “essential ecosystem services,” including climate change mitigation and flood control. The report studied some 23,000 animals and found about 24% of the species were at high risk of extinction. The researchers said there “is urgency to act quickly to address threats to prevent further species declines and losses.”
A recent oil and gas lease sale in Alaska’s Arctic National Wildlife Refuge got zero bids, the Interior Department announced yesterday. This was the second sale – mandated by Congress under the 2017 Tax Act – to generate little interest. “The lack of interest from oil companies in development in the Arctic National Wildlife Refuge reflects what we and they have known all along – there are some places too special and sacred to put at risk with oil and gas drilling,” said Acting Deputy Secretary Laura Daniel-Davis. President-elect Donald Trump has promised to open more drilling in the refuge, calling it “the biggest find anywhere in the world, as big as Saudi Arabia.”
“Like it or not, addressing climate change requires the help of the wealthy – not just a small number of megadonors to environmental organizations, but the rich as a class. The more they understand that their money will not insulate them from the effects of a warming planet, the more likely they are to be allies in the climate fight, and vital ones at that.” –Paul Waldman writing for Heatmap