You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
EVs might have killed the hydrogen car, but trucking is a different story.
The hydrogen car lost.
Not long ago, it seemed like hydrogen fuel cells would power the next generation of climate change-fighting vehicles. Instead, batteries won the future. Americans now buy hundreds of thousands of electric vehicles each year, while only a couple of mass market hydrogen fuel cell cars can be found, and only in a select few places with enough hydrogen stations to make them driveable. The 20-year-old dream of a “hydrogen highway” across California never quite materialized, and hydrogen’s ascent toward becoming the fuel of the future remains stuck in limbo.
Yet hydrogen just keeps humming in the background. Researchers are not giving up but plugging away, trying to refine the chemistry of producing commercial hydrogen to make it better and cheaper. Most of the attention it attracts goes to how it might be put to use in heavy industry, but there are glimmers of potential in transportation as well. Advocates plan for hydrogen to be used in places where it makes more sense than a battery-electric vehicle, from warehouse forklifts up to semi trucks.
It may be that hydrogen is not, as it was once hyped, the answer to everything. But it’s going to pop up in more places than you might think.
Here is a hydrogen fuel cell refresher: Like a battery, a fuel cell has two electrodes — a negatively charged anode and a positively charged cathode — plus an electrolyte, the electrically conducting medium. Each atom of hydrogen contains a single proton and electron. When the fuel cell separates those two components, electrons travel one way to create a flow of electricity, while the protons go another way to be reunited with oxygen in the air to create water and heat. Given that those are the fuel cell’s only byproducts, it has the potential to be a very clean energy source (depending upon how the hydrogen itself was created).
Hydrogen’s other strength is that it’s a fuel, one that, compared to charging a battery, more closely resembles our pump-and-go experience of the gas station. But there is a flip side to that feature. If America wanted to become a hydrogen economy, a new nationwide hydrogen infrastructure of pipelines and substations would be needed to create and distribute the stuff all around the country, which is even more ambitious than the current movement to fill the country with high-speed EV chargers.
That’s why hydrogen projects have gone local. In Northern California, a group of Hyundai XCIENT Fuel Cell semis — which the company claims to be “the world's first mass-produced, heavy-duty truck powered by hydrogen” — are about to begin an experiment in green trucking backed by the University of California, Berkeley, the Center for Transportation and the Environment (CTE), and state agencies including the California Air Resources Board (CARB). Later this year, the NorCAL Zero project will see 30 hydrogen semis moving goods between the Port of Oakland and inland destinations such as Sacramento, Stockton, Modesto, and Fresno.
There are battery-powered big rigs on the way, including Tesla’s much-ballyhooed semi. But there are several reasons to be gung-ho for hydrogen, says P.J. Callahan, CTE’s project manager for the NorCal Zero project. Battery semis, when weighed down with a full load of cargo, would deliver only 150 to 200 miles of range, he says. Hyundai’s hydrogen trucks already promise at least twice that much, and Callahan expects fuel cell trucking to reach much higher as the technology develops.
“The ultimate kind of range goal that we expect for these types of trucks is between 700 miles and a thousand miles,” he says. “That's extremely challenging with battery electric.”
Fuel-cell semis can also carry more volume because there aren’t batteries eating up cubic feet of space that would otherwise go to cargo, Callahan says. Hydrogen also has the potential to deliver minimal refueling times that clock-conscious truckers are accustomed to. Eventually. With today’s technology, he says, it might take a half-hour to fill a semi with hydrogen, but that’s because existing systems are slow and conservative, built with small passenger vehicles like the Toyota Mirai in mind. With standardized equipment made for trucking, he says, fill-up times could drop to five to ten minutes.
There is still the issue of new hydrogen infrastructure. But running trucks on familiar paths between the Port of Oakland and popular inland destinations negates the need to build new refueling stations everywhere. “We are going to need a refueling network of stations, but … you can just be smarter about the way that we plan it,” Callahan says.
Plenty of other vehicles beyond big rigs have quietly turned to or experimented with hydrogen. Amazon now runs its small army of warehouse forklifts on fuel cells and has signed billion-dollar deals for the hydrogen supply. Establishing a green hydrogen pipeline for small uses like forklifts, as well as 800 heavy-duty trucks, is meant to help the company use hydrogen to meet its net-zero by 2040 goals.
Some U.S. cities run municipal buses on fuel cells. Hydrogen is considered a strong candidate to decarbonize the cargo shipping industry. Experiments have shown that it’s possible even to fly airplanes this way, though Hydrogen Airlines is a long way off.
Where hydrogen will continue to find a home depends a lot on how it will be made in the future. Nearly all the commercial hydrogen used in America today is created via the process called steam methane reformation, in which the methane in natural gas is subjected to high-temperature steam. The conversion creates free hydrogen but also the greenhouse gas carbon dioxide as a byproduct. That’s why scientists are racing to find ways to bring down the cost of green hydrogen solutions such as electrolyzers. They apply current to water to separate it into its component elements of hydrogen and oxygen, but they remain more expensive than current technology.
“It's a major goal of the state of California. It's a major goal of the federal government through the Department of Energy. Their hydrogen hub initiative wants to reduce the carbon impact of hydrogen and to get to green electrolyzed hydrogen from renewable resources so that there's no carbon involved in any part of the value chain,” Callahan says.
If such a goal could be achieved, hydrogen fuel could be used for a lot more than moving vehicles. For instance: One of the problems of a power grid running mostly on renewables is the need to store solar or wind energy when it’s available to use when it’s not. We could give old EV batteries a second life as energy storage for the grid, but it’s possible to imagine using liquid hydrogen to do the same job.
Perhaps the fuel of the future is still the fuel of the future.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Elgin Energy Center is back from the dead.
At least one natural gas plant in America’s biggest energy market that was scheduled to shut down is staying open. Elgin Energy Center, an approximately 500 megawatt plant in Illinois approximately 40 miles northwest of downtown Chicago was scheduled to shut down next June, according to filings with the Federal Energy Regulatory Commission and officials from PJM Interconnection, the country’s largest regional transmission organization, governs the relevant portion of the U.S. grid. Elgin’s parent company “no longer intends to deactivate and retire all four units ... at the Elgin Energy Center,” according to a letter dated September 4 and posted to PJM’s website Wednesday.
The Illinois plant is something of a poster child for PJM’s past few years. In 2022, it was one of many natural gas plants to shut down during Winter Storm Elliott as the natural gas distribution seized up. Its then-parent company, Lincoln Power — owned by Cogentrix, the Carlyle Group’s vehicle for its power business — filed for bankruptcy the following year, after PJM assessed almost $40 million in penalties for failing to operate during the storm. In June, a bankruptcy court approved the acquisition of the Elgin plant, along with one other, by Middle River Power, a generation business backed by Avenue Capital, a $12 billion investment firm, in a deal that was closed in December.
The decision to continue operating the plant past its planned deactivation comes as PJM set a new price record at its capacity auction in July, during which generators submitted bids for power that can be deployed when the grid is under stress due to high demand. The $14.7 billion auction was a massive jump from the previous one, which finished at just over $2 billion. Ironically, one reason the most recent auction was so expensive is that PJM gave less credit to natural gas generators for their capacity following Winter Storm Elliott, which then drove up auction prices, leading to large payouts for gas plants. PJM said the high auction prices were “caused primarily by a large number of generator retirements.”
In a bankruptcy court filing in 2023, Lincoln Power’s chief restructuring officer said that the company “was experiencing a liquidity crunch” due to low prices in past capacity auction, which meant that it had “received significantly less revenues for the capacity they sold in those Capacity Auctions as compared to previous Capacity Auctions.” With higher capacity revenues in PJM, presumably Elgin's business has improved.
Many analysts are skeptical that PJM can quickly get new load onto the system to bring prices down meaningfully in subsequent auctions — the next one is in December — and the PJM queue for new projects is absurdly clogged. This only juices the incentives for older fossil plants to stay open.
“This shortage of capacity is happening immediately,” Nicholas Freschi, senior associate at Gabel Associates, told me last week. “There might be more resources, and PJM might be able to coerce some retiring or not participating plants to make up for the shortfall. It’s an immediate problem.”
Neither Middle River nor its attorney representing the company before FERC returned requests for comment.
On the presidential debate, California’s wildfires, and the nuclear workforce
Current conditions: Hurricane Francine is approaching Louisiana as a Category 1 storm • The streets of Vietnam’s capital of Hanoi are flooded after Typhoon Yagi, and the death toll has reached 143 • Residents of Nigeria’s northern Borno state are urged to watch out for crocodiles and snakes that escaped from a zoo due to flooding.
Former President Trump and Vice President Kamala Harris squared off on the debate stage in Philadelphia last night. Here are some important climate and energy highlights from the evening:
Three large wildfires – the Line fire, the Bridge fire, and the Airport fire – are burning in Southern California, fueled by intense heat and thick, dry vegetation. Already more than 100,000 acres have been scorched. The Line fire is closing in on the popular vacation destination Big Bear, and is threatening some 65,000 structures. Los Angeles County Fire Chief Anthony Marrone said the scale of the emergencies is straining firefighting resources, and FEMA is sending financial aid to the state. In neighboring Nevada, the Davis Fire has grown to nearly 6,000 acres and is burning toward ski resorts in Tahoe. Temperatures in the region started to cool yesterday after a long and brutal heat wave. The weather shift could help firefighters bring the blazes under control.
The White House is launching an American Climate Corps national tour this fall to highlight the work being carried out by corps members in different communities and showcase important projects. The events will feature remarks from the administration and other officials, roundtable talks with ACC members, and swearing-in ceremonies. The tour began in Maine this week with a focus on climate resilience and urban forestry, and heads to Arizona next week. The rest of the schedule is as follows, with more dates to come:
The number of students studying to become nuclear engineers is declining as demand for carbon-free nuclear energy is on the rise, according toThe Wall Street Journal. Citing data from the Oak Ridge Institute for Science and Education, the Journal reported that just 454 students in the U.S. graduated with a degree in the field in 2022, down 25% from a decade earlier. Meanwhile, the industry’s workforce is aging. “We need nuclear expertise in order to combat climate change,” said Sara Pozzi, professor of nuclear engineering and radiological sciences at the University of Michigan. “We are at a crucial point where we need to produce the new generation of nuclear experts so that they can work with the older generation and learn from them.” The drop in new recruits comes down to nuclear’s image problem thanks to public disasters like Chernobyl and Fukushima, the Journal speculated.
Critical metal refining company Nth Cycle announced this week it has become the first company to produce nickel and cobalt mixed hydroxide precipitate (MHP) in the U.S. following the opening of its commercial-scale facility in Ohio. The company’s “Oyster” technology uses electricity to turn recyclable industrial scrap and mined ore into MHP, a key component in clean-energy technologies like batteries. “This revolutionary innovation replaces pyrometallurgy with one of the cleanest technologies in the world, and accelerates the net zero targets of the public and private sector,” the company said in a press release. It claims the Ohio unit can produce 900 metric tons of MHP per year, which would be enough to supply batteries for 22 million cell phones. The company says its process reduces emissions by 90% compared to traditional mining methods and can help EV manufacturers meet the IRA’s sourcing requirements.
A new nationwide poll of 1,000 registered U.S. voters found that 90% of respondents support President Biden’s federal clean energy incentives in the Inflation Reduction Act, including 78% of respondents who said they were Trump voters.
Maybe you’ve never heard of it. Maybe you know it too well. But to a certain type of clean energy wonk, it amounts to perhaps the three most dreaded words in climate policy: the interconnection queue.
The queue is the process by which utilities decide which wind and solar farms get to hook up to the power grid in the United States. Across much of the country, it has become so badly broken and clogged that it can take more than a decade for a given project to navigate.
On this week’s episode of Shift Key, Jesse and Rob speak with two experts about how to understand — and how to fix — what is perhaps the biggest obstacle to deploying more renewables on the U.S. power grid. Tyler Norris is a doctoral student at Duke University’s Nicholas School of the Environment. He was formerly vice president of development at Cypress Creek Renewables, and he served on North Carolina Governor Roy Cooper’s Carbon Policy Working Group. Claire Wayner is a senior associate at RMI’s carbon-free electricity program, where she works on the clean and competitive grids team. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Can I interject and just ask why, over the past decade, the interconnection queue got much longer — but also over the past decade, 15 years, the U.S. grid did change in character and in fuel type a lot, right? We went from burning a lot of coal to a lot of natural gas. And that transition is often cited as one of the model transitions, one of the few energy transitions to happen globally that happened at the speed with which we would need to decarbonize. Obviously, switching coal to gas is not decarbonizing, but it is a model — it happened fast enough that it is a good model for what decarbonizing would look like in order to meet climate goals.
Evidently, that did not run into these kind of same interconnection queue problems. Why is that? Is that because we were swapping in within individual power plants? We were just changing the furnace from a coal furnace to a gas furnace? Is that because these were larger projects and so it didn’t back up in the queue in the same way that a lot of smaller solar or wind farms do?
Claire Wayner: I would say all the reasons you just gave are valid, yeah. The coal to gas transition involved, likely, a lot of similar geographic locations. With wind and solar, we’re seeing them wanting to build on the grid and in a lot of cases in new, rather remote locations that are going to require new types of grid upgrades that the coal to gas transition just doesn’t have.
Jesse Jenkins: Maybe it is — to use a metaphor here — it’s a little bit like traffic congestion. If you add a generator to the grid, it’s trying to ship its power through the grid, and that decision to add your power mix to the grid combines with everyone else that’s also generating and consuming power to drive traffic jams or congestion in different parts of the grid, just like your decision to hop in the car and drive to work or to go into the city for the weekend to see a show or whatever you’re doing. It’s not just your decision. It’s everyone’s combined decisions that affects travel times on the grid.
Now, the big difference between the grid and travel on roads or most other forms of networks we’re used to is that you don’t get to choose which path to go down. If you’re sending electricity to the grid, electricity flows with physics down the path of least resistance or impedance, which is the alternating current equivalent of resistance. And so it’s a lot more like rivers flowing downhill from gravity, right? You don’t get to choose which branch of the river you go down. It’s just, you know, gravity will take you. And so you adding your power flows to the grid creates complicated flows based on the physics of this mesh network that spans a continent and interacts with everyone else on the grid.
And so when you’re going from probably a few dozen large natural gas generators added that operate very similarly to the plants that they’re replacing to hundreds of gigawatts across thousands of projects scattered all over the grid with very complicated generation profiles because they’re weather-dependent renewables, it’s just a completely different challenge for the utilities.
So the process that the regional grid operators developed in the 2000s, when they were restructuring and taking over that role of regional grid operator, it’s just not fit for purpose at all for what we face today. And I want to highlight another thing you mentioned, which is the software piece of it, too. These processes, they are using software and corporate processes that were also developed 10 or 20 years ago. And we all know that software and computing techniques have gotten quite a bit better over a decade or two. And rarely have utilities and grid operators really kept pace with those capabilities.
Wayner: Can I just say, I’ve heard that in some regions, interconnection consists of still sending back and forth Excel files. To Tyler’s point earlier that we only just now are getting data on the interconnection queue nationwide and how it stands, that’s one challenge that developers are facing is a lack of data transparency and rapid processing from the transmission providers and the grid operators.
And so, to use an analogy that my colleague Sarah Toth uses a lot, which I really love: Imagine if we had a Domino’s pizza tracker for the interconnection queue, and that developers could just log on and see how their projects are doing in many, if not most regions. They don’t even have that visibility. They don’t know when their pizza is going to get delivered, or if it’s in the oven.
This episode of Shift Key is sponsored by …
Watershed’s climate data engine helps companies measure and reduce their emissions, turning the data they already have into an audit-ready carbon footprint backed by the latest climate science. Get the sustainability data you need in weeks, not months. Learn more at watershed.com.
As a global leader in PV and ESS solutions, Sungrow invests heavily in research and development, constantly pushing the boundaries of solar and battery inverter technology. Discover why Sungrow is the essential component of the clean energy transition by visiting sungrowpower.com.
Antenna Group helps you connect with customers, policymakers, investors, and strategic partners to influence markets and accelerate adoption. Visit antennagroup.com to learn more.
Music for Shift Key is by Adam Kromelow.