You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
For every level of laundry needs.
Americans love laundry. Of the common household chores, it is
by far the most popular — and the most energy-intensive. Washing and drying a load of laundry every two days for a year generates roughly the same emissions as driving from Chicago to New York and back again in a gasoline-powered passenger vehicle. Nearly three-quarters of those emissions come from drying alone; meanwhile, according to the Environmental Protection Agency, the average washing machine generates up to 8% of a home’s total energy use. The whole process can cost up to $150 per year in electricity alone, depending on where you live and the frequency of your washes.
With some regulatory prodding, manufacturers have tried to improve water and energy efficiency in new appliances and have rolled out fancy new features like “smart” water-level sensors, vibration reduction technologies, and microfiber-catching filters. But not every house — or budget — has room for the latest and greatest technologies, and systems that would work well in an airy Los Angeles laundry room might make less sense in a drafty apartment in Minnesota.
Heatmap is here to remove some of the guesswork from upgrading one of your home’s most-used appliances. Here is our expert panel’s insight into when and how to purchase a new washer and dryer for your home.
Joanna Mauer is the deputy director of the Appliance Standards Awareness Project, a non-profit advocacy group pushing for stricter energy efficiency legislation. In her role at ASAP, Mauer works with the Department of Energy on its efficiency rules for residential appliances. She has previously worked for the Environmental Protection Agency and the Center for Integrative Environmental Research.
Amber McDaniel is the head of content at Sustainable Jungle, a website and podcast that publishes tips, tricks, and product reviews, including for major household appliances, with a focus on environmentally friendly solutions.
Scott Flint is a licensed California appliance tech with 30 years of experience. He is known as the Fix-It Guy on his YouTube channel, where he promotes the upkeep and repair of home appliances to extend their use. He has also written extensively about washers and dryers for publications such as The Family Handyman, Taste Of Home, and Earth911.
Peruse the latest washers and dryers and you’ll see features like sensors that adjust the water level to match the load of laundry, voice-activated start buttons, WiFi-enabled push notifications for when it’s time to move a load to the dryer, and more. And while there are environmentally friendly upsides to some of these features, “the more simple the machine, the less likely that things will fail,” Flint told me. In his experience repairing hundreds of washers and dryers over the years, “People save money on their initial purchase and the machine is going to last longer if you can minimize the features.”
The Energy Star certification is a great starting point in your shopping journey. But it shouldn’t be the be-all, end-all of your research. Energy Star represents a range of efficiency standards from different brands, with only the top models earning a “ Most Efficient” distinction.
You’ll still want to read reviews to get a better understanding of the reliability of the products you’re looking at, too. Though many new features on the market promise water and energy savings, they’re harder to repair yourself, meaning any potential fixes can get expensive. They can also have shorter lifespans than simpler models.
Eco-friendly washers and dryers are great for a whole laundry list (get it?) of reasons: They lower your household energy bill, they reduce emissions, they reduce wasted water, they’re often easier to install, and they can be gentler on your clothes. But they don’t necessarily save you time. Energy-efficient electric dryers can take up to twice as long to dry your clothes than traditional gas dryers. Still, all of our expert panelists agreed the upsides outweigh the drawbacks.
Yes, this is a buying guide for purchasing a new washer and dryer. But before you spend money on new appliances, you should consider working with what you already have.
If you’re dealing with an old or sub-optimally functional machine and wondering whether now is the time to upgrade, repairing your existing washer or dryer can actually be a smarter and thriftier solution; in fact, Consumer Reports only recommends replacing a dryer if it’s over 10 years old, electric, and cost less than $700 when you initially purchased it. Often, whatever’s going on doesn’t even require a professional to fix. “I think only rarely — let’s say about 20% of the time — would most people need to call in a technician,” Flint told me. Most washer and dryer problems are something you can fix using “normal household tools.” (More on that later.)
Keep in mind, even if you have an old washer or dryer that isn’t very energy efficient, “that’s still not even going to come close to touching the amount of energy that was used to produce and ship a new machine,” McDaniel told me. When your washer or dryer “actually fully stops working and it’s not doing what you need it to do — that’s when it’s time to upgrade.”
Typically, 1.5 to 3.4 cubic feet of capacity is suitable for a one- to two-person household, 3.5 to 4.4 cubic feet will do for two to three people, and 4.5 or more cubic feet will serve a household with more than three people. But having a new baby or pets might mean you do more loads of laundry than an average household, in which case sizing up is better.
Flint told me a common mistake he sees people make is overloading their washing machines, which can destroy an appliance’s rear bearing — the part of the machine that helps the drum rotate smoothly — a repair that is often so costly, it can make more sense to junk the whole machine. On the other hand, running small loads in a large-capacity washing machine can mean wasting water cleaning not-as-many clothes. Consider what washing machine would make the most sense for your needs to maximize efficiency.
Energy and water efficiency are two of the most common considerations when buying a washer and dryer, and are the primary focus of this guide. Some consumers may have additional concerns — McDaniel, for example, recommended looking for a Restriction of Hazardous Substances certification, which signals that an appliance complies with limits on heavy metals like lead and cadmium. Ethical considerations — including a manufacturer’s contributions to armed conflicts, labor practices, and sourcing of conflict minerals — are also worth close inspection. Ethical Consumer offers an excellent guide for finding a brand that best aligns with your values.
“The first thing that we always recommend is: If you need something new, try to go refurbished,” McDaniel told me. Still, there’s a right way and a wrong way to make a major second-hand purchase. McDaniel suggested going through a reputable source that offers a warranty, such as Best Buy (when searching online, make sure to filters for “Energy Star” and “open box” and check the product’s condition).
If you prefer the security of a new product, then it’s time to familiarize yourself with the Energy Star website. You can sort by Energy Star Most Efficient, which are the best of the best, as well as by price, brand, volume, front-load vs. top-load, vented, ventless, heat pump, gas, electric, and more. Energy Star also makes it easy to compare the specs of different products (just tick the “compare” box next to the machines you’re looking at, then scroll to the top to hit the orange “compare” button when you’re ready).
Dryers are the biggest energy suck in most homes, using two to four times as much energy as new washers and nearly twice as much as new refrigerators. McDaniel told me they are also responsible for the greatest wear and tear on clothes. Dryers are an especially American phenomenon; while more than 80% of households in the U.S. own a dryer, just 30% of European households do. That is to say, you probably don’t actually need one, and if you need to save money or space in your laundry routine, this would be the best place to look to make a cut.
“Not relying on a dryer is huge. I only use mine in the wintertime, and in the summer, I line dry my clothes — and the only reason I don’t do that in the winter is I literally don’t have the space inside,” McDaniel said.
Traditional vented dryers — the energy guzzlers of the American home — aren’t the only option anymore, though. The next best thing to a clothesline is a heat pump dryer, which Mauer told me is the “most efficient clothes dryer on the market today,” often far exceeding the Energy Star requirements. Heat pump dryers have a lower maximum temperature, though, so you don’t get that hot-out-of-the-dryer feel when the load is finished. It can also take an hour or more to dry a load of laundry fully. The bright side: Because the heat is lower, heat pump dryers are much gentler on your clothes.
“A big red flag for us is brands that don’t warranty their products in any capacity,” McDaniel told me. Buying a washer or dryer that is durable is important — Flint told me you should expect to get at least a decade of use out of a washer and dryer with proper maintenance and minor repairs — and a warranty is evidence that a company is building a product that they trust to last.
The Electrolux ELFW7637AT has one of the highest energy- and water-efficiency ratings of any washing machine on the market in 2024, with an IMEF of 3.2 and an integrated water factor of 2.6 — both of which are exceptional even by Energy Star’s standards. It also works. Reviewers have lauded its SmartBoost stain removal technology, its internal water heater, and its straightforward controls, although its 85-minute cycle time is a little longer than many other washers on the market.
Both Flint and McDaniel spoke highly of the German brand Miele, which makes this compact washing machine. Though its capacity is about half that of the Electrolux and it didn’t earn Energy Star’s highest level of certification (it has an IMEF of 2.9 and a IWF of 3.2), it is one of the more reliable and best-reviewed washers on the market.
Admittedly, you have to pay for that kind of dependability — Miele is a high-end brand with a sticker price that reflects it. The WXI860 gets high marks for its cleaning ability, including fill-and-forget auto-dispensing features, and boasts 72% lower energy consumption than conventional washers. Additionally, Miele has “a honeycomb-drum technology, so that when it puts the clothes in the spin cycle, it creates a thin film of water between the drum wall and the laundry,” McDaniel told me, which helps prevent clothing fibers from getting caught. “Little features like that that help keep our clothes in circulation for longer are also more sustainable.”
Mauer swears by heat pump dryers, and there are a number of good choices on the market right now. Beko is a favorite of the Sustainable Jungle team, in part because it has a filtration system to stop microplastics from synthetic fabrics from entering the waterways, as well as the company’s ambitious commitments to low-waste and recycled materials. This ventless Beko heat pump dryer is tiny but mighty, making it a great fit for small spaces (it can even fit under the kitchen counter), and it boasts a 2023 “Most Efficient” rating from Energy Star.
Being a heat pump dryer, though, it can take a while to dry clothes — one tester found it took 227 minutes to dry a large, bulky load to 100% — but plan ahead and Beko can give you major savings in the long run. Or, if the Beko isn’t quite what you’re looking for, check out Miele, which makes its own well-reviewed heat pump dryer (although it is small and pricy).
If a heat-pump dryer isn’t right for your lifestyle, the Electrolux ELFE7637AT is one of the more impressive electric dryers on the market right now, earning the Energy Star seal of approval. While it still isn’t super fast (fast takes a lot of heat, which takes a lot of energy, which makes a machine less efficient), reviewers say it can get a large load to 100% dry in 60 minutes if need be. It’s also the best-rated electric dryer on Consumer Reports’ list that isn’t one of the Samsung, LG, or GE models that Flint frequently gets called out to fix.
This combo washer-dryer uses heat pump technology in its dryer, making it one of the more energy-efficient single-unit models on the market. Unlike some of the other options on this list, however, its larger 4.8 cubic foot drum size is big enough for a two- or three-person household. While combo washer/dryers still have some downsides over their two-piece counterparts, including decreased efficiency in cleaning and especially drying, this is one of the better-reviewed units on the market.
Flint told me that you can often find older Kenmore Whirlpool series 80 machines on Craigslist that are “ really good, and tend to sell for about $250 when refurbished, and often come with a one-year warranty.” The only detriment, he said, is that they’re top-loaders — which waste a lot of water — but “if somebody just really needs a tough machine that is going to last, that was a really good design.”
Congratulations! You’re now the proud owner of a new washer and dryer. What happens now?
New washers and dryers are unfortunately not designed with longevity in mind — but that doesn’t mean you need to replace them if something goes wrong after four or five years.
“I can go up to a washing machine that is sitting in the dump, and I can open up the door, and I can spin the spin basket, and I can tell that it’s a perfectly good machine,” Flint told me.
Flint estimates that only about 20% of the time do people actually need to call in a technician to repair their appliances, pointing to fixes like replacing a blown fuse, unsticking a front-load washer that won’t spin, and swapping out a moldy washer door gasket as deceptively simple tasks. Get acquainted with DIY YouTube channels like Flint’s or repair blogs that explain solutions to common problems.
Still, sometimes you need to call in the big guns. In that case, Flint recommends doing your due diligence on a review service like Yelp beforehand.
Once you find someone you like, reach out with the model number of your machine and the symptom you’re experiencing and the technician “should be able to provide you a quote without coming out if they know what they’re doing,” Flint said. If someone does have to come out to figure out what’s going on, then that visit should be free. “Don’t go with someone who’s going to charge you to come out and diagnose the problem and then charge you to fix it.” Repairs to a front-loading washer will probably run around $170, according to Consumer Reports.
You can extend the life of your washer or dryer by following a few more rules of thumb.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It’s not perfect, but pretty soon, it’ll be available for under $30,000.
Here’s what you need to know about the rejuvenated Chevrolet Bolt: It’s back, it’s better, and it starts at under $30,000.
Although the revived 2027 Bolt doesn’t officially hit the market until January 2026, GM revealed the new version of the iconic affordable EV at a Wednesday evening event at the Universal Studios backlot in Los Angeles. The assembled Bolt owners and media members drove the new cars past Amity Island from Jaws and around the Old West and New York sets that have served as the backdrops of so many television shows and movies. It was star treatment for a car that, like its predecessor, isn’t the fanciest EV around. But given the giveaway patches that read “Chevy Bolt: Back by popular demand,” it’s clear that GM heard the cries of people who missed having the plucky electric hatchback on the market.
The Bolt died at the height of its powers. The original Bolt EV and Bolt EUV sold in big numbers in the late 2010s and early 2020s, powered by a surprisingly affordable price compared to competitor EVs and an interior that didn’t feel cramped despite its size as a smallish hatchback. In 2023, the year Chevy stopped selling it, the Bolt was the third-best-selling EV in America after Tesla’s top two models.
Yet the original had a few major deficiencies that reflected the previous era of EVs. The most egregious of which was its charging speed that topped out at around 50 kilowatts. Given that today’s high-speed chargers can reach 250 to 350 kilowatts — and an even faster future could be on the way — the Bolt’s pit stops on a road trip were a slog that didn’t live up to its peppy name.
Thankfully, Chevy fixed it. Charging speed now reaches 150 kilowatts. While that figure isn’t anywhere near the 350 kilowatts that’s possible in something like the Hyundai Ioniq 9, it’s a threefold improvement for the Bolt that lets it go from 10% to 80% charged in a respectable 26 minutes. The engineers said they drove a quartet of the new cars down old Route 66 from the Kansas City area, where the Bolt is made, to Los Angeles to demonstrate that the EV was finally ready for such an adventure.
From the outside, the 2027 Bolt is virtually indistinguishable from the old car, but what’s inside is a welcome leap forward. New Bolt has a lithium-ion-phosphate, or LFP battery that holds 65 kilowatt-hours of energy, but still delivers 255 miles of max range because of the EV’s relatively light weight. Whereas older EVs encourage drivers to stop refueling at around 80%, the LFP battery can be charged to 100% regularly without the worry of long-term damage to the battery.
The Bolt is GM’s first EV with the NACS charging standard, the former Tesla proprietary plug, which would allow the little Chevy to visit Tesla Superchargers without an adapter (though its port placement on the front of the driver’s side is backwards from the way older Supercharger stations are built). Now built on GM’s Ultium platform, the Bolt shares its 210-horsepower electric motor with the Chevy Equinox EV and gets vehicle-to-load capability, meaning you’ll be able to tap into its battery energy for other uses such as powering your home.
But it’s the price that’s the real wow factor. Bolt will launch with an RS version that gets the fancier visual accents and starts at $32,000. The Bolt LT that will be available a little later will eventually start as low as $28,995, a figure that includes the destination charge that’s typically slapped on top of a car’s price, to the tune of an extra $1,000 to $2,000 on delivery. Perhaps it’s no surprise that GM revealed this car just a week after the end of the $7,500 federal tax credit for EV purchases (and just a day after Tesla announced its budget versions of the Model Y and Model 3). Bringing in a pretty decent EV at under $30,000 without the help of a big tax break is a pretty big deal.
The car is not without compromises. Plenty of Bolt fans are aghast that Chevy abandoned the Apple CarPlay and Android Auto integrations that worked with the first Bolt in favor of GM’s own built-in infotainment system as the only option. Although the new Bolt was based on the longer, “EUV” version of the original, this is still a pretty compact car without a ton of storage space behind the back seats. Still, for those who truly need a bigger vehicle, there’s the Chevy Equinox EV.
For as much time as I’ve spent clamoring for truly affordable EVs that could compete with entry-level gas cars on prices, the Bolt’s faults are minor. At $29,000 for an electric vehicle in the U.S., there is practically zero competition until the new Nissan Leaf arrives. The biggest threats to the Bolt are America’s aversion to small cars and the rapid rates of depreciation that could allow someone to buy a much larger, gently used EV for the price of the new Chevy. But the original Bolt found a steady footing among drivers who wanted that somewhat counter-cultural car — and this one is a lot better.
“Old economy” companies like Caterpillar and Williams are cashing in by selling smaller, less-efficient turbines to impatient developers.
From the perspective of the stock market, you’re either in the AI business or you’re not. If you build the large language models pushing out the frontiers of artificial intelligence, investors love it. If you rent out the chips the large language models train on, investors love it. If you supply the servers that go in the data centers that power the large language models, investors love it. And, of course, if you design the chips themselves, investors love it.
But companies far from the software and semiconductor industry are profiting from this boom as well. One example that’s caught the market’s fancy is Caterpillar, better known for its scale-defying mining and construction equipment, which has become a “secular winner” in the AI boom, writes Bloomberg’s Joe Weisenthal.
Typically construction businesses do well when the overall economy is doing well — that is, they don’t typically take off with a major technological shift like AI. Now, however, Caterpillar has joined the ranks of the “picks and shovels” businesses capitalizing on the AI boom thanks to its gas turbine business, which is helping power OpenAI’s Stargate data center project in Abilene, Texas.
Just one link up the chain is another classic “old economy” business: Williams Companies, the natural gas infrastructure company that controls or has an interest in over 33,000 miles of pipeline and has been around in some form or another since the early 20th century.
Gas pipeline companies are not supposed to be particularly exciting, either. They build large-scale infrastructure. Their ratemaking is overseen by federal regulators. They pay dividends. The last gas pipeline company that got really into digital technology, well, uh, it was Enron.
But Williams’ shares are up around 28% in the past year — more than Caterpillar. That’s in part, due to its investing billions in powering data centers with behind the meter natural gas.
Last week, Williams announced that it would funnel over $3 billion into two data center projects, bringing its total investments in powering AI to $5 billion. This latest bet, the company said, is “to continue to deliver speed-to-market solutions in grid-constrained markets.”
If we stipulate that the turbines made by Caterpillar are powering the AI boom in a way analogous to the chips designed by Nvidia or AMD and fabricated by TSMC, then Williams, by developing behind the meter gas-fired power plants, is something more like a cloud computing provider or data center developer like CoreWeave, except that its facilities house gas turbines, not semiconductors.
The company has “seen the rapid emergence of the need for speed with respect to energy,” Williams Chief Executive Chad Zamarin said on an August earnings call.
And while Williams is not a traditional power plant developer or utility, it knows its way around natural gas. “We understand pipeline capacity,” Zamarin said on a May earnings call. “We obviously build a lot of pipeline and turbine facilities. And so, bringing all the different pieces together into a solution that is ready-made for a customer, I think, has been truly a differentiator.”
Williams is already behind the Socrates project for Meta in Ohio, described in a securities filing as a $1.6 billion project that will provide 400 megawatts of gas-fired power. That project has been “upsized” to $2 billion and 750 megawatts, according to Morgan Stanley analysts.
Meta CEO Mark Zuckerberg has said that “energy constraints” are a more pressing issue for artificial intelligence development than whether the marginal dollar invested is worth it. In other words, Zuckerberg expects to run out of energy before he runs out of projects that are worth pursuing.
That’s great news for anyone in the business of providing power to data centers quickly. The fact that developers seem to have found their answer in the Williamses and Caterpillars of the world, however, calls into question a key pillar of the renewable industry’s case for itself in a time of energy scarcity — that the fastest and cheapest way to get power for data centers is a mix of solar and batteries.
Just about every renewable developer or clean energy expert I’ve spoken to in the past year has pointed to renewables’ fast timeline and low cost to deploy compared to building new gas-fired, grid-scale generation as a reason why utilities and data centers should prefer them, even absent any concerns around greenhouse gas emissions.
“Renewables and battery storage are the lowest-cost form of power generation and capacity,” Next Era chief executive John Ketchum said on an April earnings call. “We can build these projects and get new electrons on the grid in 12 to 18 months.” Ketchum also said that the price of a gas-fired power plant had tripled, meanwhile lead times for turbines are stretching to the early 2030s.
The gas turbine shortage, however, is most severe for large turbines that are built into combined cycle systems for new power plants that serve the grid.
GE Vernova is discussing delivering turbines in 2029 and 2030. While one manufacturer of gas turbines, Mitsubishi Heavy Industries, has announced that it plans to expand its capacity, the industry overall remains capacity constrained.
But according to Morgan Stanley, Williams can set up behind the meter power plants in 18 months. xAI’s Colossus data center in Memphis, which was initially powered by on-site gas turbines, went from signing a lease to training a large language model in about six months.
These behind the meter plants often rely on cheaper, smaller, simple cycle turbines, which generate electricity just from the burning of natural gas, compared to combined cycle systems, which use the waste heat from the gas turbines to run steam turbines and generate more energy. The GE Vernova 7HA combined cycle turbines that utility Duke Energy buys, for instance, range in output from 290 to 430 megawatts. The simple cycle turbines being placed in Ohio for the Meta data center range in output from about 14 megawatts to 23 megawatts.
Simple cycle turbines also tend to be less efficient than the large combined cycle system used for grid-scale natural gas, according to energy analysts at BloombergNEF. The BNEF analysts put the emissions difference at almost 1,400 pounds of carbon per megawatt-hour for the single turbines, compared to just over 800 pounds for combined cycle.
Overall, Williams is under contract to install 6 gigawatts of behind-the-meter power, to be completed by the first half of 2027, Morgan Stanley analysts write. By comparison, a joint venture between GE Vernova, the independent power producer NRG, and the construction company Kiewit to develop combined cycle gas-fired power plants has a timeline that could stretch into 2032.
The Williams projects will pencil out on their own, the company says, but they have an obvious auxiliary benefit: more demand for natural gas.
Williams’ former chief executive, Alan Armstrong, told investors in a May earnings call that he was “encouraged” by the “indirect business we are seeing on our gas transmission systems,” i.e. how increased natural gas consumption benefits the company’s traditional pipeline business.
Wall Street has duly rewarded Williams for its aggressive moves.
Morgan Stanley analysts boosted their price target for the stock from $70 to $83 after last week’s $3 billion announcement, saying in a note to clients that the company has “shifted from an underappreciated value (impaired terminal value of existing assets) to underappreciated growth (accelerating project pipeline) story.” Mizuho Securities also boosted its price target from $67 to $72, with analyst Gabriel Moreen telling clients that Williams “continues to raise the bar on the scope and potential benefits.”
But at the same time, Moreen notes, “the announcement also likely enhances some investor skepticism around WMB pushing further into direct power generation and, to a lesser extent, prioritizing growth (and growth capex) at the expense of near-term free cash flow and balance sheet.”
In other words, the pipeline business is just like everyone else — torn between prudence in a time of vertiginous economic shifts and wanting to go all-in on the AI boom.
Williams seems to have decided on the latter. “We will be a big beneficiary of the fast rising data center power load,” Armstrong said.
On billions for clean energy, Orsted layoffs, and public housing heat pumps
Current conditions: A tropical rainstorm is forming in the Atlantic that’s forecast to barrel along the East Coast through early next week, threatening major coastal flooding and power outages • Hurricane Priscilla is weakening as it tracks northward toward California • The Caucasus region is sweltering in summer-like heat, with the nation of Georgia enduring temperatures of up to 93 degrees Fahrenheit in October.
Base Power, the Texas power company that leases batteries to homeowners and taps the energy for the grid, on Tuesday announced a $1 billion financing round. The Series C funding is set to supercharge the Austin-based company’s meteoric growth. Since starting just two years ago, Base has deployed more than 100 megawatts of residential battery capacity, making it one of the fastest growing distributed energy companies in the nation. The company now plans to build a factory in the old headquarters of the Austin American-Statesman, the leading daily newspaper in the Texan capital. The funding round included major investors who are increasing their stakes, including Valor Equity Partners, Thrive Capital, and Andreessen Horowitz, and at least nine new venture capital investors, including Lowercarbon, Avenir, and Positive Sum. “The chance to reinvent our power system comes once in a generation,” Zach Dell, chief executive and co-founder of Base Power, said in a statement. “The challenge ahead requires the best engineers and operators to solve it and we’re scaling the team to make our abundant energy future a reality.”
The deal came a day after Brookfield Asset Management, the Canadian-American private equity giant, raised a record $23.5 billion for its clean energy fund. At least $5 billion has already been spent on investments such as the renewable power operator Neoen, the energy developer Geronimo Power, and the Indian wind and solar giant Evren. “Energy demand is growing fast, driven by the growth of artificial intelligence as well as electrification in industry and transportation,” Connor Teskey, Brookfield’s president and renewable power chief, said in a press release. “Against this backdrop we need an ‘any and all’ approach to energy investment that will continue to favor low carbon resources.”
Orsted has been facing down headwinds for months. The Danish offshore wind giant has absorbed the Trump administration’s wrath as the White House deployed multiple federal agencies to thwart progress on building seaward turbines in the Northeastern U.S. Then lower-than-forecast winds this year dinged Orsted’s projected earnings for 2025. When the company issued new stock to fund its efforts to fight back against Trump, the energy giant was forced to sell the shares at a steep discount, as I wrote in this newsletter last month. Despite all that, the company has managed to raise the money it needed. On Wednesday, The Wall Street Journal reported that Orsted had raised $9.4 billion. Existing shareholders subscribed for 99.3% of the new shares on offer, but demand for the remaining shares was “extraordinarily high,” the company said.
That wasn’t enough to stave off job cuts. Early Thursday morning, the company announced plans to lay off 2,000 employees between now and 2027. The cuts represented roughly one-quarter of the company’s 8,000-person global workforce. “This is a necessary consequence of our decision to focus our business and the fact that we'll be finalizing our large construction portfolio in the coming years — which is why we'll need fewer employees,” Rasmus Errboe, Orsted’s chief executive, said in a statement published on CNBC. "At the same time, we want to create a more efficient and flexible organization and a more competitive Orsted, ready to bid on new value-accretive offshore wind projects.”
California Governor Gavin Newsom. Mario Tama/Getty Images
California operates the world’s largest geothermal power station, The Geysers, and generates up to 5% of its power from the Earth’s heat. But the state is far behind its neighbors on developing new plants based on next-generation technology. Most of the startups racing to commercialize novel methods are headquartered or building pilot plants in states such as Utah, Nevada, and Texas. A pair of bills to make doing business in California easier for geothermal companies was supposed to change that. Yet while Governor Gavin Newsom signed one statute into law that makes it easier for state regulators to certify geothermal plants, he vetoed a permitting reform bill to which the industry had pegged its hopes. “Every geothermal developer and energy org I talked to was excited about this bill,” Thomas Hochman, who heads the energy program at the right-leaning Foundation for American Innovation, wrote in a post on X. “The legislature did everything right, passing it unanimously. They even reworked it to accommodate certain classic California concerns, such as prevailing wage requirements.”
In a letter announcing his veto, the governor claimed that the law would have added new fees for geothermal projects. But an executive at Zanskar — the startup that, as Heatmap’s Katie Brigham reported last month, is using new technology to locate and tap into conventional geothermal resources — called the governor’s argument “weak sauce.” Far from burdening the industry, Zanskar co-founder Joel Edwards said on X, “this was a clean shot to accelerate geothermal today, and he whiffed it.”
Last month, Generate Capital trumpeted the appointment of its first new chief executive in its 11-year history as the leading infrastructure investment firm sought to realign its approach to survive a tumultuous time in clean-energy financing. Less publicly, as Katie wrote in a scoop last night, it also kicked off company-wide job cuts. In an interview with Katie, Jonah Goldman, the firm’s head of external affairs, said the company “grew quickly and made some mistakes,” and now planned to lay off 50 people.
Generate once invested in “leading-edge technologies,” according to co-founder Jigar Shah, who left the firm to serve as the head of the Biden-era DOE Loan Programs Office. That included investments in projects involving fuel cells, anaerobic digesters, and battery storage. But from the outside, he said on the Open Circuits podcast he now co-hosts, the firm appears to have moved away from taking these riskier but potentially more lucrative bets. “They ended up with 38 people in their capital markets team, and their capital markets team went out to the marketplace and said, Hey, we have all this stuff to sell. And the people that they went to said, Well, that’s interesting, but what we really would love is boring community solar.”
Three of New England’s largest public housing agencies signed deals with the heat pump manufacturer Gradient to replace aging electric heaters and air conditioners with the company’s 120-volt, two-way units that provide both heating and cooling. The Boston Housing Authority, New England’s largest public housing agency, will kick off the deal by installing 100 all-weather, two-way units that both heat and cool at the Hassan Apartments, a complex for seniors and adults with disabilities in Boston’s Mattapan neighborhood. The housing authorities in neighboring Chelsea and Lynn — two formerly industrial, working-class cities just outside Boston — will follow the same approach.
Public housing agencies have long served a vital role in helping to popularize new, more efficient appliances. The New York City Housing Authority, for example, is credited with creating the market for efficient mini fridges in the 1990s. Last year, NYCHA — the nation’s largest public housing system — signed a similar deal with Gradient for heat pumps. Months later, as Heatmap’s Emily Pontecorvo exclusively reported at the time, NYCHA picked a winner in its $32 million contest for an efficient new induction stove for its apartments.
Three chemists — Susumu Kitagawa, Richard Robson, and Omar Yaghi — won the Nobel Prize for “groundbreaking discoveries” that "may contribute to solving some of humankind’s greatest challenges, from pollution to water scarcity.” Just a few grams of the so-called molecular organic frameworks the scientists pioneered could have as much surface area as a soccer field, which can be used to lock gas molecules in place in carbon capture or harvest freshwater from the atmosphere.