Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Ideas

The Climeworks Scandal That Wasn’t

Direct air capture isn’t doing everything its advocates promised — yet. That doesn’t make it a scam.

Fans and clouds.
Heatmap Illustration/Getty Images

Two events last week thrust direct air capture carbon removal into the spotlight — one promising, though controversial for some, the other mendacious and ill-informed.

On Friday, Occidental announced a potential $500 million joint venture investment from Adnoc’s XRG, the lower-carbon investment wing for the United Arab Emirates state-run oil company in Oxy’s South Texas DAC Hub project. The facility is part of the $3.5 billion federal DAC hubs program created through the Infrastructure Investment and Jobs Act. Although the DAC hubs program has strong bipartisan support, it has faced relative uncertainty under the new administration, calling into question American leadership on the future of the industry.

Earlier in the week, Climeworks, another major DAC hubs award winner, announced a reduction in force, due in part to “pending clarity for our next plant in the U.S.” Coupled with this news, a sensationalized exposé by Icelandic news outlet Heimildin detailed challenges with the first two Climeworks facilities, including commentary that called both the company and the technology a “scam” and the “Theranos of the energy industry.”

DAC has never been entirely welcome among climate advocates. To a certain extent, its critics are right: The process of pulling carbon directly out of the ambient air and storing it permanently underground is both energy- and capital-intensive, and it has obvious utility for the oil and gas industry, which has seized on DAC’s potential to erase past emissions as a way to argue that the transition away from fossil energy isn’t actually necessary.

But these critics start to lose the thread when they call the technology a “fig leaf” for oil and gas or an “expensive, dangerous distraction,” and most egregiously when they point to the lack of actual carbon dioxide removed using the technology as an argument against future deployments.

There is a scientific consensus behind the need for carbon dioxide removal that these critiques dance around. As the United Nations Intergovernmental Panel on Climate Change lays out in its most recent scientific report, “CDR is required to limit warming to 1.5 [degrees Celsius],” and is “part of all modeled scenarios that limit warming to 2 [degrees] by 2100.” Even when critics recognize the need for permanent CDR, they frequently fail to provide any plausible pathway to gigaton scale. The fact is that DAC doesn’t have an established, liquid market, like electricity, steel, cement, or any other commodity. That any one DAC business is struggling as it attempts to scale is not an indictment of the company, but rather an illustration of the challenge it is taking on to commercialize a first-of-a-kind technologies that naturally has first-of-a-kind issues while also building a brand new market for the crucial climate service it provides. Don’t hate the player, hate the game.

The commercial model for the nascent CDR industry is largely the sale of carbon removal credits for delivery in future years. This isn’t unique to CDR — it’s even analogous to the power purchase agreements that scaled renewable energy. Futures contracts are standard practice, and certainly not indicative of a “scam.”

DAC’s high energy needs are frequently cited as a reason for concern among skeptics. As the Princeton Net Zero America study notes, however, the total energy needed to reduce emissions in a net-zero system without DAC increases because we would need more power to produce e-fuels. (Jesse Jenkins, one of the leaders of the Net Zero America study, is also a co-host of Heatmap’s Shift Key podcast.) This criticism also fails to take into account the reduction in energy intensity that companies are already achieving by various means. That group includes Climeworks, which has introduced more efficient sorbents; Heirloom, which is working on deploying passive mineralization; and Holocene, which was recently acquired by Oxy and employs the low regeneration temperature solvents.

The costs and efficiency of DAC today, just like the cost and efficiency of solar 20 years ago, are likely to improve significantly in the future as the technology and market become more efficient and reliable. Early DAC deployments may have a relatively high cost now, but even today, DAC is cost-competitive with emissions mitigation in aviation.

The industry currently stands at a precipice. Will DAC cross the chasm from pilot facilities to meaningful deployment? Or fall off the hype wagon into the dustbin of cool ideas that were always 10 years away? Beneath the innuendo and false claims, the reporting from Reykjavik shows what everyone in DAC knew — that it has a messy, non-linear path to scale. That does not disprove the argument that it is also a necessary technology that is not only valuable to remove emissions, but also is drawing billions in investment, and driving local economic development.

And there is plenty of good news. The XRG joint venture with Adnoc shows that a sophisticated strategic investor views American DAC as promising. (The local South Texas community is excited, too.) The Oxy Stratos facility in West Texas has already brought thousands of new construction jobs, and will bring hundreds of more permanent jobs to the heart of oil country — a new industry to make use of their unique and valuable skill sets. Project Bantam, a multi-modal operation that was the largest in the U.S. when it launched last summer, is operating in Oklahoma.

The Heimildin story was written to be a salacious takedown, and DAC opponents wasted no time in saying, “We told you so.” The issue with that reaction is the story isn’t unique to Climeworks, or even to DAC. The same story could have been written 20 years ago about solar and batteries. It could be written tomorrow about advanced geothermal or long-duration energy storage. It is the boring, mundane outcome of trying to build a difficult technology with the policy and business hand we are dealt.

The road to DAC at scale will be scattered with bumps, failed projects, and folded companies. We should be cheering these folks on, not taking shots from the cheap, increasingly warm seats.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

Mineral Mates

On LIHEAP saved, copper king, and Drax’s ‘betrayal’

JD Vance.
Heatmap Illustration/Getty Images

Current conditions: The snow squalls and cold air headed from the Ohio Valley to the Northeast are coming with winds of up to 55 miles per hour • A “western disturbance,” an extratropical storm that originates in the Mediterranean and travels eastward, is set to arrive in India and bring heavy snow to the Himalayas • Tropical Storm Basyang made landfall over the Philippines this morning, forcing Cebu City to cancel all in-person classes for public school students.

THE TOP FIVE

1. White House kicks off critical minerals summit

Vice President JD Vance delivered a 40-minute speech Wednesday appealing to 54 countries and the European Union to join a trading alliance led by the United States to establish a supply of critical minerals that could meaningfully rival China. The agreement would create a “preferential trade zone” meant to be “protected from disruptions through enforceable price floors.” The effort comes in response to years of export controls from Beijing that have sent the prices of key minerals over which China has near monopolies skyrocketing. “This morning, the Trump administration is proposing a concrete mechanism to return the global critical minerals market to a healthier, more competitive state,” Vance said at the State Department’s inaugural Critical Minerals Ministerial in Washington.

Keep reading...Show less
Blue
Energy

The Super Safe, Super Expensive Nuclear Fuel That’s Making a Comeback

Microreactor maker Antares Nuclear just struck a deal with BWX Technologies to produce TRISO.

TRISO fuel.
Heatmap Illustration/Getty Images, Department of Energy

Long before the infamous trio of accidents at Three Mile Island, Chernobyl, and Fukushima, nuclear scientists started working on a new type of fuel that would make a meltdown nearly impossible. The result was “tri-structural isotropic” fuel, better known as TRISO.

The fuel encased enriched uranium kernels in three layers of ceramic coating designed to absorb the super hot, highly radioactive waste byproducts that form during the atom-splitting process. In theory, these poppyseed-sized pellets could have negated the need for the giant concrete containment vessels that cordon off reactors from the outside world. But TRISO was expensive to produce, and by the 1960s, the cheaper low-enriched uranium had proved reliable enough to become the industry standard around the globe.

Keep reading...Show less
Climate Tech

Lunar Energy Raises $232 Million to Scale Virtual Power Plants

The startup — founded by the former head of Tesla Energy — is trying to solve a fundamental coordination problem on the grid.

A Lunar Energy module.
Heatmap Illustration/Lunar Energy

The concept of virtual power plants has been kicking around for decades. Coordinating a network of distributed energy resources — think solar panels, batteries, and smart appliances — to operate like a single power plant upends our notion of what grid-scale electricity generation can look like, not to mention the role individual consumers can play. But the idea only began taking slow, stuttering steps from theory to practice once homeowners started pairing rooftop solar with home batteries in the past decade.

Now, enthusiasm is accelerating as extreme weather, electricity load growth, and increased renewables penetration are straining the grid and interconnection queue. And the money is starting to pour in. Today, home battery manufacturer and VPP software company Lunar Energy announced $232 million in new funding — a $102 million Series D round, plus a previously unannounced $130 million Series C — to help deploy its integrated hardware and software systems across the U.S.

Keep reading...Show less
Blue