Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Ideas

The Climeworks Scandal That Wasn’t

Direct air capture isn’t doing everything its advocates promised — yet. That doesn’t make it a scam.

Fans and clouds.
Heatmap Illustration/Getty Images

Two events last week thrust direct air capture carbon removal into the spotlight — one promising, though controversial for some, the other mendacious and ill-informed.

On Friday, Occidental announced a potential $500 million joint venture investment from Adnoc’s XRG, the lower-carbon investment wing for the United Arab Emirates state-run oil company in Oxy’s South Texas DAC Hub project. The facility is part of the $3.5 billion federal DAC hubs program created through the Infrastructure Investment and Jobs Act. Although the DAC hubs program has strong bipartisan support, it has faced relative uncertainty under the new administration, calling into question American leadership on the future of the industry.

Earlier in the week, Climeworks, another major DAC hubs award winner, announced a reduction in force, due in part to “pending clarity for our next plant in the U.S.” Coupled with this news, a sensationalized exposé by Icelandic news outlet Heimildin detailed challenges with the first two Climeworks facilities, including commentary that called both the company and the technology a “scam” and the “Theranos of the energy industry.”

DAC has never been entirely welcome among climate advocates. To a certain extent, its critics are right: The process of pulling carbon directly out of the ambient air and storing it permanently underground is both energy- and capital-intensive, and it has obvious utility for the oil and gas industry, which has seized on DAC’s potential to erase past emissions as a way to argue that the transition away from fossil energy isn’t actually necessary.

But these critics start to lose the thread when they call the technology a “fig leaf” for oil and gas or an “expensive, dangerous distraction,” and most egregiously when they point to the lack of actual carbon dioxide removed using the technology as an argument against future deployments.

There is a scientific consensus behind the need for carbon dioxide removal that these critiques dance around. As the United Nations Intergovernmental Panel on Climate Change lays out in its most recent scientific report, “CDR is required to limit warming to 1.5 [degrees Celsius],” and is “part of all modeled scenarios that limit warming to 2 [degrees] by 2100.” Even when critics recognize the need for permanent CDR, they frequently fail to provide any plausible pathway to gigaton scale. The fact is that DAC doesn’t have an established, liquid market, like electricity, steel, cement, or any other commodity. That any one DAC business is struggling as it attempts to scale is not an indictment of the company, but rather an illustration of the challenge it is taking on to commercialize a first-of-a-kind technologies that naturally has first-of-a-kind issues while also building a brand new market for the crucial climate service it provides. Don’t hate the player, hate the game.

The commercial model for the nascent CDR industry is largely the sale of carbon removal credits for delivery in future years. This isn’t unique to CDR — it’s even analogous to the power purchase agreements that scaled renewable energy. Futures contracts are standard practice, and certainly not indicative of a “scam.”

DAC’s high energy needs are frequently cited as a reason for concern among skeptics. As the Princeton Net Zero America study notes, however, the total energy needed to reduce emissions in a net-zero system without DAC increases because we would need more power to produce e-fuels. (Jesse Jenkins, one of the leaders of the Net Zero America study, is also a co-host of Heatmap’s Shift Key podcast.) This criticism also fails to take into account the reduction in energy intensity that companies are already achieving by various means. That group includes Climeworks, which has introduced more efficient sorbents; Heirloom, which is working on deploying passive mineralization; and Holocene, which was recently acquired by Oxy and employs the low regeneration temperature solvents.

The costs and efficiency of DAC today, just like the cost and efficiency of solar 20 years ago, are likely to improve significantly in the future as the technology and market become more efficient and reliable. Early DAC deployments may have a relatively high cost now, but even today, DAC is cost-competitive with emissions mitigation in aviation.

The industry currently stands at a precipice. Will DAC cross the chasm from pilot facilities to meaningful deployment? Or fall off the hype wagon into the dustbin of cool ideas that were always 10 years away? Beneath the innuendo and false claims, the reporting from Reykjavik shows what everyone in DAC knew — that it has a messy, non-linear path to scale. That does not disprove the argument that it is also a necessary technology that is not only valuable to remove emissions, but also is drawing billions in investment, and driving local economic development.

And there is plenty of good news. The XRG joint venture with Adnoc shows that a sophisticated strategic investor views American DAC as promising. (The local South Texas community is excited, too.) The Oxy Stratos facility in West Texas has already brought thousands of new construction jobs, and will bring hundreds of more permanent jobs to the heart of oil country — a new industry to make use of their unique and valuable skill sets. Project Bantam, a multi-modal operation that was the largest in the U.S. when it launched last summer, is operating in Oklahoma.

The Heimildin story was written to be a salacious takedown, and DAC opponents wasted no time in saying, “We told you so.” The issue with that reaction is the story isn’t unique to Climeworks, or even to DAC. The same story could have been written 20 years ago about solar and batteries. It could be written tomorrow about advanced geothermal or long-duration energy storage. It is the boring, mundane outcome of trying to build a difficult technology with the policy and business hand we are dealt.

The road to DAC at scale will be scattered with bumps, failed projects, and folded companies. We should be cheering these folks on, not taking shots from the cheap, increasingly warm seats.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

If Natron Couldn’t Make Batteries in the U.S., Can Anyone?

The failure of the once-promising sodium-ion manufacturer caused a chill among industry observers. But its problems may have been more its own.

An out of business battery pack.
Heatmap Illustration/Natron, Getty Images

When the promising and well funded sodium-ion battery company Natron Energy announced that it was shutting down operations a few weeks ago, early post-mortems pinned its failure on the challenge of finding a viable market for this alternate battery chemistry. Some went so far as to foreclose on the possibility of manufacturing batteries in the U.S. for the time being.

But that’s not the takeaway for many industry insiders — including some who are skeptical of sodium-ion’s market potential. Adrian Yao, for instance, is the founder of the lithium-ion battery company EnPower and current PhD student in materials science and engineering at Stanford. He authored a paper earlier this year outlining the many unresolved hurdles these batteries must clear to compete with lithium-iron-phosphate batteries, also known as LFP. A cheaper, more efficient variant on the standard lithium-ion chemistry, LFP has started to overtake the dominant lithium-ion chemistry in the electric vehicle sector, and is now the dominant technology for energy storage systems.

Keep reading...Show less
Green
Electric Vehicles

For EVs, Charging Speed Is the New Range

They may not refuel as quickly as gas cars, but it’s getting faster all the time to recharge an electric car.

A clock with lightning hands.
Heatmap Illustration/Getty Images

A family of four pulls their Hyundai Ioniq 5 into a roadside stop, plugs in, and sits down to order some food. By the time it arrives, they realize their EV has added enough charge that they can continue their journey. Instead of eating a leisurely meal, they get their grub to go and jump back in the car.

The message of this ad, which ran incessantly on some of my streaming services this summer, is a telling evolution in how EVs are marketed. The game-changing feature is not power or range, but rather charging speed, which gets the EV driver back on the road quickly rather than forcing them to find new and creative ways to kill time until the battery is ready. Marketing now frequently highlights an electric car’s ability to add a whole lot of miles in just 15 to 20 minutes of charge time.

Keep reading...Show less
Yellow
AM Briefing

Mass Firings

On the need for geoengineering, Britain’s retreat, and Biden’s energy chief

The White House.
Heatmap Illustration/Getty Images

Current conditions: Hurricane Gabrielle has strengthened into a Category 4 storm in the Atlantic, bringing hurricane conditions to the Azores before losing wind intensity over Europe • Heavy rains are whipping the eastern U.S. • Typhoon Ragasa downed more than 10,000 trees in Yangjiang, in southern China, before moving on toward Vietnam.

THE TOP FIVE

1. White House orders agencies to prepare for mass firings

The White House Office of Management and Budget directed federal agencies to prepare to reduce personnel during a potential government shutdown, targeting employees who work for programs that are not legally required to continue, Politico reported Wednesday, citing a memo from the agency.

Keep reading...Show less
Blue