Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Ideas

It’s Time for a Faster, Smarter Kind of Climate Action

The president of the Clean Economy Project calls for a new approach to advocacy — or as she calls it, a “third front.”

An oil refinery and trees.
Heatmap Illustration/Getty Images

Roughly 50,000 people are in Brazil this week for COP30, the annual United Nations climate summit. If history is any guide, they will return home feeling disappointed. After 30 years of negotiations, we have yet to see these summits deliver the kind of global economic transformation we need. Instead, they’ve devolved into rituals of hand-wringing and half measures.

The United States has shown considerable inertia and episodic hostility through each decade of climate talks. The core problem isn’t politics. It’s perspective. America has been treating climate as a moral challenge when the real stakes are economic prosperity.

I’ve spent my career advancing the moral case from inside the environmental movement. Over the decades we succeeded at rallying the faithful, but we failed to deliver change at the scale and speed required. We passed regulations only to watch them be repealed. We pledged to cut emissions and missed the mark, again and again.

People think of climate change as a crisis to contain when it’s really a competition to win. We need to build what’s next, not stop what’s bad. And what’s at stake isn’t just emissions; it’s whether America leads or lags in the next era of global economic growth.

That calls for a new approach to climate action — a third front.

In the early 1900s, the first front focused on conservation — protecting forests, nature, and wildlife. The second front, in the 1960s and 70s, tackled pollution — cleaning up our air and water, regulating toxins, and safeguarding public health. Both were about “stopping” harm. They worked because they aimed at industries where slowing down made sense.

But energy doesn’t fit that mold. International pledges and national regulations to “stop” carbon emissions are destined to fail without affordable and accessible fossil-fuel replacements. Why? Because low-cost energy makes people’s lives better. Longer life expectancies, better health care, lower infant mortality, and higher literacy follow in its wake. Energy is foundational for prosperity, powering nearly every part of our modern lives.

No high-income country has low energy consumption. Prosperity depends on abundant energy. Global energy demand will keep rising, as poor countries install more refrigerators and air conditioning, and rich countries build more data centers and advanced manufacturing. Today, fossil fuels provide 80% of primary energy because they are cheap and easy to move around. That’s why the tools of “stopping harm” that we used to protect rivers and forests will not win the race. Innovation, not limits, leads to progress.

The third front is not about blocking fossil fuels; it’s about beating them. Stopping fossil fuels doesn’t fix the electric grid or reinvent steelmaking. By contrast, lowering the cost of clean technologies will spur economic growth, create jobs in rural counties, and lower electricity bills for working families.

Yet clean energy projects in the U.S. are routinely delayed by red tape, outdated rules, and policy whiplash. A transmission line often takes more than a decade to plan, permit, and construct. Meanwhile, China has added more than 8,000 miles of ultra‑high‑voltage transmission in just four years, compared with fewer than 400 miles here at home. American entrepreneurs are ready to build but our systems and rules haven’t caught up.

And the urgency to fix the problem is mounting. Electricity prices and energy demand are surging, while terawatts of clean energy projects pile up in the interconnection queue. We are struggling to build a 21st century economy on 20th century infrastructure.

The third front of climate action starts with building faster and smarter. That responsibility lies with policymakers at every level. In the U.S., Congress and federal agencies must treat energy infrastructure as economic competitiveness, not just environmental policy. State and local regulators must expedite permitting. Regional grid operators must speed up interconnection and integration of new technologies.

But government’s role is to clear the path, not dictate the outcome. The private sector — entrepreneurs pioneering technologies from long-duration storage to advanced geothermal to next-generation nuclear — is ready to build. What they need is for policymakers to remove the obstacles. We can use public policy not to command markets, but rather to unlock them, reward innovation, and create certainty that encourages investment.

The same logic applies globally. The multilateral climate system has focused on negotiating emission limits, but we need a renewed effort toward lowering the cost of clean energy so it can outcompete fossil fuels in every market, from the richest economies to the poorest. Whether through the UN, the G-20, or the Clean Energy Ministerial, the international community must play a role in that shift — not through collating new pledges, but by taking action on cost reduction, technology deployment, and removing barriers to scale. Through economic cooperation and competition, both, domestic policies around the world need to align toward making clean energy win on economics, backed by private capital and innovation.

It’s time to measure progress not only by tons of carbon avoided, but also by how much new energy capacity we add, how quickly clean projects come online, and how much private capital moves into clean industries.

There is a cure for the fatigue induced from 30 years of climate summits and setbacks. It’s a new playbook built on economic growth and shared prosperity. The goal is not only to reduce emissions. We must build a system where clean energy is so affordable, abundant, and reliable that it becomes the obvious choice. Not because people are told to use it, but because it is better.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

Exclusive: U.S. Startup Lands Deal to Develop International AI-for-Nuclear Rules

Atomic Canyon is set to announce the deal with the International Atomic Energy Agency.

An atom and AI.
Heatmap Illustration/Getty Images

Two years ago, Trey Lauderdale asked not what nuclear power could do for artificial intelligence, but what artificial intelligence could do for nuclear power.

The value of atomic power stations to provide the constant, zero-carbon electricity many data centers demand was well understood. What large language models could do to make building and operating reactors easier was less obvious. His startup, Atomic Canyon, made a first attempt at answering that by creating a program that could make the mountains of paper documents at the Diablo Canyon nuclear plant, California’s only remaining station, searchable. But Lauderdale was thinking bigger.

Keep reading...Show less
Blue
AM Briefing

Trump’s SMR Play

On black lung, blackouts, and Bill Gates’ reactor startup

Donald Trump and Chris Wright.
Heatmap Illustration/Getty Images

Current conditions: The Northeastern U.S. is bracing for 6 inches of snow, including potential showers in New York City today • A broad swath of the Mountain West, from Montana through Colorado down to New Mexico, is expecting up to six inches of snow • After routinely breaking temperature records for the past three years, Guyana shattered its December high with thermometers crossing 92 degrees Fahrenheit.

THE TOP FIVE

1. Energy Department shells out $800 million to two nuclear projects

The Department of Energy gave a combined $800 million to two projects to build what could be the United States’ first commercial small modular reactors. The first $400 million went to the federally owned Tennessee Valley Authority to finance construction of the country’s first BWRX-300. The project, which Heatmap’s Matthew Zeitlin called the TVA’s “big swing at small nuclear,” is meant to follow on the debut deployment of GE-Hitachi Nuclear Energy’s 300-megawatt SMR at the Darlington nuclear plant in Ontario. The second $400 million grant backed Holtec International’s plan to expand the Palisades nuclear plant in Michigan where it’s currently working to restart with the company’s own 300-megawatt reactor. The funding came from a pot of money earmarked for third-generation reactors, the type that hew closely to the large light water reactors that make up nearly all the U.S. fleet of 94 commercial nuclear reactors. While their similarities with existing plants offer some benefits, the Trump administration has also heavily invested in incentives to spur construction of fourth-generation reactors that use coolants other than water. “Advanced light-water SMRs will give our nation the reliable, round-the-clock power we need to fuel the President’s manufacturing boom, support data centers and AI growth, and reinforce a stronger, more secure electric grid,” Secretary of Energy Chris Wright said in a statement. “These awards ensure we can deploy these reactors as soon as possible.”

Keep reading...Show less
Blue
Donald Trump.
Heatmap Illustration/Getty Images

2025 has been incredibly eventful for decarbonization — and not necessarily in a good way. The return of Donald Trump, the One Big Beautiful Bill Act, and the rise of data centers and artificial intelligence led to more changes for climate policy and the clean energy sector than we’ve seen in years. Some of those we saw coming. Others we really did not.

On this week’s episode of Shift Key, Rob and Jesse look back at the year’s biggest energy and decarbonization stories and examine what they got right — and what they got wrong. What’s been most surprising about the Trump administration? Why didn’t the Inflation Reduction Act’s policies help prevent the law’s partial repeal? And why have AI and the data center boom become a much bigger driver of power growth than we once thought?

Keep reading...Show less