You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The founder of Impulse Labs explains why he wants to put a battery in every appliance.
Impulse Labs debuted its much anticipated induction stove at the Consumer Electronics Show in Las Vegas this week. Coming to grips with this high-tech culinary wonder is a little bit like that meme of an expanding brain.
At first glance, the Impulse Cooktop is just a sexy-looking, $5,999 appliance: sleek black glass, burners that resemble a DJ turntable, knobs that add a satisfying analog touch to an otherwise fully digital interface.
But then you learn it also has integrated temperature sensors that keep the burners at the precise temperature you want.
And then you learn that the stove has a battery in it, which means that unlike most other induction stoves, it can plug into a standard 120-volt outlet. You don’t have to get a pricy circuit upgrade, or an even pricier electrical panel upgrade, to install it.
Plus, the battery delivers enough power to boil a liter of water in 40 seconds. And you can still cook if the power goes out. And its eligible for a 30% tax credit .
And then, your brain explodes when you learn the battery is a smart energy storage device that can charge up when power is cheap in the morning so that you save money when you use it in the evening, when power prices are highest. You can also participate in programs that will pay you to dispatch power from your stove to the grid when demand is high.
Who knew a stove could, or should, do so much?
Courtesy of Impulse Labs
I caught up with Sam D’Amico, the mastermind behind Impulse Labs, while he was at CES, to learn more about the story behind the stove. We talked about pizza, why induction cooking is the wedge to getting whole homes off gas, and his vision for putting a battery in every appliance. Our conversation has been lightly edited for clarity.
What’s your background? What were you up to before founding Impulse?
I graduated Stanford in 2012. In 2013 I got my masters. When I was there, I was on the solar car team and actually wrote battery management firmware as part of that. That gave me my first taste in electrification. You had to build a full EV and drive it across Australia. Then I immediately got sucked into consumer electronics and worked on a number of devices, including Google Glass, Oculus.
Part of the thesis for Impulse is, home appliances really haven’t seen a lot of innovation in 50 years or so. There’s been a number of advances in consumer electronics, so being able to take a lot of the talent and supply chain and experience from that and apply it to the appliance space is underleveraged.
You were working on all these computer electronics, and then somehow you got interested in stoves. I understand it had something to do with making the perfect pizza. Could you tell me that story?
I was in Japan at a conference, and we went to this pizza place and they cooked my pizza in like 45 seconds. And I’m like, that is insane. I think it’s called Savoy Pizza, you should definitely go to it. Tastiest pizza I’ve ever had. Super memorable. And then I’m like, I want to do that. But can I make it a tabletop device in my house?
And so I was getting obsessive with how to replicate that, but I realized you couldn’t do it on a 120-volt plug. I basically realized you had to put a battery in the appliance to be able to boost the power above what a 120 volt provides. All of the oven and smart appliance companies were really focused on AI and computer vision at that time, because they couldn’t innovate on the performance characteristics — they were topped out. And I realized this was an end run around that. You could actually make something that was three times better on the performance side, not have to worry about AI features that maybe no one is going to use, and really do some innovation.
That started me thinking about the bigger picture. I realized you could use that storage for the building. And then that kind of expanded into what became Impulse.
Did you figure out how to cook a pizza in 45 seconds?
So the first product is a cooktop. The idea here was we realized that the key appliance to getting gas out of the home was the stove. People don’t know what the fuel source is for all of their other appliances, including ovens. The big thing with gas stoves is that the user experience is the flame. So being able to address that, we thought, was fundamental to building decarbonization.
Utility companies know this. They know that getting people to get a gas stove is the way to get them off electric heat and on to gas heat. The wedge is actually the gas stove. So by producing an appliance that is just way more compelling, we can sever that dependency.
When we do an oven, I think we will have that pizza feature. I think the ballpark of performance of around 45 seconds is possible.
What was the process like of testing stoves and trying to figure out what the perfect stove is?
That was the fun part. We started buying hot plates and stoves and tearing them down. We basically realized that a lot of this stuff just hadn’t been attempted because the power wasn’t available. So the first thing we did was try to crank a ton of power into the stove. So we were like, let’s do 10 kilowatts, because 10 is a big number. That let us boil a liter of water in 40 seconds. We had that demo working in March or April of 2022.
But we realized immediately that this was too much performance unless you could solve the controls problem. The reason why people complain about warped pans and various other things is because the stove gets too hot. We then started tearing down all the hot plates and stoves we could find that had temperature sensors in them, and we realized that no one’s actually addressed this, and we found that there was a lot of leverage there that let us unlock the full performance of the stove. And so we’re monitoring the temperature in real time, making sure that we’re delivering the appropriate amount of power for the level you want to set, so that it holds a specific temperature.
If you need to use your stove all day, like for cooking a whole Thanksgiving dinner, is that possible with this? Or will the battery drain and then you can’t use it for a little bit?
You’re going to be okay, yes. You’ll drain the battery if you’re, let’s say, boiling a big pot of water for pasta. But then once it’s at temperature, you’re not going to be drawing more than what a 120-volt plug would draw. Maybe you’re stir-frying something. That pan, when it’s heating up, maybe it’s drawing a couple kilowatts for a minute, but then once everything’s up to temperature, you’re drawing hundreds of watts, and the battery is charging.
So basically, the average power draw [when you cook] is appropriate for even a 120-volt plug. It’s just that the peak power is more like an EV charger, or like an electric radiant heater, or something crazy. And that mismatch between peak and average is where the opportunity for putting batteries in appliances really shines.
The battery is like a quarter of a Tesla Powerwall. How valuable can that be for the grid?
There’s a couple of ways to weigh how valuable that is. In Southern California, which has really strong time-of-use energy rates, in the 4 to 9 pm slot, [using electricity during] that peak window is like 20 cents more expensive per kilowatt-hour than outside that window. So if you charge the battery outside the window and then you discharge the battery, whether it’s cooking or it’s putting power back into the house, inside that window, it’s worth hundreds of dollars a year in terms of energy bill savings.
We’ve got a full computer in there. It will basically pull those rate tables and make those choices semi-autonomously. We’re likely going to expose some level of choice to the end user, but we haven’t finalized the design.
What’s your pitch to the average consumer? How do you get people interested in having batteries in their appliances?
I think there’s a very direct pitch, which is, we are making the best possible appliances. It will make you a better cook. You will be able to do things faster and more efficiently.
Two is, you will be like, “I want to get an induction stove, I heard that’s a good thing to get.” And then your electricians will come by and tell you that you only have 10 amps available on your electric panel, and you’re going to be sad. And so we also solve that problem.
And then the third one is, now we’ve put some energy storage in your house. There’s 140 million homes in America. If we can intercept three major appliances per home, or four major appliances per home, that’s like 1.4 terawatt-hours of storage deployment potential. There’s an opportunity to deploy storage every year just by people upgrading their appliances. And so that’s part of the end game. Utilities will like that because it means they don’t have to invest in all this expensive transmission infrastructure.
Do you want to make other products besides stoves?
Yeah. We want to make the best appliances across the board. There’s a number of logical options, anything that has high peak but low average draw is the low hanging fruit. So you can imagine ovens — they draw power when they pre-heat. Water heaters are another one, where it’s like, if you’re taking a shower, it consumes a ton of power, but when you’re not, it doesn’t. Laundry is another one. I also want to emphasize that we’re making relatively high-end, premium appliances to start, but this architecture scales down fairly well to mid-range products. It’s just that as a startup, just as Tesla started with sports cars, we have to kind of start with the lower-volume, higher-margin products and then scale up from there.
How do people get one?
You can preorder it today on ImpulseLabs.com. There’s about 45% in federal discounts available. Because this thing has a battery and an inverter, it’s an energy storage product. It gets a 30% investment tax credit. A big change under the IRA was that stationary batteries, sold separately from solar, get that credit now. And then there’s also an $840 electric stove rebate that is available under the IRA. That one is income gated and expected to roll out in the fall. Our products are going to be available in Q4, so we expect the timing to be appropriate where all those rebates and credits will be available.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On the Senate Finance Committee’s budget proposal, the NRC, and fossil-fuel financing
Current conditions: A brush fire that prompted evacuations in Maui on Sunday and Monday is now 93% contained • The Des Moines metro area issued its first-ever ban on watering lawns due to record nitrate concentrations in nearby rivers • For only the fourth time since 1937, Vancouver, British Columbia got no rain at all in the first half of June. The dry streak may finally break tonight.
The Senate Finance Committee published its portion of the budget reconciliation bill on Monday night, including details of its highly anticipated plan to revise the nation’s clean energy tax credits. Though the Senate version slightly softens the House’s proposed phase out of tax credits, “the text would still slash many of the signature programs of the Inflation Reduction Act,” my colleagues Emily Pontecorvo and Robinson Meyer write in their breakdown of the bill. Other changes to be aware of include:
There’s more, too, which you can read here.
President Trump fired Chris Hanson, a Democrat and his first-term appointee to the U.S. Nuclear Regulatory Commission, on Friday. Trump “terminated my position … without cause, contrary to existing law and longstanding precedent regarding removal of independent agency appointees,” Hanson said in his announcement, published Monday. Since the creation of the NRC, which regulates nuclear power, no commissioner has ever been fired from the body.
After being appointed by Trump in 2020, Hanson was promoted to chair the commission by President Biden in 2021. His term ended in January, after which he returned to serving on the board, Notus reports. Trump’s decision to fire Hanson comes on the heels of his recent flurry of executive orders aimed at quadrupling U.S. nuclear capacity, including a measure seeking to “simplify and accelerate the NRC’s licensing procedure, giving the body 18 months to issue new rules and guidance designed to shorten the timeline for processing new applications to 18 months at the longest,” as my colleagues Matthew Zeitlin and Katie Brigham explained last month. News of Hanson’s firing was met with “serious dismay” by attendees of the American Nuclear Society conference underway in Chicago, per Katy Huff, an assistant professor at the University of Illinois at Urbana-Champaign. In a statement, ANS argued that a “competent, effective, and fully staffed [NRC] is essential to the rapid deployment of new reactors and advanced technologies.”
Banks increased fossil fuel financing by more than one-fifth in 2024, marking the first time that fossil fuel financing has failed to decline since 2021, a new report by the Rainforest Action Network and other environmental groups found. Among the world’s top 65 largest banks, coal, oil, and gas assets rose by $162 billion, to $869 billion, with JPMorgan Chase seeing the biggest increase of more than a third to $53.5 billion, followed by Citigroup, Bank of America, and Barclays. In a statement to the Financial Times, JPMorgan said it believed its own data “reflects our activities more comprehensively,” and said it provided $1.29 in clean-energy financing for every dollar financing fossil fuels. However, as the report argues, “Banks are abandoning their previously announced emissions reduction targets in favor of temperature trajectories that allow for more fossil fuel finance. Though they may also increase financing of renewable energy, banks’ continued fossil fuel finance entrenches climate chaos and undercuts clean energy development.” Read the full findings here.
Drivers in Europe are becoming more unwilling to consider switching to an electric vehicle, outpacing even the growing reluctance seen in the United States, according to a new survey published by Shell on Tuesday. In Europe, 41% of respondents said they’d consider switching to an EV, down from 48% last year, while in the U.S., the number fell only 3 percentage points, to 31%. “Europe surprised us,” David Bunch, Shell’s chief for mobility and convenience, said, per Reuters. “The single biggest barrier to entry is the cost of the vehicle.”
While Shell — the world’s second-biggest fossil fuel company by revenue and profit — might seem an unlikely source for an electric vehicle survey, the company also has the most extensive EV charging network in the UK. Its findings weren’t all negative, either: in China, interest in buying an electric vehicle was as high as 89%. Additionally, Shell found that nine in 10 EV drivers would consider purchasing an electric vehicle again, and 60% said they worry less about running out of charge than they did a year ago, Bloomberg reports. Separately, International Energy Agency data shows that electric vehicle adoption continues at a healthy pace worldwide, exceeding 17 million sales globally in 2024, or a share of more than 20%.
Global electric car sales, 2014-2024
IEA
The United Kingdom on Tuesday announced its commitment of £7.9 billion, or more than $10 billion, to the nation’s most extensive flood defense infrastructure program in its history. The program will not only include traditional construction, such as flood barriers, but also nature-based solutions like reforestation and wetland restoration, according to Business Green. In its announcement, the government said that for every £1 invested, it expected to prevent £8 in economic damage. “Protecting citizens is the first duty of any government,” Environment Secretary Steve Reed said in a statement, adding, “As our changing climate continues to bring more extreme weather to the nation, it's never been more vital to invest in new flood defences and repair our existing assets.” Separately, the U.K. Treasury also announced Tuesday a plan to spend £1 billion, or about $1.3 billion, on “funding to repair bridges, tunnels, and flyovers that are facing increased impacts from extreme weather and heavier vehicles,” Business Green adds.
Republicans in Los Angeles who don’t have air conditioning are “more likely to consider climate change a human-caused threat and more likely to support individual and government action to address climate change” than Republicans who have central air, a recent study published by the American Meteorological Society found. There was no similar divide among Democrats.
Wind and solar are out. Clean, firm power is in.
The Senate Finance committee published its highly anticipated tax proposal for Trump’s One Big, Beautiful Bill on Monday night, including a new plan to revise the nation’s clean energy tax credits.
Senate Republicans widened the aperture slightly compared to the House version of the bill, extending tax credits for geothermal energy, batteries, and hydropower, and preserving “transferability” — a crucial rule that allows companies to sell their tax credits for cash — for years to come.
But the text would still slash many of the signature programs of the Inflation Reduction Act. It would be particularly damaging for Republicans’ goals of creating a domestic mining industry, because it kills incentives for refining critical minerals while yanking away subsidies for the electric cars and wind turbines that might use those minerals.
Consumer tax credits for energy efficiency upgrades, including heat pumps, would still be terminated, as would credits for homeowners to lease or purchase rooftop solar. The Senate bill also cuts a tax deduction for energy efficiency upgrades in commercial buildings one year after the bill’s passage, which was not in the House version.
There was no mercy for the IRA’s tax credit to produce clean hydrogen, despite a last-minute appeal from more than 250 organizations in early June. That policy would still be terminated this year.
Here’s a rundown of the rest of the major changes.
Like the House bill, the Senate’s proposal would terminate tax credits for new, used, and leased electric vehicles. But while the House had extended the program by one year for automakers that had yet to sell 200,000 eligible vehicles, the Senate version would simply end the program in 180 days — or roughly six months — after the bill’s passage.
Depending on when the bill is passed, the Senate version could work out better for some experienced EV automakers, such as Tesla and General Motors. These automakers are set to lose their eligibility for tax credits on December 31 under the House text. But the Senate bill’s 180-day period could allow them to eke out another month or so of eligibility — especially if congressional negotiations over the One Big, Beautiful Bill Act go late into the summer.
Newer EV automakers, such as Rivian or Lucid, come out worse under the Senate text as compared to the House bill since they haven’t sold as many vehicles.
Homeowners interested in electric vehicle chargers would get a longer runway than the House had proposed — but a much shorter one than is on the books right now. Under current law, homeowners can claim the charger tax credit through 2032. The Senate version would terminate the 30% tax credit for installing a home charger one year after the bill is enacted.
The Inflation Reduction Act achieved massive greenhouse gas reductions by including a set of new “technology-neutral” tax credits that subsidized any new power plant as long as it didn’t emit carbon dioxide. Under current law, these new tax credits will remain effective and on the books for decades to come — expiring only when emissions from the country’s power sector fall about 95% below their all-time high.
The Republican reconciliation bills have dismantled these provisions. The House text proposed immediately winding down tax credits for all clean energy sources — except nuclear — and allowed just a 60-day “grace period” for new projects to start construction to claim the credits. Even then, new power plants would have to enter service by 2028 to qualify.
Senate Republicans have countered with a plan that is designed to maintain support for every electricity source that isn’t wind and solar. The GOP Senate caucus favors technologies that can provide power on demand around the clock — such as geothermal, nuclear, hydropower, and batteries — but technically the Senate text allows any zero-carbon, non-solar, non-wind source to qualify for the clean electricity tax credits for the next decade.
The Senate draft erases the provision in the Inflation Reduction Act that would have kept these tax credits in place until the entire United States power sector reduces its emissions. Instead, it adopts the IRA’s alternate phase-out period, with the tax credits beginning to wind down for projects that start construction in 2034.
Tax credits for wind and solar, however, would begin to phase down for projects that start construction next year, and terminate after 2027, with one big exception.
An odd addendum to the wind and solar phase-out would exempt projects that are at least 1 gigawatt, are at least partially on federal land, and have already received a “right-of-way grant or lease” from the Bureau of Land Management as of June 16. It’s unclear which, if any, projects would be helped by this provision. According to the BLM website, it has not granted a right-of-way to any projects that are 1 gigawatt or larger except for the Lava Ridge wind farm, which has been canceled. If the Senate changes the date, however, the Esmeralda 7 solar farm in Nevada may benefit, as the project is more than 6 gigawatts, and is in the final stages of its environmental review.
The Senate text would not do anything to change the eligibility timeline for existing nuclear plants to claim a tax credit, called 45U, designed to keep them solvent. It would keep the schedule written into the Inflation Reduction Act, which has the credit terminating at the end of 2031. It would, however, impose new foreign sourcing restrictions on nuclear fuel, forbidding existing power plants from claiming the tax credit if their fuel comes from Russia, China, Iran, or North Korea. (It makes an exception for power companies that signed a long-term contract to buy foreign fuel before 2023.) The United States formally banned the import of nuclear fuel from Russia last year.
The Inflation Reduction Act subsidized the production of certain clean energy equipment — including solar panels, wind turbines, inverters, and batteries — as well as some of their subcomponents. Under current law, those tax credits will begin to phase out by 25% increments in 2030, so companies can claim 75% of the credit in 2030, 50% in 2031, and zero in 2033.
The IRA also created a new permanent tax credit that covered 10% of the cost of refining or recycling critical minerals.
The new Senate text changes these phase-out deadlines, often for the worse. First, as in the House bill, wind turbines and their subcomponents would no longer qualify for the tax credit starting in 2028. Second, the tax credit for critical minerals would start phasing out in 2031. Under the new calendar, companies would be able to claim 75% of this credit in 2031, 50% in 2032, and zero in 2034.
In practice, this means that the Senate GOP text would end the IRA’s permanent tax credit for producing many critical minerals, which would damage the financial projects of many mineral processing and refining projects. Other types of equipment remain on the Inflation Reduction Act’s original phase-out schedule.
The new Senate text also slightly expands the type of battery components that qualify for the credit. And — in a potentially significant change for some companies — it forbids companies from stacking tax credits for their vertically integrated production process starting in 2027.
While the House did not touch the tax credit for carbon sequestration, the Senate has put forward a key change favored by many proponents of the technology. Under current law, project operators get the highest-value credit if they simply inject captured carbon underground for no other purpose than to keep it out of the atmosphere. Smaller amounts are available for projects that use captured CO2 to nudge more oil out of the ground, also known as “enhanced oil recovery,” or if they use the CO2 in products like cement.
Under the Senate proposal, all carbon sequestration projects, no matter the nature of the carbon storage, would qualify for the same amount.
The biggest clean energy killer in the House-passed bill was a strict sourcing rule for the tax credits that would disqualify projects that use any component, subcomponent or mineral from China. As Heatmap’s Matthew Zeitlin wrote last week, the rules appeared “unworkable” to many companies because they seemingly disqualified projects even if they used a relatively small amount of an otherwise irrelevant Chinese-sourced material — such as a spare bolt or a gram of steel.
Under the House bill, manufacturers would also not be allowed to license a Chinese company’s technology. This measure appeared to directly target Ford, which has proposed manufacturing electric vehicle batteries using technology licensed from the Chinese firm CATL, one of the world’s best producers of EV batteries.
The Senate proposal changes the House provision by adding a complicated new set of definitions about what might qualify as a federal entity of concern. It also introduces a new “safe harbor” formula describing the amount of Chinese-sourced material that can keep a project from receiving a tax credit. We’re still figuring out how these new rules work together, and we’ll update this article as we understand them better.
The House bill also would have severely curtailed a crucial component of the tax credit program called transferability, which allowed developers that couldn’t take full advantage of the subsidies to sell their credits for cash to other companies. The text stripped this option from the tax credits for clean manufacturing (45X), carbon sequestration (45Q), and clean fuels (45Z) beginning in 2028. Without transferability, most carbon sequestration projects will struggle to pencil out, my colleague Katie Brigham reported.
The Senate proposal would restore transferability for the duration of all remaining tax credits.
But it throws another wrench in plans to scale up nuclear, geothermal, and other large capital-intensive projects, because it restricts zero-carbon power plants’ ability to use modified accelerated cost recovery to fund their projects.
Trump just quasi-nationalized U.S. Steel. That could help climate policy later.
The government is getting into the steel business. The deal between Japan’s Nippon Steel and U.S. Steel, long held off by the Biden administration due to national security and economic concerns, may finally happen, and the government will have a seat at the table. And some progressives are smarting over the fact that a Republican did it first.
On Friday, Nippon Steel and U.S. Steel announced “that President Trump has approved the Companies’ historic partnership,” which would include $11 billion in new investments and “a Golden Share to be issued to the U.S. Government” as well as “commitments” that include “domestic production” and “trade matters.”
The New York Times reported that this “Golden Share” would give the president, including Trump’s successors, the ability to appoint or veto some of the company’s directors, and require the government to sign off on a wide range of corporate decisions, like moving production overseas or idling or closing plants or the procurement of raw materials.
The Trump administration will likely use its oversight to encourage domestic production of steel, in tandem with its tariffs on steel imports. The unique arrangement “will massively expand access to domestically produced steel,” Secretary of Commerce Howard Lutnick wrote on X.
While neither the administration nor the two companies involved in the deal have mentioned decarbonizing steel — and in fact existing steel decarbonization programs have floundered in the first months of the Trump’s second term — it is this government oversight of steel production that could, with a different administration, help steer the steel industry into greener pastures.
A future president could wield a golden share to encourage or require the significant capital investments necessary to decarbonize some of U.S. Steel’s production, investments that the Biden administration had trouble catalyzing even with direct government financial support.
And considering that steel makes up for some 7% of global emissions, decarbonization is a necessary — if costly — step to substantially reducing global emissions.
“It’s honestly embarrassing that Republicans beat us to actually implementing a golden share or something like it,” Alex Jacquez, who worked on industrial policy for the National Economic Council in the Biden White House, told me.
When the steel giant Cleveland Cliffs first hinted that it would not go forward with $500 million worth of federal grants to help build a hydrogen-powered mill, it cited “fears that there won’t be buyers for the lower-carbon product,” thanks to a 40% price gap with traditional steel, Ilmi Granoff wrote for Heatmap., This tracked what steel producers and buyers were telling the Biden administration as it tried to convene the industry to see what it needed to go green.
“The largest issue by far in advancing green steel production in the U.S. is demand. It’s still not price competitive and not worth capital investment upgrades, given where the market is right now and without stable demand from customers who are going to pay a premium for the product,” Jacquez said. “There’s no case to make to shareholders for why you’re investing.”
When the Roosevelt Institute looked at barriers to transition to clean steel, specifically a Cleveland-Cliffs project, among familiar community concerns like what it would mean for steel employment, there was “corporate inertia and focus on short-term shareholder value over long-term public value and competitiveness.”
While the Trump administration sees shareholder demands leading to insufficient domestic production of any steel, a future administration could be a counterweight to investors not wanting to make green steel investments.
Shareholder reticence is a “huge obstacle,” one of the report’s authors Isabel Estevez, co-executive director of the industrial policy think tank I3T, told me.
“Of course investors are not going to green light investments that don’t produce the same returns as doing nothing or doing something else would do,” Jacquez said.
And when green steel projects have gotten canceled, in the U.S. and abroad, it’s been dismal shareholder returns that are often the explicit or implicit justification, as well as the high cost of producing green hydrogen necessary to fuel green steel operations. “We are not only pushing the boundaries of what is technologically feasible with this project. We are also currently pushing the boundaries of economic viability. Or, as it stands today: beyond it,” the chief executive of ThyssenKrupp told the North Rhine-Westphalia parliament, according to Hydrogen Insight.
And the resulting Trump administration retrenchment from the Biden administration’s climate policy has made the environment even less friendly for green steel.
Earlier this month Cleveland-Cliffs scrapped the hydrogen-fuel steel project and said instead it would try to extend its existing coal-fueled blast furnace. And the Swedish company SSAB earlier this year withdrew from a prospective project in Mississippi.
Would these outcomes be any different with a “golden share”? When the Roosevelt Institute looked at steel decarbonization even full-on nationalization was considered as one of the “sticks” that could push along decarbonization (many steel companies globally are either state-owned or have some state investment). The golden share, at least as reported, will seem to put the government in the driver’s seat of a major player of the steel industry, while still maintaining its private ownership structure.
“Assuming the nature of the golden share allows the public sector to make certain requirements about the way that profits are used, it could be very valuable for encouraging U.S. Steel to use their profits to make important investments,” Estevez told me.