You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The founder of Impulse Labs explains why he wants to put a battery in every appliance.
Impulse Labs debuted its much anticipated induction stove at the Consumer Electronics Show in Las Vegas this week. Coming to grips with this high-tech culinary wonder is a little bit like that meme of an expanding brain.
At first glance, the Impulse Cooktop is just a sexy-looking, $5,999 appliance: sleek black glass, burners that resemble a DJ turntable, knobs that add a satisfying analog touch to an otherwise fully digital interface.
But then you learn it also has integrated temperature sensors that keep the burners at the precise temperature you want.
And then you learn that the stove has a battery in it, which means that unlike most other induction stoves, it can plug into a standard 120-volt outlet. You don’t have to get a pricy circuit upgrade, or an even pricier electrical panel upgrade, to install it.
Plus, the battery delivers enough power to boil a liter of water in 40 seconds. And you can still cook if the power goes out. And its eligible for a 30% tax credit .
And then, your brain explodes when you learn the battery is a smart energy storage device that can charge up when power is cheap in the morning so that you save money when you use it in the evening, when power prices are highest. You can also participate in programs that will pay you to dispatch power from your stove to the grid when demand is high.
Who knew a stove could, or should, do so much?
Courtesy of Impulse Labs
I caught up with Sam D’Amico, the mastermind behind Impulse Labs, while he was at CES, to learn more about the story behind the stove. We talked about pizza, why induction cooking is the wedge to getting whole homes off gas, and his vision for putting a battery in every appliance. Our conversation has been lightly edited for clarity.
What’s your background? What were you up to before founding Impulse?
I graduated Stanford in 2012. In 2013 I got my masters. When I was there, I was on the solar car team and actually wrote battery management firmware as part of that. That gave me my first taste in electrification. You had to build a full EV and drive it across Australia. Then I immediately got sucked into consumer electronics and worked on a number of devices, including Google Glass, Oculus.
Part of the thesis for Impulse is, home appliances really haven’t seen a lot of innovation in 50 years or so. There’s been a number of advances in consumer electronics, so being able to take a lot of the talent and supply chain and experience from that and apply it to the appliance space is underleveraged.
You were working on all these computer electronics, and then somehow you got interested in stoves. I understand it had something to do with making the perfect pizza. Could you tell me that story?
I was in Japan at a conference, and we went to this pizza place and they cooked my pizza in like 45 seconds. And I’m like, that is insane. I think it’s called Savoy Pizza, you should definitely go to it. Tastiest pizza I’ve ever had. Super memorable. And then I’m like, I want to do that. But can I make it a tabletop device in my house?
And so I was getting obsessive with how to replicate that, but I realized you couldn’t do it on a 120-volt plug. I basically realized you had to put a battery in the appliance to be able to boost the power above what a 120 volt provides. All of the oven and smart appliance companies were really focused on AI and computer vision at that time, because they couldn’t innovate on the performance characteristics — they were topped out. And I realized this was an end run around that. You could actually make something that was three times better on the performance side, not have to worry about AI features that maybe no one is going to use, and really do some innovation.
That started me thinking about the bigger picture. I realized you could use that storage for the building. And then that kind of expanded into what became Impulse.
Did you figure out how to cook a pizza in 45 seconds?
So the first product is a cooktop. The idea here was we realized that the key appliance to getting gas out of the home was the stove. People don’t know what the fuel source is for all of their other appliances, including ovens. The big thing with gas stoves is that the user experience is the flame. So being able to address that, we thought, was fundamental to building decarbonization.
Utility companies know this. They know that getting people to get a gas stove is the way to get them off electric heat and on to gas heat. The wedge is actually the gas stove. So by producing an appliance that is just way more compelling, we can sever that dependency.
When we do an oven, I think we will have that pizza feature. I think the ballpark of performance of around 45 seconds is possible.
What was the process like of testing stoves and trying to figure out what the perfect stove is?
That was the fun part. We started buying hot plates and stoves and tearing them down. We basically realized that a lot of this stuff just hadn’t been attempted because the power wasn’t available. So the first thing we did was try to crank a ton of power into the stove. So we were like, let’s do 10 kilowatts, because 10 is a big number. That let us boil a liter of water in 40 seconds. We had that demo working in March or April of 2022.
But we realized immediately that this was too much performance unless you could solve the controls problem. The reason why people complain about warped pans and various other things is because the stove gets too hot. We then started tearing down all the hot plates and stoves we could find that had temperature sensors in them, and we realized that no one’s actually addressed this, and we found that there was a lot of leverage there that let us unlock the full performance of the stove. And so we’re monitoring the temperature in real time, making sure that we’re delivering the appropriate amount of power for the level you want to set, so that it holds a specific temperature.
If you need to use your stove all day, like for cooking a whole Thanksgiving dinner, is that possible with this? Or will the battery drain and then you can’t use it for a little bit?
You’re going to be okay, yes. You’ll drain the battery if you’re, let’s say, boiling a big pot of water for pasta. But then once it’s at temperature, you’re not going to be drawing more than what a 120-volt plug would draw. Maybe you’re stir-frying something. That pan, when it’s heating up, maybe it’s drawing a couple kilowatts for a minute, but then once everything’s up to temperature, you’re drawing hundreds of watts, and the battery is charging.
So basically, the average power draw [when you cook] is appropriate for even a 120-volt plug. It’s just that the peak power is more like an EV charger, or like an electric radiant heater, or something crazy. And that mismatch between peak and average is where the opportunity for putting batteries in appliances really shines.
The battery is like a quarter of a Tesla Powerwall. How valuable can that be for the grid?
There’s a couple of ways to weigh how valuable that is. In Southern California, which has really strong time-of-use energy rates, in the 4 to 9 pm slot, [using electricity during] that peak window is like 20 cents more expensive per kilowatt-hour than outside that window. So if you charge the battery outside the window and then you discharge the battery, whether it’s cooking or it’s putting power back into the house, inside that window, it’s worth hundreds of dollars a year in terms of energy bill savings.
We’ve got a full computer in there. It will basically pull those rate tables and make those choices semi-autonomously. We’re likely going to expose some level of choice to the end user, but we haven’t finalized the design.
What’s your pitch to the average consumer? How do you get people interested in having batteries in their appliances?
I think there’s a very direct pitch, which is, we are making the best possible appliances. It will make you a better cook. You will be able to do things faster and more efficiently.
Two is, you will be like, “I want to get an induction stove, I heard that’s a good thing to get.” And then your electricians will come by and tell you that you only have 10 amps available on your electric panel, and you’re going to be sad. And so we also solve that problem.
And then the third one is, now we’ve put some energy storage in your house. There’s 140 million homes in America. If we can intercept three major appliances per home, or four major appliances per home, that’s like 1.4 terawatt-hours of storage deployment potential. There’s an opportunity to deploy storage every year just by people upgrading their appliances. And so that’s part of the end game. Utilities will like that because it means they don’t have to invest in all this expensive transmission infrastructure.
Do you want to make other products besides stoves?
Yeah. We want to make the best appliances across the board. There’s a number of logical options, anything that has high peak but low average draw is the low hanging fruit. So you can imagine ovens — they draw power when they pre-heat. Water heaters are another one, where it’s like, if you’re taking a shower, it consumes a ton of power, but when you’re not, it doesn’t. Laundry is another one. I also want to emphasize that we’re making relatively high-end, premium appliances to start, but this architecture scales down fairly well to mid-range products. It’s just that as a startup, just as Tesla started with sports cars, we have to kind of start with the lower-volume, higher-margin products and then scale up from there.
How do people get one?
You can preorder it today on ImpulseLabs.com. There’s about 45% in federal discounts available. Because this thing has a battery and an inverter, it’s an energy storage product. It gets a 30% investment tax credit. A big change under the IRA was that stationary batteries, sold separately from solar, get that credit now. And then there’s also an $840 electric stove rebate that is available under the IRA. That one is income gated and expected to roll out in the fall. Our products are going to be available in Q4, so we expect the timing to be appropriate where all those rebates and credits will be available.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
What if, instead of maintaining old pipelines, gas utilities paid for homes to electrify?
California just hit a critical climate milestone: On September 1, Pacific Gas and Electric, the biggest utility in the state, raised natural gas rates by close to $6 due to shrinking gas demand.
I didn’t say it was a milestone worth celebrating. But experts have long warned that gas rates would go up as customers started to use less of the fossil fuel. PG&E is now forecasting enough of a drop in demand, whether because homeowners are making efficiency improvements or switching to electric appliances, that it needs to charge everyone a bit more to keep up with the cost of maintaining its pipelines.
Shortly after the rate increase went into effect, however, Governor Gavin Newsom signed a bill aimed at addressing this exact problem. The new law gives PG&E and other utilities permission to use money they would have spent to replace aging, leaky pipelines to pay for the electrification of the homes served by those pipes — as long as electrifying the homes is cheaper. Instead of investing millions of ratepayer dollars into the gas system, utilities can start to decommission parts of it, shrinking gas use and fixed costs in tandem.
PG&E actually already has the freedom to do this, and has even completed a fair number of projects. But the utility has had limited success, mainly because of an anti-discrimination law that gives building owners the right to stick with natural gas. It only takes one gas stalwart to thwart a whole neighborhood’s prospects for free electric appliances, since in order to keep delivering gas to that one household, the utility has to invest in the entire section of pipeline serving the area. A 2023 report showed that while PG&E had completed more than 100 projects, it hadn’t been able to convince clusters of customers larger than five at a time to convert.
The new law doesn’t fundamentally change the anti-discrimination rule, known as a utility’s “duty to serve,” but it does relieve PG&E and others of this duty if at least two-thirds of the homeowners served by a given section of pipeline consent to getting off gas. For now, the legislation limits utilities to executing 30 such projects. But for those 30, as long as two-thirds consent, the utility can now tell the holdouts that it is retiring the pipeline, and that they have no choice but to get on the electric bandwagon.
“If a supermajority wants it, it can move forward,” Matt Vespa, a senior attorney from Earthjustice who worked on the legislation, told me. “Which I think is probably a good place to start from. You want to have a place where there’s significant buy-in.”
This strategy, sometimes called “zonal decarbonization” or “targeted electrification,” is one that many climate groups are advocating for as a way to achieve an orderly and equitable transition off of natural gas. The approach most states have taken so far — providing subsidies that gently prod consumers into going electric — results in a random pattern of adoption that can benefit some homeowners while harming others. It also does nothing to deter gas utilities from investing hundreds of millions of dollars in maintaining, replacing, or building new pipelines each year — investments that are set up to be recouped from ratepayers over the course of decades.
California isn’t the first place in the world to experiment with targeted electrification. The Swiss city of Zurich began systematically shutting down sections of its gas system in 2021, giving affected users about a decade of warning and offering partial compensation for the cost of new equipment. In Massachusetts, the utility Eversource is piloting a unique neighborhood-scale electrification project. The company hooked up 32 residential buildings and a few commercial businesses in the city of Framingham to a new underground network of pipes that carry water rather than natural gas, which in turn connect to geothermal heat pumps that use the water to heat or cool the air inside. There are more than a dozen such “thermal energy network” pilot projects in various stages in Massachusetts, New York, Colorado, Washington, Vermont, Maryland, and Minnesota.
But the new California program is unique in its scale and approach. For one thing, it applies to all gas utilities in the state. Beginning next summer, they will each need to submit maps to the utility commission that identify potential pipeline replacement projects; then, in 2026, regulators will use those maps to designate priority areas, giving precedence to low-income communities and households that lack heating or cooling. By July of that year, the commission must establish the rules of the pilot program, including a methodology for utilities to determine when electrification is more cost-effective than pipeline replacement, and rules for how utilities can pay for the projects and recover costs.
PG&E supported the bill and worked closely with its authors on the language. The utility declined an interview, but emailed me a statement saying the legislation “enables cost-effective, targeted electrification projects which will help avoid more expensive gas pipeline replacements, reducing gas system operating costs, and support the state’s and PG&E’s decarbonization goals.”
Utilities will still be spending ratepayer money on the electrification projects, but far less than they would have spent on pipeline infrastructure. For the remaining gas customers, it’s still possible rates will go up, though by less than they would have otherwise. Mike Henchen, a principal in the carbon-free buildings program at RMI, told me these pilot projects alone are not going to pull so many customers away from the gas system that it will put upward pressure on rates. The law caps the program at no more than 1% of a utility’s customers.
Vespa, the Earthjustice attorney, told me he originally worked on a more ambitious version of the bill that would have required utilities to avoid any new investments in the gas system when electrification was a cheaper alternative. But it was pared back and made voluntary in order to get it through the legislature. “The hope is that we'll get projects off the ground, we’ll get proof-of-concept,” he said. “I think there was a need to demonstrate some successful stories and then hopefully expand from there.”
While these pilots make sense, economically, for a dual gas and electric company like PG&E, one big question is whether the state’s gas-only utilities like Southern California Gas will take the initiative. (SoCalGas did not respond to my inquiry prior to publication, but the company did support the legislation.)
Looking ahead, even if lawmakers do expand the program to authorize every cost-effective project, this model can’t transition the entire state away from gas. These projects are more likely to pencil out in places with lower housing density, where a given section of pipeline is serving only a handful of homes. A fact sheet about the bill published by its lead sponsor, state senator David Min, says that “zero emissions alternatives” to pipeline replacement are only technically feasible and cost effective for about 5% of PG&E’s territory. “Gas customers won't be able to pay for the decommissioning of the whole gas system, or even 50% of it,” said Henchen.
In the meantime, however, there’s lots of low-hanging fruit to pluck. Targeted electrification of just 3% to 4% of gas customers across the state could reduce gas utility spending by $15 billion to $26 billion through 2045, according to an analysis by Energy and Environmental Economics.
“It’s a modest step,” said Vespa of the new law. “But I do think it’s meaningful to start moving forward and developing the frameworks for this.”
Revoy is already hitching its power packs to semis in one of America’s busiest shipping corridors.
Battery swaps used to be the future. To solve the unsolvable problem of long recharging times for electric vehicles, some innovators at the dawn of this EV age imagined roadside stops where drivers would trade their depleted battery for a fully charged one in a matter of minutes, then be on their merry way.
That vision didn’t work out for passenger EVs — the industry chose DC fast charging instead. If the startup Revoy has its way, however, this kind of idea might be exactly the thing that helps the trucking industry surmount its huge hurdles to using electric power.
Revoy’s creation is, essentially, a bonus battery pack on wheels that turns an ordinary semi into an EV for as long as the battery lasts. The rolling module carries a 525 kilowatt-hour lithium iron phosphate battery pack attaches to the back of the truck; then, the trailer full of cargo attaches to the module. The pack offers a typical truck 250 miles of electric driving. Founder Ian Rust told me that’s just enough energy to reach the next Revoy station, where the trucker could swap their depleted module for a fresh one. And if the battery hits zero charge, that's no problem because the truck reverts to its diesel engine. It’s a little like a plug-in hybrid vehicle, if the PHEV towed its battery pack like an Airstream and could drop it off at will.
“If you run out of battery with us, there's basically no range anxiety,” Rust said. “And we do it intentionally on our routes, run it down to as close to zero as possible before we hit the next Revoy swapping station. That way you can get the maximum value of the battery without having to worry about range.”
To start, a trucker in a normal, everyday semi pulls up to a Revoy station and drops their trailer. A worker attaches a fully charged Revoy unit to the truck and trailer—all in five minutes or less, Revoy promises. Once in place, the unit interfaces seamlessly with the truck’s drivetrain and controls.
“It basically takes over as the cruise control on the vehicle,” he said. “So the driver gets it up to speed, takes their foot off the gas, and then we actually become the primary powertrain on the vehicle. You really only have to burn diesel for the little bit that is getting onto the highway and then getting off the highway, and you get really extreme MPGs with that.”
The Revoy model is going through its real-world paces as we speak. Rust’s startup has partnered with Ryder trucking, whose drivers are powering their semis with Revoy EVs at battery-swap stops along a stretch of Interstate 30 in Texas and Arkansas, a major highway for auto parts and other supplies coming from Mexico. Rust hopes the next Revoy corridor will go into Washington State, where the ample hydropower could help supply clean energy to all those swappable batteries. Happily, he said, Revoy can expand piecemeal like this because its approach negates the chicken-and-egg problem of needing a whole nation of EV chargers to make the vehicles themselves viable. Once a truck leaves a Revoy corridor, it’s just a diesel-powered truck again.
Early data from the Ryder pilot shows that the EV unit slashed how much diesel fuel a truck needs to make it down the designated corridor. “This is a way we can reduce a path to reduce the emissions of our fleet without having to buy anything — and without having to have to worry about how much utilization we're going to have to get,” Mike Plasencia, group director of New Product Strategy at Ryder, told me.
Trucking represents one of the biggest opportunities for cutting the carbon emissions of the transportation sector. It’s also one of the most challenging. Heatmap has covered the problem of oversized SUV and pickup truck EVs, which need larger, more expensive batteries to propel them. The trucking problem is that issue on steroids: A semi can tow up to 80,000 pounds down an American highway.
There are companies building true EV semi trucks despite this tall order — Tesla’s has been road-testing one while hauling Pepsi around, and trucking mainstays like Peterbilt are trying their hand as well. Although the EV model that works for everyday cars — a built-in battery that requires recharging after a couple hundred miles — can work for short-haul trucks that move freight around a city, it is a difficult fit for long-haul trucking where a driver must cover vast distances on a strict timetable. That’s exactly where Revoy is trying to break in.
"We are really focused on long haul,” he told me. “The reason for that is, it's the bigger market. One of the big misconceptions in trucking is that it's dominated by short haul. It's very much the opposite. And it's the bigger emission source, it's the bigger fuel user."
Rust has a background in robotics and devised the Revoy system as a potential solution to both the high cost of EV semis and to the huge chunks of time lost to fueling during long-distance driving. Another part of the pitch is that the Revoy unit is more than a battery. By employing the regenerative braking common in EVs, the Revoy provides a redundancy beyond air brakes for slowing a big semi—that way, if the air brakes fail, a trucker has a better option than the runaway truck lane. The setup also provides power and active steering to the Revoy’s axle, which Rust told me makes the big rig easier to maneuver.
Plasencia agrees. “The feedback from the drivers has been positive,” he said. “You get feedback messages like, it felt like I was driving a car, or like I wasn't carrying anything.”
As it tries to expand to more trucking corridors across the nation, Revoy may face an uphill battle in trying to sell truckers and trucking companies on an entirely new way to think about electrifying their fleets. But Rust has one ace up his sleeve: With Revoy, they get to keep their trucks — no need to buy new ones.
On the DOE’s transmission projects, Cybertruck recalls, and Antarctic greening
Current conditions: Hurricane Kirk, now a Category 4 storm, could bring life-threatening surf and rip currents to the East Coast this weekend • The New Zealand city of Dunedin is flooded after its rainiest day in more than 100 years • Parts of the U.S. may be able to see the Northern Lights this weekend after the sun released its biggest solar flare since 2017.
The Energy Department yesterday announced $1.5 billion in investments toward four grid transmission projects. The selected projects will “enable nearly 1,000 miles of new transmission development and 7,100 MW of new capacity throughout Louisiana, Maine, Mississippi, New Mexico, Oklahoma, and Texas, while creating nearly 9,000 good-paying jobs,” the DOE said in a statement. One of the projects, called Southern Spirit, will involve installing a 320-mile high-voltage direct current line across Texas, Louisiana, and Mississippi that connects Texas’ ERCOT grid to the larger U.S. grid for the first time. This “will enhance reliability and prevent outages during extreme weather events,” the DOE said. “This is a REALLY. BIG. DEAL,” wrote Michelle Lewis at Electrek.
The DOE also released a study examining grid demands through 2050 and concluded that the U.S. will need to double or even triple transmission capacity by 2050 compared to 2020 to meet growing electricity demand.
Duke Energy, one of the country’s largest utilities, appears to be walking back its commitment to ditch coal by 2035. In a new plan released yesterday, Duke said it would not shut down the second-largest coal-fired power plant in the U.S., Gibson Station in Indiana, in 2035 as previously planned, but would instead run it through 2038. The company plans to retrofit the plant to run on natural gas as well as coal, with similar natural-gas conversions planned for other coal plants. The company also slashed projects for expanding renewables. According toBloomberg, a Duke spokeswoman cited increasing power demand for the changes. Electricity demand has seen a recent surge in part due to a boom in data centers. Ben Inskeep, program director at the Citizens Action Coalition of Indiana, a consumer and environmental advocacy group, noted that Duke’s modeling has Indiana customers paying 4% more each year through 2030 “as Duke continues to cling to its coal plants and wastes hundreds of millions on gasifying coal.”
The Edison Electric Institute issued its latest electric vehicle forecast, anticipating EV trends through 2035. Some key projections from the trade group’s report:
Tesla issued another recall for the Cybertruck yesterday, the fifth recall for the electric pickup since its launch at the end of last year. The new recall has to do with the rearview camera, which apparently is too slow to display an image to the driver when shifting into reverse. It applies to about 27,000 trucks (which is pretty much all of them), but an over-the-air software update to fix the problem has already been released. There were no reports of injuries or accidents from the defect.
A new study published in Nature found that vegetation is expanding across Antarctica’s northernmost region, known as the Antarctic Peninsula. As the planet warms, plants like mosses and lichen are growing on rocks where snow and ice used to be, resulting in “greening.” Examining satellite data, the researchers from the universities of Exeter and Hertfordshire, and the British Antarctic Survey, were shocked to discover that the peninsula has seen a tenfold increase in vegetation cover since 1986. And the rate of greening has accelerated by over 30% since 2016. This greening is “creating an area suitable for more advanced plant life or invasive species to get a foothold,” co-author Olly Bartlett, a University of Hertfordshire researcher, told Inside Climate News. “These rates of change we’re seeing made us think that perhaps we’ve captured the start of a more dramatic transformation.”
Moss on Ardley Island in the Antarctic. Dan Charman/Nature
Japan has a vast underground concrete tunnel system that was built to take on overflow from excess rain water and prevent Tokyo from flooding. It’s 50 meters underground, and nearly 4 miles long.
Carl Court/Getty Images