Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Politics

Beware a Battery Backlash

Big batteries are critical to decarbonizing the electric grid. They can also explode.

People fleeing from batteries.
Heatmap Illustration / Getty Images

Every source of renewable energy seems to face an opposition based on a real downside that’s blown out of proportion. Wind turbines kill birds. Solar panels fry them. Hydropower can release methane. Nuclear reactors can melt down. And now batteries are coming under the microscope for exploding.

Late last week, New York Gov. Kathy Hochul announced that the state had formed a working group to “ensure the safety and security of energy storage systems,” in response to fires at battery systems in three New York counties. Her announcement concerns batteries used on the electric grid, which are larger but typically conform to high standards in construction and installation, but it came a few months after the publication of a New York Times report about deadly fires caused by much smaller lithium-ion batteries in e-bikes.

While energy researchers and fire officials are concerned about the risks of battery failures leading to explosions, they’re also nervous that fears of e-bikes packed into bike shops could rebound against energy storage. If a 5-pound e-bike battery can explode and burn down a house, who would want to put 300,000 pounds of batteries on their apartment building’s roof?

The problem is there’s basically no way to realistically decarbonize an electric grid without a lot more battery storage. Wind and solar power only generate electricity when it’s either windy or sunny, so powering the grid on cloudy, calm days — or, in the case of solar, just at night — requires a way to store that energy.

In other words, with energy storage rolling out fast across the country, a lot more attention is about to be paid to preventing and putting out battery fires.


It’s worth noting at the outset that there’s also always a risk of failure from energy storage. Oil and gas can ignite, dams can burst, and batteries can explode. The chemical or kinetic energy you hope to release in a controlled fashion can always be released in an uncontrolled fashion, and batteries are no different.

“Anytime you store energy it can be released in an uncontrolled manner,” Lakshmi Srinivasan, a senior technical leader at the Electric Power Research Institute (EPRI), told me.

In fact, the very reason lithium-ion batteries are so appealing — i.e. their high levels of energy density — is also why their fires can be so devastating and hard to put out.

“They put in energy in a small footprint. That’s bad when energy is released in an uncontrolled way. It’s an inherent hazard we accept,” Brian O’Connor, technical services engineer at the National Fire Protection Association, told me. The battery cells are packed tightly together to efficiently use available space, which then presents the risk of issues in one cell spreading to the others.

When one battery cell goes in thermal runaway, which is uncontrolled energy release, it can then spread to the next battery cell and the next, O’Connor explained. “As this process continues, it can result in a battery fire or explosion. This can often be the ignition source for larger battery fires,” according to the NFPA, which may result in explosions and the release of toxic gases.

The subsequent fires can be hard to put out and difficult to manage for first responders without specific training and experience, explained O’Connor. “We’re trying to encourage and require thorough codes and standards in preplanning with fire departments. Let’s make sure first responders know where they’re going to. Let’s have a plan.”

Because battery storage systems typically have to go through a permitting process to be installed, there’s leverage for making them safer through improving and disseminating best practices, explained Stephanie Shaw, a principal technical leader at EPRI.

Longstanding doubts and fears around batteries in scooters, e-bikes, and hoverboards can sometimes make people apprehensive about energy storage, Shaw said. “We do see a tendency for folks less familiar to lump all that together. One of the things that I’m trying to get across is that larger-scale grid connected units have a lot of requirements.” This can mean spacing out the batteries both from each other and from walls, as well as installing sprinkler systems.

The issues around batteries are not new or unknown: According to a database of battery failures maintained by the EPRI, there have been 11 in the past year, including three in New York since late May, as well as a recent one in Taiwan.

There also doesn’t yet appear to be evidence that failures and fires are scaling with deployment of electrical storage at a constant rate, said Shaw.

That’s encouraging because large-scale battery storage is getting rolled out rapidly.

“With grid scale utility scale deployments, the vast majority are lithium-ion technologies. We’re increasing deployment very rapidly. We’re at beginning of a hockey stick curve,” Srinivasan said, referencing the way exponential growth looks on a chart.

California, in particular, has installed a staggering amount of grid scale storage, from around 500 megawatts in 2020 to 5 gigawatts this year. Texas has 3.5 gigawatts of installed battery storage on its grid, compared to 2 gigawatts last year. Any area that pursues decarbonization with a renewable heavy grid will likely have to follow suit. Earlier this year, Kathy Hochul announced a goal to install 6 megawatts of storage in New York by 2030.

While there is not yet any evidence of the kind of widespread, intense local backlash to battery storage that has greeted many utility scale wind and solar projects, there are a few cases of leery residents when faced with a proposal to install batteries near them. In the Brooklyn neighborhood of Greenpoint, for example, a plan to install 15 lithium-ion batteries that weigh a combined 300,000 pounds on the roof of an apartment building has stirred up tenant opposition, according to the local publication Greenpointers.

Battery installations across Staten Island have also evoked grumbling from residents and local officials, with the borough president, Republican Vito Fossella, telling the Staten Island Advance, “If you put a deck on your house, it is scrutinized from every angle ... But we have residents who are quite literally waking up with these battery systems in their backyards.”

If the ambitious battery storage targets required for decarbonizing the grid are going to be met, expect the grumbling to increase.

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate 101

Welcome to Climate 101

Your guide to the key technologies of the energy transition.

Welcome to Climate 101
Heatmap illustration/Getty images

Here at Heatmap, we write a lot about decarbonization — that is, the process of transitioning the global economy away from fossil fuels and toward long-term sustainable technologies for generating energy. What we don’t usually write about is what those technologies actually do. Sure, solar panels convert energy from the sun into electricity — but how, exactly? Why do wind turbines have to be that tall? What’s the difference between carbon capture, carbon offsets, and carbon removal, and why does it matter?

So today, we’re bringing you Climate 101, a primer on some of the key technologies of the energy transition. In this series, we’ll cover everything from what makes silicon a perfect material for solar panels (and computer chips), to what’s going on inside a lithium-ion battery, to the difference between advanced and enhanced geothermal.

There’s something here for everyone, whether you’re already an industry expert or merely climate curious. For instance, did you know that contemporary 17th century readers might have understood Don Quixote’s famous “tilting at windmills” to be an expression of NIMYBism? I sure didn’t! But I do now that I’ve read Jeva Lange’s 101 guide to wind energy.

That said, I’d like to extend an especial welcome to those who’ve come here feeling lost in the climate conversation and looking for a way to make sense of it. All of us at Heatmap have been there at some point or another, and we know how confusing — even scary — it can be. The constant drumbeat of news about heatwaves and floods and net-zero this and parts per million that is a lot to take in. We hope this information will help you start to see the bigger picture — because the sooner you do, the sooner you can join the transition, yourself.

Keep reading...Show less
Green
Climate 101

What Goes on Inside a Solar Panel?

The basics on the world’s fastest-growing source of renewable energy.

What Goes on Inside a Solar Panel?
Heatmap illustration/Getty Images

Solar power is already the backbone of the energy transition. But while the basic technology has been around for decades, in more recent years, installations have proceeded at a record pace. In the United States, solar capacity has grown at an average annual rate of 28% over the past decade. Over a longer timeline, the growth is even more extraordinary — from an stalled capacity base of under 1 gigawatt with virtually no utility-scale solar in 2010, to over 60 gigawatts of utility-scale solar in 2020, and almost 175 gigawatts today. Solar is the fastest-growing source of renewable energy in both the U.S. and the world.

Keep reading...Show less
Yellow
Climate 101

The Ins and Outs of Wind Energy

The country’s largest source of renewable energy has a long history.

The Ins and Outs of Wind Energy
Heatmap illustration/Getty Images

Was Don Quixote a NIMBY?

Keep reading...Show less
Green