Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Down with the Dams?

Americans have succumbed to the myth of dams, argues the author of a new book advocating for their removal.

Glen Canyon Dam.
Heatmap Illustration/Getty Images, Library of Congress

There are over 91,000 dams in the United States — so many that if you put them all on a map and zoom out, it looks a little like a coverage map for a halfway decent phone network. Most of these dams exist for purposes of flood control and irrigation; a mere 3%, mostly clustered in the West, are used for hydropower. These projects account for over 30% of renewable energy generation in the U.S., which is actually on the smaller side by global standards. Around the world, it’s over 53%.

As the U.S. begins to heave itself toward decarbonization, though, hydropower “pretty much has to be a part” of the solution, many policymakers, scientists, and activists say — particularly because they can run when other sources of renewable energy can’t, like when the wind isn't blowing and the sun isn't shining. Currently, there is a major push to retrofit non-powered dams to produce electricity.

A contingent of activists, however, say we actually need to go in the opposite direction — and tear down the dams. Writer and filmmaker Steven Hawley argues in his new book Cracked: The Future of Dams in a Hot, Chaotic World (out this week from Patagonia Books, the mission-focused publishing arm of the outdoor apparel company) that Americans have been suckered into believing in the century-old “mythology” of dams.

The reality of hydropower emissions is surprisingly complicated and understudied. Recent research suggests there are huge discrepancies between the carbon footprints of different hydropower plants. Some have negative emissions, as Grist wrote in 2019, but others are little better than fossil fuel sources. It’s all in their location and the way they’re built and operated.

Hawley and I spoke on Wednesday about the drawbacks of dams, the historically corrupt allotment of water in the West, and the future of the environmental movement. A transcription of our conversation, edited and condensed for length and clarity, is below.

When I was a kid, my family took road trips to Grand Coulee and Hoover dams, where we oohed and ahhed over them as engineering marvels that make life in the West possible. In your book, you call this part of the “gospel” and “mythology” of dams. Can you tell me a little more about the power these stories still hold over us?

In the post-World War II environment, we were sold this story about how building large water control projects in arid desert basins all over the West would make modern civilization possible and even desirable. We embarked on a dam-building frenzy — not only in the flagship projects in the American West but all over the country. I think there was something like 90,000 dams built from 1930 to 1980 in the United States. The idea was that you could exercise a control over nature that would allow us to furnish a rising tide that would lift all boats. That’s proven to not be true. The flood that came as a result of the dams lifted a few people’s boats, but not everyone’s. There are still, for instance, in the migrant worker community, an alarming number of underpaid and poor people.

The second part of the story, particularly with the climate chaos that is facing us in our future, is that dams are a really inefficient and horrible way to store water because we lose so much water through evaporation. Estimates have doubled: It used to be the standard cost of evaporation out of the reservoir behind any dam was 10%. Now they’re saying, okay, maybe it’s closer to 20%. It’s only going to increase with the increase in temperatures. You can’t justify that in an era where water is scarce; losing that much of the volume of a reservoir to make clouds wasn’t the intent of those projects. The intent was to furnish water for people and places that need it and if you’re losing 20% a year, and there are years where there’s low or no precipitation as we’ve seen in the Colorado basin, you’re not going to have a reservoir.

The last part that’s blown up the mythology of dams is that dams are major producers of greenhouse gases. The sixth largest producer of methane on the planet is the world’s reservoirs. And we know that methane in the short term is a much more serious problem than CO2. You can’t have the world’s reservoirs emitting methane on the same level as the country of Germany and tell me that dams are providing clean, green energy or clean, green water storage for places that need it. It’s just not true. The science on that has evolved rather quickly. It’s widely accepted even by the federal agencies, the Bureau of Reclamation and the Army Corps of Engineers, that all reservoirs produce methane.

The Elwha River dam removal, pictured here in 2014, is the largest dam removal in U.S. history.John Gussman/'Cracked' (Patagonia Books). Used with permission.

I had a question about that! Prominent environmentalists are calling for a green building boom, stressing that, despite the drawbacks of some renewable technologies, the most important thing is for us to transition away from fossil fuels as quickly as possible. The Inflation Reduction Act offers a tax credit for the production of electricity from hydropower, and the Energy Department has announced $200 million for the modernization and expansion of hydroelectric power, calling it an important step toward President Biden’s goal of 100% clean electricity by 2035. In your opinion, can dams have a place in the energy transition?

Well, they can but they shouldn’t. We’re still subsidizing the fossil fuel industry, and the fact that these kinds of provisions make their way into energy bills should tell us more about the power of lobbying than it does about any kind of safe or sane or sound policy decisions. We know the science, we know that hydropower is not clean green energy, in addition to the destruction of salmon runs and ecological destruction of habitat.

[Dams] produce methane and we can’t have energy sources that are producing significant quantities of methane. So we should be looking at a serious cost-benefit analysis and ecological environmental analysis of every large dam project and start planning for getting rid of the ones that aren’t penciling out. Is there a variance in the amount of methane that each project produces? I don’t know, I’m not adept enough at the science to say what’s acceptable and what’s not. But some reservoirs — as one of the early researchers in this field pointed out, in terms of a CO2-equivalent greenhouse gas footprint — they’re on par with a large coal-fired plant.

In Cracked, you tell the story of Project 5311, a tribe-led effort to create a virtual power plant — that is, a network of decentralized renewable energy generators, like homeowner’s solar panels, batteries, or even EVs, that pool together to create a flexible electricity grid — as a way to offset and justify removing four Snake River dams. Could this be a model course of action on other rivers?

This is an exciting new frontier in the West for the utility industry. It does a number of things for indigenous communities. It gives them another revenue stream — here in the Pacific Northwest, the main revenue stream for a lot of Indian nations is the casino, and so becoming a player in the energy business diversifies their economy. We’ve seen this happen on the Nez Perce reservation already.

What would be really cool is if we could get key legislators in state houses to start supporting the ambitions of the Nez Perce. They can see, as most of the rest of us can, that we need to wean ourselves off fossil fuels. If the kind of environment that allowed humans to flourish over the past 200,000 years is going to continue, we’re gonna have to change the way that we do things. And I think Indigenous communities are seeing that they can be a part of that change. In the case of the Nez Perce, they can see that they can have their salmon-bearing rivers back, a key part of not only their economy but their religion and their society as well.

The bathrub ring in Reservoir Powell.Justin Sullivan/'Cracked' (Patagonia Books). Used with permission.

In addition to being part manifesto, part how-to guide, and part travelogue, Cracked is also a history of water usage in the West. But I’m also curious about your history — how did you become a dam buster?

My best friend in high school growing up was a massive fly-fishing nerd. He baptized me into that world and I started fishing and paying attention to what was going on on rivers. The second part of that story is, I had a friend who was kind of a fast talker, and he talked his way into being the editor of a fishing magazine and he called me up and said, “I don’t know the first thing about this subject. I’ll let you freelance all you want to.” And so I took that job and started writing about river issues.

What really sold me on dam removal was, at the time, there was a group of commercial fishermen that were starting to pay really close attention to what was happening in the streams that produce a lot of the fish that they catch. Any salmon species ultimately has to spend some time in freshwater, of course. And [the fishermen] were actually lobbying in state houses and legislatures and in Congress. Some that were out of work, they were actually doing stream restoration and a lot of them found that work really satisfying. And a lot of them learned that the main reason why they were suffering economically is because of dams that were cutting off their supply of fish. And I thought that was a pretty fascinating story. You don’t normally think of commercial fishermen as environmentalists, or at least you didn’t back then. But that’s what sold me, that series of events.

Many people are familiar with the idea that dams disrupt river ecosystems, but you write also that “an aggression against a wild river is ultimately an aggression against people.” I was surprised to learn that historically dams have been pitched to constituents as an equalizer when you argue they mostly benefit people with power.

Yeah, absolutely. There’s a section in the book about how the supposedly egalitarian work of the Central Valley Project in California instead goes to some already very wealthy farmers. What should really raise the ire of a lot of readers who care about clean water and rivers is just the way that the agricultural lobby, particularly in the state of California, has made water “flow uphill toward money.”

There was a deal that the Westlands Water District cut to basically take ownership of $3 billion worth of federal infrastructure and they also had their water rights guaranteed. So in years where the rest of Californians might be worried about, you know, whether they’re gonna have enough water to put a garden out, or even, you know, God forbid, in the future, take a shower. But Westlands will get their water no matter what. And that’s really corrupt. They’re not forced to take part in any kind of cutbacks the way the rest of us are. And that’s wrong.

Hoover Dam.The Carol M. Highsmith Archive, Library of Congress, Prints and Photographs Division/'Cracked' (Patagonia Books). Used with permission.

Do you have any parting words for readers who are making up their minds about these complicated trade-offs?

I think we’ve reached a crossroads in the environmental moment with a number of crises — the extinction crisis, the climate change crisis coming out as full bore. It’s a perfectly human response to be overwhelmed by that.

I was impressed with a couple of people that I interviewed who beseech the environmental community to get back to making arguments based on what is beautiful, what is aesthetically pleasing, and what is right for future generations. I think that’s really what the Remove the Dams movement is all about, is putting the environmental movement back on the side of what is — well, as I quoted Martin Litton at the head of one chapter, “don’t ask for what is reasonable, ask for what is right.”

We should be arguing not over what is, but what ought to be.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

Exclusive: U.S. Startup Lands Deal to Develop International AI-for-Nuclear Rules

Atomic Canyon is set to announce the deal with the International Atomic Energy Agency.

An atom and AI.
Heatmap Illustration/Getty Images

Two years ago, Trey Lauderdale asked not what nuclear power could do for artificial intelligence, but what artificial intelligence could do for nuclear power.

The value of atomic power stations to provide the constant, zero-carbon electricity many data centers demand was well understood. What large language models could do to make building and operating reactors easier was less obvious. His startup, Atomic Canyon, made a first attempt at answering that by creating a program that could make the mountains of paper documents at the Diablo Canyon nuclear plant, California’s only remaining station, searchable. But Lauderdale was thinking bigger.

Keep reading...Show less
Blue
AM Briefing

Trump’s SMR Play

On black lung, blackouts, and Bill Gates’ reactor startup

Donald Trump and Chris Wright.
Heatmap Illustration/Getty Images

Current conditions: The Northeastern U.S. is bracing for 6 inches of snow, including potential showers in New York City today • A broad swath of the Mountain West, from Montana through Colorado down to New Mexico, is expecting up to six inches of snow • After routinely breaking temperature records for the past three years, Guyana shattered its December high with thermometers crossing 92 degrees Fahrenheit.

THE TOP FIVE

1. Energy Department shells out $800 million to two nuclear projects

The Department of Energy gave a combined $800 million to two projects to build what could be the United States’ first commercial small modular reactors. The first $400 million went to the federally owned Tennessee Valley Authority to finance construction of the country’s first BWRX-300. The project, which Heatmap’s Matthew Zeitlin called the TVA’s “big swing at small nuclear,” is meant to follow on the debut deployment of GE-Hitachi Nuclear Energy’s 300-megawatt SMR at the Darlington nuclear plant in Ontario. The second $400 million grant backed Holtec International’s plan to expand the Palisades nuclear plant in Michigan where it’s currently working to restart with the company’s own 300-megawatt reactor. The funding came from a pot of money earmarked for third-generation reactors, the type that hew closely to the large light water reactors that make up nearly all the U.S. fleet of 94 commercial nuclear reactors. While their similarities with existing plants offer some benefits, the Trump administration has also heavily invested in incentives to spur construction of fourth-generation reactors that use coolants other than water. “Advanced light-water SMRs will give our nation the reliable, round-the-clock power we need to fuel the President’s manufacturing boom, support data centers and AI growth, and reinforce a stronger, more secure electric grid,” Secretary of Energy Chris Wright said in a statement. “These awards ensure we can deploy these reactors as soon as possible.”

Keep reading...Show less
Blue
Donald Trump.
Heatmap Illustration/Getty Images

2025 has been incredibly eventful for decarbonization — and not necessarily in a good way. The return of Donald Trump, the One Big Beautiful Bill Act, and the rise of data centers and artificial intelligence led to more changes for climate policy and the clean energy sector than we’ve seen in years. Some of those we saw coming. Others we really did not.

On this week’s episode of Shift Key, Rob and Jesse look back at the year’s biggest energy and decarbonization stories and examine what they got right — and what they got wrong. What’s been most surprising about the Trump administration? Why didn’t the Inflation Reduction Act’s policies help prevent the law’s partial repeal? And why have AI and the data center boom become a much bigger driver of power growth than we once thought?

Keep reading...Show less