Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate

Down with the Dams?

Americans have succumbed to the myth of dams, argues the author of a new book advocating for their removal.

Glen Canyon Dam.
Heatmap Illustration/Getty Images, Library of Congress

There are over 91,000 dams in the United States — so many that if you put them all on a map and zoom out, it looks a little like a coverage map for a halfway decent phone network. Most of these dams exist for purposes of flood control and irrigation; a mere 3%, mostly clustered in the West, are used for hydropower. These projects account for over 30% of renewable energy generation in the U.S., which is actually on the smaller side by global standards. Around the world, it’s over 53%.

As the U.S. begins to heave itself toward decarbonization, though, hydropower “pretty much has to be a part” of the solution, many policymakers, scientists, and activists say — particularly because they can run when other sources of renewable energy can’t, like when the wind isn't blowing and the sun isn't shining. Currently, there is a major push to retrofit non-powered dams to produce electricity.

A contingent of activists, however, say we actually need to go in the opposite direction — and tear down the dams. Writer and filmmaker Steven Hawley argues in his new book Cracked: The Future of Dams in a Hot, Chaotic World (out this week from Patagonia Books, the mission-focused publishing arm of the outdoor apparel company) that Americans have been suckered into believing in the century-old “mythology” of dams.

The reality of hydropower emissions is surprisingly complicated and understudied. Recent research suggests there are huge discrepancies between the carbon footprints of different hydropower plants. Some have negative emissions, as Grist wrote in 2019, but others are little better than fossil fuel sources. It’s all in their location and the way they’re built and operated.

Hawley and I spoke on Wednesday about the drawbacks of dams, the historically corrupt allotment of water in the West, and the future of the environmental movement. A transcription of our conversation, edited and condensed for length and clarity, is below.

When I was a kid, my family took road trips to Grand Coulee and Hoover dams, where we oohed and ahhed over them as engineering marvels that make life in the West possible. In your book, you call this part of the “gospel” and “mythology” of dams. Can you tell me a little more about the power these stories still hold over us?

In the post-World War II environment, we were sold this story about how building large water control projects in arid desert basins all over the West would make modern civilization possible and even desirable. We embarked on a dam-building frenzy — not only in the flagship projects in the American West but all over the country. I think there was something like 90,000 dams built from 1930 to 1980 in the United States. The idea was that you could exercise a control over nature that would allow us to furnish a rising tide that would lift all boats. That’s proven to not be true. The flood that came as a result of the dams lifted a few people’s boats, but not everyone’s. There are still, for instance, in the migrant worker community, an alarming number of underpaid and poor people.

The second part of the story, particularly with the climate chaos that is facing us in our future, is that dams are a really inefficient and horrible way to store water because we lose so much water through evaporation. Estimates have doubled: It used to be the standard cost of evaporation out of the reservoir behind any dam was 10%. Now they’re saying, okay, maybe it’s closer to 20%. It’s only going to increase with the increase in temperatures. You can’t justify that in an era where water is scarce; losing that much of the volume of a reservoir to make clouds wasn’t the intent of those projects. The intent was to furnish water for people and places that need it and if you’re losing 20% a year, and there are years where there’s low or no precipitation as we’ve seen in the Colorado basin, you’re not going to have a reservoir.

The last part that’s blown up the mythology of dams is that dams are major producers of greenhouse gases. The sixth largest producer of methane on the planet is the world’s reservoirs. And we know that methane in the short term is a much more serious problem than CO2. You can’t have the world’s reservoirs emitting methane on the same level as the country of Germany and tell me that dams are providing clean, green energy or clean, green water storage for places that need it. It’s just not true. The science on that has evolved rather quickly. It’s widely accepted even by the federal agencies, the Bureau of Reclamation and the Army Corps of Engineers, that all reservoirs produce methane.

The Elwha River dam removal, pictured here in 2014, is the largest dam removal in U.S. history.John Gussman/'Cracked' (Patagonia Books). Used with permission.

I had a question about that! Prominent environmentalists are calling for a green building boom, stressing that, despite the drawbacks of some renewable technologies, the most important thing is for us to transition away from fossil fuels as quickly as possible. The Inflation Reduction Act offers a tax credit for the production of electricity from hydropower, and the Energy Department has announced $200 million for the modernization and expansion of hydroelectric power, calling it an important step toward President Biden’s goal of 100% clean electricity by 2035. In your opinion, can dams have a place in the energy transition?

Well, they can but they shouldn’t. We’re still subsidizing the fossil fuel industry, and the fact that these kinds of provisions make their way into energy bills should tell us more about the power of lobbying than it does about any kind of safe or sane or sound policy decisions. We know the science, we know that hydropower is not clean green energy, in addition to the destruction of salmon runs and ecological destruction of habitat.

[Dams] produce methane and we can’t have energy sources that are producing significant quantities of methane. So we should be looking at a serious cost-benefit analysis and ecological environmental analysis of every large dam project and start planning for getting rid of the ones that aren’t penciling out. Is there a variance in the amount of methane that each project produces? I don’t know, I’m not adept enough at the science to say what’s acceptable and what’s not. But some reservoirs — as one of the early researchers in this field pointed out, in terms of a CO2-equivalent greenhouse gas footprint — they’re on par with a large coal-fired plant.

In Cracked, you tell the story of Project 5311, a tribe-led effort to create a virtual power plant — that is, a network of decentralized renewable energy generators, like homeowner’s solar panels, batteries, or even EVs, that pool together to create a flexible electricity grid — as a way to offset and justify removing four Snake River dams. Could this be a model course of action on other rivers?

This is an exciting new frontier in the West for the utility industry. It does a number of things for indigenous communities. It gives them another revenue stream — here in the Pacific Northwest, the main revenue stream for a lot of Indian nations is the casino, and so becoming a player in the energy business diversifies their economy. We’ve seen this happen on the Nez Perce reservation already.

What would be really cool is if we could get key legislators in state houses to start supporting the ambitions of the Nez Perce. They can see, as most of the rest of us can, that we need to wean ourselves off fossil fuels. If the kind of environment that allowed humans to flourish over the past 200,000 years is going to continue, we’re gonna have to change the way that we do things. And I think Indigenous communities are seeing that they can be a part of that change. In the case of the Nez Perce, they can see that they can have their salmon-bearing rivers back, a key part of not only their economy but their religion and their society as well.

The bathrub ring in Reservoir Powell.Justin Sullivan/'Cracked' (Patagonia Books). Used with permission.

In addition to being part manifesto, part how-to guide, and part travelogue, Cracked is also a history of water usage in the West. But I’m also curious about your history — how did you become a dam buster?

My best friend in high school growing up was a massive fly-fishing nerd. He baptized me into that world and I started fishing and paying attention to what was going on on rivers. The second part of that story is, I had a friend who was kind of a fast talker, and he talked his way into being the editor of a fishing magazine and he called me up and said, “I don’t know the first thing about this subject. I’ll let you freelance all you want to.” And so I took that job and started writing about river issues.

What really sold me on dam removal was, at the time, there was a group of commercial fishermen that were starting to pay really close attention to what was happening in the streams that produce a lot of the fish that they catch. Any salmon species ultimately has to spend some time in freshwater, of course. And [the fishermen] were actually lobbying in state houses and legislatures and in Congress. Some that were out of work, they were actually doing stream restoration and a lot of them found that work really satisfying. And a lot of them learned that the main reason why they were suffering economically is because of dams that were cutting off their supply of fish. And I thought that was a pretty fascinating story. You don’t normally think of commercial fishermen as environmentalists, or at least you didn’t back then. But that’s what sold me, that series of events.

Many people are familiar with the idea that dams disrupt river ecosystems, but you write also that “an aggression against a wild river is ultimately an aggression against people.” I was surprised to learn that historically dams have been pitched to constituents as an equalizer when you argue they mostly benefit people with power.

Yeah, absolutely. There’s a section in the book about how the supposedly egalitarian work of the Central Valley Project in California instead goes to some already very wealthy farmers. What should really raise the ire of a lot of readers who care about clean water and rivers is just the way that the agricultural lobby, particularly in the state of California, has made water “flow uphill toward money.”

There was a deal that the Westlands Water District cut to basically take ownership of $3 billion worth of federal infrastructure and they also had their water rights guaranteed. So in years where the rest of Californians might be worried about, you know, whether they’re gonna have enough water to put a garden out, or even, you know, God forbid, in the future, take a shower. But Westlands will get their water no matter what. And that’s really corrupt. They’re not forced to take part in any kind of cutbacks the way the rest of us are. And that’s wrong.

Hoover Dam.The Carol M. Highsmith Archive, Library of Congress, Prints and Photographs Division/'Cracked' (Patagonia Books). Used with permission.

Do you have any parting words for readers who are making up their minds about these complicated trade-offs?

I think we’ve reached a crossroads in the environmental moment with a number of crises — the extinction crisis, the climate change crisis coming out as full bore. It’s a perfectly human response to be overwhelmed by that.

I was impressed with a couple of people that I interviewed who beseech the environmental community to get back to making arguments based on what is beautiful, what is aesthetically pleasing, and what is right for future generations. I think that’s really what the Remove the Dams movement is all about, is putting the environmental movement back on the side of what is — well, as I quoted Martin Litton at the head of one chapter, “don’t ask for what is reasonable, ask for what is right.”

We should be arguing not over what is, but what ought to be.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Electric Vehicles

Oversize EVs Have Some Big Issues

Any EV is better for the planet than a gas-guzzler, but size still matters for energy use.

A very large Ford F-150 Lightning.
Heatmap Illustration/Ford, Tesla, Getty Images

A few Super Bowls ago, when General Motors used its ad spots to pitch Americans on the idea of the GMC Hummer EV, it tried to flip the script on the stereotypes that had always dogged the gas-guzzling SUV. Yes, it implied, you can drive a military-derived menace to society and still do your part for the planet, as long as it’s electric.

You don’t hear much about the Hummer anymore — it didn’t sell especially well, and the Tesla Cybertruck came along to fill the tank niche in the electric car market. But the reasoning behind its launch endures. Any EV, even a monstrous one, is a good EV if it convinces somebody, somewhere, to give up gasoline.

Keep reading...Show less
Climate

AM Briefing: Hottest Summer Ever

On new heat records, Trump’s sea level statements, and a super typhoon

We Just Lived Through the Hottest Summer Ever
Heatmap Illustration/Getty Images

Current conditions: Torrential rains flooded the streets of Milan, Italy • The U.K. recorded its coldest summer since 2015 • The temperature in Palm Springs, California, hit 121 degrees Fahrenheit yesterday.

THE TOP FIVE

1. Summer 2024 was hottest on record

Summer 2024 was officially the warmest on record in the Northern Hemisphere, according to new data from the EU’s Copernicus Climate Change Service. Between June and August, the average global temperature was 1.24 degrees Fahrenheit higher than the 1991-2020 average, beating out last summer’s record. August 2024 tied August 2023 for joint-hottest month ever recorded globally, with an average surface air temperature of 62.27 degrees Fahrenheit.

Keep reading...Show less
Yellow
Economy

How to Make a Ghost Town

The raw material of America’s energy transition is poised for another boom.

Superior, Arizona.
Heatmap Illustration/Jeva Lange, Library of Congress

In the town of Superior, Arizona, there is a hotel. In the hotel, there is a room. And in the room, there is a ghost.

Henry Muñoz’s father owned the building in the early 1980s, back when it was still a boarding house and the “Magma” in its name, Hotel Magma, referred to the copper mine up the hill. One night, a boarder from Nogales, Mexico, awoke to a phantom trying to pin her to the wall with the mattress; naturally, she demanded a new room. When Muñoz, then in his fearless early 20s, heard this story from his father, he became curious. Following his swing shift at the mine, Muñoz posted himself to the room with a case of beer and passed the hours until dawn drinking and waiting for the spirit to make itself known.

Keep reading...Show less
Green