You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Over a dozen methane satellites are now circling the Earth — and more are on the way.
On Monday afternoon, a satellite the size of a washing machine hitched a ride on a SpaceX rocket and was launched into orbit. MethaneSAT, as the new satellite is called, is the latest to join more than a dozen other instruments currently circling the Earth monitoring emissions of the ultra-powerful greenhouse gas methane. But it won’t be the last. Over the next several months, at least two additional methane-detecting satellites from the U.S. and Japan are scheduled to join the fleet.
There’s a joke among scientists that there are so many methane-detecting satellites in space that they are reducing global warming — not just by providing essential data about emissions, but by blocking radiation from the sun.
So why do we keep launching more?
Despite the small army of probes in orbit, and an increasingly large fleet of methane-detecting planes and drones closer to the ground, our ability to identify where methane is leaking into the atmosphere is still far too limited. Like carbon dioxide, sources of methane around the world are numerous and diffuse. They can be natural, like wetlands and oceans, or man-made, like decomposing manure on farms, rotting waste in landfills, and leaks from oil and gas operations.
There are big, unanswered questions about methane, about which sources are driving the most emissions, and consequently, about tackling climate change, that scientists say MethaneSAT will help solve. But even then, some say we’ll need to launch even more instruments into space to really get to the bottom of it all.
Measuring methane from space only began in 2009 with the launch of the Greenhouse Gases Observing Satellite, or GOSAT, by Japan’s Aerospace Exploration Agency. Previously, most of the world’s methane detectors were on the ground in North America. GOSAT enabled scientists to develop a more geographically diverse understanding of major sources of methane to the atmosphere.
Soon after, the Environmental Defense Fund, which led the development of MethaneSAT, began campaigning for better data on methane emissions. Through its own, on-the-ground measurements, the group discovered that the Environmental Protection Agency’s estimates of leaks from U.S. oil and gas operations were totally off. EDF took this as a call to action. Because methane has such a strong warming effect, but also breaks down after about a decade in the atmosphere, curbing methane emissions can slow warming in the near-term.
“Some call it the low hanging fruit,” Steven Hamburg, the chief scientist at EDF leading the MethaneSAT project, said during a press conference on Friday. “I like to call it the fruit lying on the ground. We can really reduce those emissions and we can do it rapidly and see the benefits.”
But in order to do that, we need a much better picture than what GOSAT or other satellites like it can provide.
In the years since GOSAT launched, the field of methane monitoring has exploded. Today, there are two broad categories of methane instruments in space. Area flux mappers, like GOSAT, take global snapshots. They can show where methane concentrations are generally higher, and even identify exceptionally large leaks — so-called “ultra-emitters.” But the vast majority of leaks, big and small, are invisible to these instruments. Each pixel in a GOSAT image is 10 kilometers wide. Most of the time, there’s no way to zoom into the picture and see which facilities are responsible.
Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., Guanter, L., Kelley, J., McKeever, J., Ott, L. E., Poulter, B., Qu, Z., Thorpe, A. K., Worden, J. R., and Duren, R. M.: Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane, Atmos. Chem. Phys., 22, 9617–9646, https://doi.org/10.5194/acp-22-9617-2022, 2022.
Point source imagers, on the other hand, take much smaller photos that have much finer resolution, with pixel sizes down to just a few meters wide. That means they provide geographically limited data — they have to be programmed to aim their lenses at very specific targets. But within each image is much more actionable data.
For example, GHGSat, a private company based in Canada, operates a constellation of 12 point-source satellites, each one about the size of a microwave oven. Oil and gas companies and government agencies pay GHGSat to help them identify facilities that are leaking. Jean-Francois Gauthier, the director of business development at GHGSat, told me that each image taken by one of their satellites is 12 kilometers wide, but the resolution for each pixel is 25 meters. A snapshot of the Permian Basin, a major oil and gas producing region in Texas, might contain hundreds of oil and gas wells, owned by a multitude of companies, but GHGSat can tell them apart and assign responsibility.
“We’ll see five, 10, 15, 20 different sites emitting at the same time and you can differentiate between them,” said Gauthier. “You can see them very distinctly on the map and be able to say, alright, that’s an unlit flare, and you can tell which company it is, too.” Similarly, GHGSat can look at a sprawling petrochemical complex and identify the exact tank or pipe that has sprung a leak.
But between this extremely wide-angle lens, and the many finely-tuned instruments pointing at specific targets, there’s a gap. “It might seem like there’s a lot of instruments in space, but we don’t have the kind of coverage that we need yet, believe it or not,” Andrew Thorpe, a research technologist at NASA’s Jet Propulsion Laboratory told me. He has been working with the nonprofit Carbon Mapper on a new constellation of point source imagers, the first of which is supposed to launch later this year.
The reason why we don’t have enough coverage has to do with the size of the existing images, their resolution, and the amount of time it takes to get them. One of the challenges, Thorpe said, is that it’s very hard to get a continuous picture of any given leak. Oil and gas equipment can spring leaks at random. They can leak continuously or intermittently. If you’re just getting a snapshot every few weeks, you may not be able to tell how long a leak lasted, or you might miss a short but significant plume. Meanwhile, oil and gas fields are also changing on a weekly basis, Joost de Gouw, an atmospheric chemist at the University of Colorado, Boulder, told me. New wells are being drilled in new places — places those point-source imagers may not be looking at.
“There’s a lot of potential to miss emissions because we’re not looking,” he said. “If you combine that with clouds — clouds can obscure a lot of our observations — there are still going to be a lot of times when we’re not actually seeing the methane emissions.”
De Gouw hopes MethaneSAT will help resolve one of the big debates about methane leaks. Between the millions of sites that release small amounts of methane all the time, and the handful of sites that exhale massive plumes infrequently, which is worse? What fraction of the total do those bigger emitters represent?
Paul Palmer, a professor at the University of Edinburgh who studies the Earth’s atmospheric composition, is hopeful that it will help pull together a more comprehensive picture of what’s driving changes in the atmosphere. Around the turn of the century, methane levels pretty much leveled off, he said. But then, around 2007, they started to grow again, and have since accelerated. Scientists have reached different conclusions about why.
“There’s lots of controversy about what the big drivers are,” Palmer told me. Some think it’s related to oil and gas production increasing. Others — and he’s in this camp — think it’s related to warming wetlands. “Anything that helps us would be great.”
MethaneSAT sits somewhere between the global mappers and point source imagers. It will take larger images than GHGSat, each one 200 kilometers wide, which means it will be able to cover more ground in a single day. Those images will also contain finer detail about leaks than GOSAT, but they won’t necessarily be able to identify exactly which facilities the smaller leaks are coming from. Also, unlike with GHGSat, MethaneSAT’s data will be freely available to the public.
EDF, which raised $88 million for the project and spent nearly a decade working on it, says that one of MethaneSAT’s main strengths will be to provide much more accurate basin-level emissions estimates. That means it will enable researchers to track the emissions of the entire Permian Basin over time, and compare it with other oil and gas fields in the U.S. and abroad. Many countries and companies are making pledges to reduce their emissions, and MethaneSAT will provide data on a relevant scale that can help track progress, Maryann Sargent, a senior project scientist at Harvard University who has been working with EDF on MethaneSAT, told me.
Courtesy of MethaneSAT
It could also help the Environmental Protection Agency understand whether its new methane regulations are working. It could help with the development of new standards for natural gas being imported into Europe. At the very least, it will help oil and gas buyers differentiate between products associated with higher or lower methane intensities. It will also enable fossil fuel companies who measure their own methane emissions to compare their performance to regional averages.
MethaneSAT won’t be able to look at every source of methane emissions around the world. The project is limited by how much data it can send back to Earth, so it has to be strategic. Sargent said they are limiting data collection to 30 targets per day, and in the near term, those will mostly be oil and gas producing regions. They aim to map emissions from 80% of global oil and gas production in the first year. The outcome could be revolutionary.
“We can look at the entire sector with high precision and track those emissions, quantify them and track them over time. That’s a first for empirical data for any sector, for any greenhouse gas, full stop,” Hamburg told reporters on Friday.
But this still won’t be enough, said Thorpe of NASA. He wants to see the next generation of instruments start to look more closely at natural sources of emissions, like wetlands. “These types of emissions are really, really important and very poorly understood,” he said. “So I think there’s a heck of a lot of potential to work towards the sectors that have been really hard to do with current technologies.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
And more of this week’s top renewable energy fights across the country.
1. Otsego County, Michigan – The Mitten State is proving just how hard it can be to build a solar project in wooded areas. Especially once Fox News gets involved.
2. Atlantic County, New Jersey – Opponents of offshore wind in Atlantic City are trying to undo an ordinance allowing construction of transmission cables that would connect the Atlantic Shores offshore wind project to the grid.
3. Benton County, Washington – Sorry Scout Clean Energy, but the Yakima Nation is coming for Horse Heaven.
Here’s what else we’re watching right now…
In Connecticut, officials have withdrawn from Vineyard Wind 2 — leading to the project being indefinitely shelved.
In Indiana, Invenergy just got a rejection from Marshall County for special use of agricultural lands.
In Kansas, residents in Dickinson County are filing legal action against county commissioners who approved Enel’s Hope Ridge wind project.
In Kentucky, a solar project was actually approved for once – this time for the East Kentucky Power Cooperative.
In North Carolina, Davidson County is getting a solar moratorium.
In Pennsylvania, the town of Unity rejected a solar project. Elsewhere in the state, the developer of the Newton 1 solar project is appealing their denial.
In South Carolina, a state appeals court has upheld the rejection of a 2,300 acre solar project proposed by Coastal Pine Solar.
In Washington State, Yakima County looks like it’ll keep its solar moratorium in place.
And more of this week’s top policy news around renewables.
1. Trump’s Big Promise – Our nation’s incoming president is now saying he’ll ban all wind projects on Day 1, an expansion of his previous promise to stop only offshore wind.
2. The Big Nuclear Lawsuit – Texas and Utah are suing to kill the Nuclear Regulatory Commission’s authority to license small modular reactors.
3. Biden’s parting words – The Biden administration has finished its long-awaited guidance for the IRA’s tech-neutral electricity credit (which barely changed) and hydrogen production credit.
A conversation with J. Timmons Roberts, executive director of Brown University’s Climate Social Science Network
This week’s interview is with Brown University professor J. Timmons Roberts. Those of you familiar with the fight over offshore wind may not know Roberts by name, but you’re definitely familiar with his work: He and his students have spearheaded some of the most impactful research conducted on anti-offshore wind opposition networks. This work is a must-read for anyone who wants to best understand how the anti-renewables movement functions and why it may be difficult to stop it from winning out.
So with Trump 2.0 on the verge of banning offshore wind outright, I decided to ask Roberts what he thinks developers should be paying attention to at this moment. The following interview has been lightly edited for clarity.
Is the anti-renewables movement a political force the country needs to reckon with?
Absolutely. In my opinion it’s been unfortunate for the environmental groups, the wind development, the government officials, climate scientists – they’ve been unwilling to engage directly with those groups. They want to keep a very positive message talking about the great things that come with wind and solar. And they’ve really left the field open as a result.
I think that as these claims sit there unrefuted and naive people – I don’t mean naive in a negative sense but people who don’t know much about this issue – are only hearing the negative spin about renewables. It’s a big problem.
When you say renewables developers aren’t interacting here – are you telling me the wind industry is just letting these people run roughshod?
I’ve seen no direct refutation in those anti-wind Facebook groups, and there’s very few environmentalists or others. People are quite afraid to go in there.
But even just generally. This vast network you’ve tracked – have you seen a similar kind of counter mobilization on the part of those who want to build these wind farms offshore?
There’s some mobilization. There’s something called the New England for Offshore Wind coalition. There’s some university programs. There’s some other oceanographic groups, things like that.
My observation is that they’re mostly staff organizations and they’re very cautious. They’re trying to work as a coalition. And they’re going as slow as their most cautious member.
As someone who has researched these networks, what are you watching for in the coming year? Under the first year of Trump 2.0?
Yeah I mean, channeling my optimistic and Midwestern dad, my thought is that there may be an overstepping by the Trump administration and by some of these activists. The lack of viable alternative pathways forward and almost anti-climate approaches these groups are now a part of can backfire for them. Folks may say, why would I want to be supportive of your group if you’re basically undermining everything I believe in?
What do you think developers should know about the research you have done into these networks?
I think it's important for deciding bodies and the public, the media and so on, to know who they’re hearing when they hear voices at a public hearing or in a congressional field hearing. Who are the people representing? Whose voice are they advancing?
It’s important for these actors that want to advance action on climate change and renewables to know what strategies and the tactics are being used and also know about the connections.
One of the things you pointed out in your research is that, yes, there are dark money groups involved in this movement and there are outside figures involved, but a lot of this sometimes is just one person posts something to the internet and then another person posts something to the internet.
Does that make things harder when it comes to addressing the anti-renewables movement?
Absolutely. Social media’s really been devastating for developing science and informed, rational public policymaking. It’s so easy to create a conspiracy and false information and very slanted, partial information to shoot holes at something as big as getting us off of fossil fuels.
Our position has developed as we understand that indeed these are not just astro-turf groups created by some far away corporation but there are legitimate concerns – like fishing, where most of it is based on certainty – and then there are these sensationalized claims that drive fears. That fear is real. And it’s unfortunate.
Anything else you’d really like to tell our readers?
I didn’t really choose this topic. I feel like it really got me. It was me and four students sitting in my conference room down the hall and I said, have you heard about this group that just started here in Rhode Island that’s making these claims we should investigate? And students were super excited about it and have really been the leaders.