Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

Why Are There So Many Methane Satellites?

Over a dozen methane satellites are now circling the Earth — and more are on the way.

MethaneSAT.
Heatmap Illustration/MethaneSAT LLC

On Monday afternoon, a satellite the size of a washing machine hitched a ride on a SpaceX rocket and was launched into orbit. MethaneSAT, as the new satellite is called, is the latest to join more than a dozen other instruments currently circling the Earth monitoring emissions of the ultra-powerful greenhouse gas methane. But it won’t be the last. Over the next several months, at least two additional methane-detecting satellites from the U.S. and Japan are scheduled to join the fleet.

There’s a joke among scientists that there are so many methane-detecting satellites in space that they are reducing global warming — not just by providing essential data about emissions, but by blocking radiation from the sun.

So why do we keep launching more?

Despite the small army of probes in orbit, and an increasingly large fleet of methane-detecting planes and drones closer to the ground, our ability to identify where methane is leaking into the atmosphere is still far too limited. Like carbon dioxide, sources of methane around the world are numerous and diffuse. They can be natural, like wetlands and oceans, or man-made, like decomposing manure on farms, rotting waste in landfills, and leaks from oil and gas operations.

There are big, unanswered questions about methane, about which sources are driving the most emissions, and consequently, about tackling climate change, that scientists say MethaneSAT will help solve. But even then, some say we’ll need to launch even more instruments into space to really get to the bottom of it all.

Measuring methane from space only began in 2009 with the launch of the Greenhouse Gases Observing Satellite, or GOSAT, by Japan’s Aerospace Exploration Agency. Previously, most of the world’s methane detectors were on the ground in North America. GOSAT enabled scientists to develop a more geographically diverse understanding of major sources of methane to the atmosphere.

Soon after, the Environmental Defense Fund, which led the development of MethaneSAT, began campaigning for better data on methane emissions. Through its own, on-the-ground measurements, the group discovered that the Environmental Protection Agency’s estimates of leaks from U.S. oil and gas operations were totally off. EDF took this as a call to action. Because methane has such a strong warming effect, but also breaks down after about a decade in the atmosphere, curbing methane emissions can slow warming in the near-term.

“Some call it the low hanging fruit,” Steven Hamburg, the chief scientist at EDF leading the MethaneSAT project, said during a press conference on Friday. “I like to call it the fruit lying on the ground. We can really reduce those emissions and we can do it rapidly and see the benefits.”

But in order to do that, we need a much better picture than what GOSAT or other satellites like it can provide.

In the years since GOSAT launched, the field of methane monitoring has exploded. Today, there are two broad categories of methane instruments in space. Area flux mappers, like GOSAT, take global snapshots. They can show where methane concentrations are generally higher, and even identify exceptionally large leaks — so-called “ultra-emitters.” But the vast majority of leaks, big and small, are invisible to these instruments. Each pixel in a GOSAT image is 10 kilometers wide. Most of the time, there’s no way to zoom into the picture and see which facilities are responsible.

Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., Guanter, L., Kelley, J., McKeever, J., Ott, L. E., Poulter, B., Qu, Z., Thorpe, A. K., Worden, J. R., and Duren, R. M.: Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane, Atmos. Chem. Phys., 22, 9617–9646, https://doi.org/10.5194/acp-22-9617-2022, 2022.

Point source imagers, on the other hand, take much smaller photos that have much finer resolution, with pixel sizes down to just a few meters wide. That means they provide geographically limited data — they have to be programmed to aim their lenses at very specific targets. But within each image is much more actionable data.

For example, GHGSat, a private company based in Canada, operates a constellation of 12 point-source satellites, each one about the size of a microwave oven. Oil and gas companies and government agencies pay GHGSat to help them identify facilities that are leaking. Jean-Francois Gauthier, the director of business development at GHGSat, told me that each image taken by one of their satellites is 12 kilometers wide, but the resolution for each pixel is 25 meters. A snapshot of the Permian Basin, a major oil and gas producing region in Texas, might contain hundreds of oil and gas wells, owned by a multitude of companies, but GHGSat can tell them apart and assign responsibility.

“We’ll see five, 10, 15, 20 different sites emitting at the same time and you can differentiate between them,” said Gauthier. “You can see them very distinctly on the map and be able to say, alright, that’s an unlit flare, and you can tell which company it is, too.” Similarly, GHGSat can look at a sprawling petrochemical complex and identify the exact tank or pipe that has sprung a leak.

But between this extremely wide-angle lens, and the many finely-tuned instruments pointing at specific targets, there’s a gap. “It might seem like there’s a lot of instruments in space, but we don’t have the kind of coverage that we need yet, believe it or not,” Andrew Thorpe, a research technologist at NASA’s Jet Propulsion Laboratory told me. He has been working with the nonprofit Carbon Mapper on a new constellation of point source imagers, the first of which is supposed to launch later this year.

The reason why we don’t have enough coverage has to do with the size of the existing images, their resolution, and the amount of time it takes to get them. One of the challenges, Thorpe said, is that it’s very hard to get a continuous picture of any given leak. Oil and gas equipment can spring leaks at random. They can leak continuously or intermittently. If you’re just getting a snapshot every few weeks, you may not be able to tell how long a leak lasted, or you might miss a short but significant plume. Meanwhile, oil and gas fields are also changing on a weekly basis, Joost de Gouw, an atmospheric chemist at the University of Colorado, Boulder, told me. New wells are being drilled in new places — places those point-source imagers may not be looking at.

“There’s a lot of potential to miss emissions because we’re not looking,” he said. “If you combine that with clouds — clouds can obscure a lot of our observations — there are still going to be a lot of times when we’re not actually seeing the methane emissions.”

De Gouw hopes MethaneSAT will help resolve one of the big debates about methane leaks. Between the millions of sites that release small amounts of methane all the time, and the handful of sites that exhale massive plumes infrequently, which is worse? What fraction of the total do those bigger emitters represent?

Paul Palmer, a professor at the University of Edinburgh who studies the Earth’s atmospheric composition, is hopeful that it will help pull together a more comprehensive picture of what’s driving changes in the atmosphere. Around the turn of the century, methane levels pretty much leveled off, he said. But then, around 2007, they started to grow again, and have since accelerated. Scientists have reached different conclusions about why.

“There’s lots of controversy about what the big drivers are,” Palmer told me. Some think it’s related to oil and gas production increasing. Others — and he’s in this camp — think it’s related to warming wetlands. “Anything that helps us would be great.”

MethaneSAT sits somewhere between the global mappers and point source imagers. It will take larger images than GHGSat, each one 200 kilometers wide, which means it will be able to cover more ground in a single day. Those images will also contain finer detail about leaks than GOSAT, but they won’t necessarily be able to identify exactly which facilities the smaller leaks are coming from. Also, unlike with GHGSat, MethaneSAT’s data will be freely available to the public.

EDF, which raised $88 million for the project and spent nearly a decade working on it, says that one of MethaneSAT’s main strengths will be to provide much more accurate basin-level emissions estimates. That means it will enable researchers to track the emissions of the entire Permian Basin over time, and compare it with other oil and gas fields in the U.S. and abroad. Many countries and companies are making pledges to reduce their emissions, and MethaneSAT will provide data on a relevant scale that can help track progress, Maryann Sargent, a senior project scientist at Harvard University who has been working with EDF on MethaneSAT, told me.

Courtesy of MethaneSAT

It could also help the Environmental Protection Agency understand whether its new methane regulations are working. It could help with the development of new standards for natural gas being imported into Europe. At the very least, it will help oil and gas buyers differentiate between products associated with higher or lower methane intensities. It will also enable fossil fuel companies who measure their own methane emissions to compare their performance to regional averages.

MethaneSAT won’t be able to look at every source of methane emissions around the world. The project is limited by how much data it can send back to Earth, so it has to be strategic. Sargent said they are limiting data collection to 30 targets per day, and in the near term, those will mostly be oil and gas producing regions. They aim to map emissions from 80% of global oil and gas production in the first year. The outcome could be revolutionary.

“We can look at the entire sector with high precision and track those emissions, quantify them and track them over time. That’s a first for empirical data for any sector, for any greenhouse gas, full stop,” Hamburg told reporters on Friday.

But this still won’t be enough, said Thorpe of NASA. He wants to see the next generation of instruments start to look more closely at natural sources of emissions, like wetlands. “These types of emissions are really, really important and very poorly understood,” he said. “So I think there’s a heck of a lot of potential to work towards the sectors that have been really hard to do with current technologies.”

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Electric Vehicles

Tesla Is Now a Culture War Totem (Plus Some AI)

The EV-maker is now a culture war totem, plus some AI.

A Tesla taking an exit.
Heatmap Illustration/Getty Images, Tesla

During Alan Greenspan’s decade-plus run leading the Federal Reserve, investors and the financial media were convinced that there was a “Greenspan put” underlying the stock market. The basic idea was that if the markets fell too much or too sharply, the Fed would intervene and put a floor on prices analogous to a “put” option on a stock, which allows an investor to sell a stock at a specific price, even if it’s currently selling for less. The existence of this put — which was, to be clear, never a stated policy — was thought to push stock prices up, as it gave investors more confidence that their assets could only fall so far.

While current Fed Chair Jerome Powell would be loath to comment on a specific volatile security, we may be seeing the emergence of a kind of sociopolitical put for Tesla, one coming from the White House and conservative media instead of the Federal Reserve.

Keep reading...Show less
Green
Climate Tech

Climate Tech Is Facing a ‘Moment of Truth’

The uncertainty created by Trump’s erratic policymaking could not have come at a worse time for the industry.

Cliimate tech.
Heatmap Illustration/Getty Images

This is the second story in a Heatmap series on the “green freeze” under Trump.

Climate tech investment rode to record highs during the Biden administration, supercharged by a surge in ESG investing and net-zero commitments, the passage of the Infrastructure Investment and Jobs Act and Inflation Reduction Act, and at least initially, low interest rates. Though the market had already dropped somewhat from its recent peak, climate tech investors told me that the Trump administration is now shepherding in a detrimental overcorrection. The president’s fossil fuel-friendly rhetoric, dubiously legal IIJA and IRA funding freezes, and aggressive tariffs, have left climate tech startups in the worst possible place: a state of deep uncertainty.

Keep reading...Show less
Blue
Energy

AM Briefing: Overheard at CERAWeek

On the energy secretary’s keynote, Ontario’s electricity surcharge, and record solar power

CERAWeek Loves Chris Wright
Heatmap Illustration/Getty Images

Current conditions: Critical fire weather returns to New Mexico and Texas and will remain through Saturday • Sharks have been spotted in flooded canals along Australia’s Gold Coast after Cyclone Alfred dropped more than two feet of rain • A tanker carrying jet fuel is still burning after it collided with a cargo ship in the North Sea yesterday. The ship was transporting toxic chemicals that could devastate ecosystems along England’s northeast coast.

THE TOP FIVE

1. Chris Wright says climate change is a ‘side effect of building the modern world’

In a keynote speech at the energy industry’s annual CERAWeek conference, Energy Secretary Chris Wright told executives and policymakers that the Trump administration sees climate change as “a side effect of building the modern world,” and said that “everything in life involves trade-offs." He pledged to “end the Biden administration’s irrational, quasi-religious policies on climate change” and insisted he’s not a climate change denier, but rather a “climate realist.” According toThe New York Times, “Mr. Wright’s speech was greeted with enthusiastic applause.” Wright also reportedly told fossil fuel bosses he intended to speed up permitting for their projects.

Keep reading...Show less
Yellow