You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
And it involves dumping 9,000 tons of fancy sand off the North Carolina coast.
When visitors flock to the beach this summer in Duck, North Carolina, a small, 6-mile long town on the Outer Banks, they may catch a glimpse of a climate experiment happening among the waves.
About 1,500 feet offshore, a company called Vesta will be pouring 9,000 tons of sand into the sea and watching carefully to see what happens next. This finely crushed rock will not be of the typical Outer Banks variety. Instead, it will consist of a mineral called olivine, which should enhance the ocean’s ability to absorb carbon from the atmosphere — and lock it away for thousands of years.
That the experiment can go ahead at all marks a milestone for ocean-based carbon removal, a category of climate solutions that prod the ocean into sucking up more CO2. A big obstacle for the field has been the lack of a legal framework for permitting real-world trials — U.S. laws governing the ocean weren’t written with the prospect of intentionally altering its chemistry to address an existential environmental crisis in mind. But after an 18-month interagency review process, Vesta is now the first company with a federal permit from the U.S. Army Corps of Engineers to deploy a stand-alone carbon removal test in U.S. waters.
Though 9,000 tons may sound like a lot, this is still a relatively small-scale pilot designed to assess how effective the olivine is in driving carbon removal, as well as observe any other changes in the environment and develop methods for tracking the movement of the sand in the water. These kinds of field trials are essential to establishing which marine carbon removal methods have potential and which don’t.
“We want to measure everything very carefully at this stage and make sure that we are fully understanding the safety profile and the carbon removal data from this project,” Tom Green, Vesta’s CEO, told me. But the company has big aspirations. If things go well, he said, maybe olivine could be used for beach nourishment projects all over the country, where sand is deposited along the shore to address erosion. “Imagine the carbon removal possibilities if we did that with olivine sand,” he said. “We could quickly become the largest technique for permanent carbon removal that's out there.”
Scientists generally agree that stopping global warming this century will require both reducing emissions and taking carbon out of the atmosphere. The sheer size of the ocean and its natural ability to store vast amounts of carbon make it an enticing place to look for solutions.
Dumping thousands of tons of non-native sand into the ocean may not sound like the most convincing option — especially since the ocean is already “experiencing unprecedented destabilizing changes through massive warming, acidification, deoxygenation, and a host of resulting effects,” according to an open letter published last year and signed by hundreds of scientists. However, despite this — or perhaps because of it — the letter called for accelerating research to find out whether any of the proposed ocean-based carbon removal methods, including releasing large quantities of ground olivine, are viable.
Olivine is an abundant mineral with special properties. When it comes into contact with seawater, it drives a chemical reaction that converts CO2 gas into more stable forms of carbon that can’t readily return to the atmosphere. This in turn creates a deficit of CO2 in the surface waters, which triggers the ocean to take up more from the atmosphere in order to maintain equilibrium.
Reactions like this are happening constantly in the ocean already, but on very slow timescales. Vesta’s innovation is to speed up the process by crushing and deploying olivine strategically where the wind and waves can most efficiently weather it away.
The site of an earlier Vesta test project in the Hamptons.Courtesy of Vesta
Olivine could address the harms of CO2 pollution in more ways than one. The ocean already absorbs about 30% of the carbon released into the atmosphere each year, which has made the water more acidic and less hospitable to many of its inhabitants. But when olivine triggers these reactions, it can act as a sort of antacid. This approach to carbon removal is also known as enhancing the ocean’s alkalinity and olivine is just one of a number of different ways to do it. Another company called Planetary is experimenting with adding a different mineral, magnesium hydroxide, to the ocean. Ebb Carbon, on the other hand, is sucking up seawater and running it through a membrane to increase its alkalinity, before returning it to the tides.
Both already have field trials up and running, but instead of trying to conduct stand-alone experiments in the open ocean they’ve hitched onto existing ocean dumping permits. Ebb, for example, has set up at the Pacific Northwest National Laboratory’s facility in Sequim, Washington, where it is releasing treated seawater into wastewater that flows into the bay. Similarly, Planetary is conducting pilot projects at the wastewater outflows of a water treatment facility and power plant in Canada. Other ocean carbon removal companies, such as Los Angeles-based Captura, have opted to move abroad for their early projects and avoid the U.S. permitting puzzle altogether.
Vesta went to Duck because it is among the most studied stretches of coastline in the country. The town is home to an Army Corps coastal field research center known for its long-term data set on the surrounding waters. “Few locations on the globe provide a better archive of wave, water, bathymetry and other forces that shape nearshore conditions,” according to the Army Corps’ website. (“Bathymetry” is the topography of the seafloor.) That means Vesta will be able to get a more accurate picture of any changes the olivine is responsible for.
When Drew Havens, the town manager in Duck, first heard about Vesta’s plans, he was skeptical. “You're dumping something into the ocean, people automatically go to, well, is it going to harm humans? Is it going to be harmful to wildlife or other living organisms?” he told me.
Though some in the town are still nervous, Havens said he has become more comfortable with the idea as the project has been rigorously reviewed by environmental protection regulators at the federal and state level. Vesta’s scientists also engaged with the town council, did an open house for members of the public, and have generally invited questions and open dialogue.
Just because regulators have determined that the risks of this pilot project are low, however, doesn’t mean using olivine for carbon removal is risk-free. For one, the rock has to be mined — in this case, from a quarry in Norway, although it is also found in the U.S. — and transported to the project site. That’s likely to produce some environmental impacts, though the company estimates that the project will ultimately remove about 10 times more CO2 from the atmosphere than the emissions associated with running the experiment, including the mining and shipping of olivine.
But the biggest risk with mined olivine is that it contains nickel, said Jaime Palter, an associate professor of oceanography at the University of Rhode Island who has no affiliation with Vesta. Nickel can act as both a nutrient and a toxin for phytoplankton, she told me, so it's important to study whether putting olivine in the ocean will result in adverse effects.
Vesta has been closely examining that possibility. In fact, the project in Duck will be the company’s second U.S. field trial. In the summer of 2022, Vesta got permission from the town of Southampton in Long Island to spread olivine on the beach as part of a larger sand replenishment project that was already in the works. Vesta’s scientists worked with local academic partners at Cornell, SUNY Stony Brook, and Hamilton College to do extensive monitoring both before and after the sand was placed, collecting data on more than 20 indicators of the effects on the water, sediment, and ecology.
The company has since published two annual reports on the project. It is still awaiting analysis of many of the samples, but so far, the results have been promising, Green said. There has been no sign of trace metal accumulation in Eastern Oysters, a species known to accumulate pollutants from their environment, for instance. There was also no significant difference in water quality between control areas and the sites with olivine, and trace metal concentrations were below the relevant EPA water quality guidelines. The area’s benthic macrofauna — critters like clams and small crustaceans that live on or near the seafloor — were as abundant and various as before.
Notably, the tests also showed evidence of an increase in alkalinity in the waters of the olivine-treated area, which is the key reaction that leads to carbon removal. But Green said there’s more work to be done in terms of calculating where and when removal may have happened.
There’s also more work to be done to understand the effects of olivine in different environments, which brings us back to Duck. There, it will be deposited in 25-foot deep water instead of on the beach, helping Vesta to further refine its data and measurement methods. The plan is to continue testing and collecting data at the site for at least two years. The company declined to comment on the budget for the project. Vesta is funded primarily by venture capital investors but also raises money for research through an affiliated nonprofit.
Vesta may have been the first to get a federal permit to run a marine carbon removal test, but it definitely won’t be the last. Nikhil Neelakantan, a senior project manager at Ocean Visions, which is a nonprofit that advocates for ocean-based climate solutions, told me there are a number of other domestic projects in the pipeline, including more than a dozen government-funded research projects. The White House also recently set up a marine carbon removal fast track action committee with the mandate to create recommendations for policy, permitting, and regulatory standards for both research and implementation.
Neelakantan said there is work to do on clarifying the role of different agencies in regulating ocean carbon removal, and which laws apply to each method.
“This is an early first step, and it's exciting to see that it's finally going to come to fruition,” he said, of Vesta’s project in Duck. “I think there's momentum with this federal task force. It's going to be the first of many others that will happen soon.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Congress has left well enough alone, but that doesn’t mean funds are necessarily flowing.
The Trump administration and Republicans in Congress have done a pretty good job working in tandem to tear down American climate policy. But one key set of clean energy programs has remained relatively unscathed.
The Inflation Reduction Act’s two home energy efficiency rebate programs — one for carbon-cutting appliances and one for whole-home efficiency upgrades — have not been targeted for agency termination or Congressional repeal, or at least not to date.
Still, that doesn’t mean they haven’t run into roadblocks. The rebate programs are paid for by the federal government and administered by states, which have to apply for the funding and stand up programs to disburse it. While the Biden administration had obligated funding to all 49 states that applied for it, only a small handful of states had fully executed contracts enabling them to use the money by the time Biden left office. The rest are now being stonewalled by the Department of Energy, which is still undertaking a “review” of Biden-era funding decisions. Some officials are wondering whether they’ll ever get their applications approved.
Vermont, for example, is stuck in a holding pattern for its Home Electrification and Appliance Rebates, or HEAR program. HEAR provides low- and moderate-income households cash back on appliances like heat pumps and induction stoves, as well as on insulation, air sealing, and electrical upgrades. The Biden administration “conditionally” approved Vermont’s $58 million application, which focused almost exclusively on heat pumps, according to Melissa Bailey, the director of efficiency and energy resources at the Vermont Department of Public Service. It’s not clear that anything in the application is deficient or needs to be changed, she told me. But the new administration has been unresponsive about next steps.
“Candidly, we were concerned that the funding may just not come through at all, so we essentially have paused our planning efforts,” Bailey said.
Vermont is fortunate in that its application for the other IRA rebate program, known as Home Efficiency Rebates and often referred to as HOMES, was finalized before Biden left office. HOMES offers rebates for upgrades based on the amount of energy the upgrades saved, rather than for specific purchases, and Vermont plans to funnel its $29 million HOMES funding into an existing weatherization program. The state has been able to get administrative expenses reimbursed, but it hasn’t technically launched the program yet, as it’s still waiting on the DOE to approve the modeling software the state plans to use to estimate energy savings.
“DOE is very actively engaging with us on the HOMES application as we move forward,” she said. But on HEAR, which is further back in the approval process, the administration has been much more cagey. “Anytime we bring up HEAR, verbally on calls and email, it’s just this kind of standard language that is, thank you for your patience, we’ll let you know when we’re ready to talk about it.”
By combing through public data and reaching out to state energy offices, I found that just five states plus the District of Columbia have been able to launch both rebate programs. Seven additional states have launched HEAR, but their HOMES applications are in various stages of approvals. But 36 states, plus five U.S. territories, have not launched either program, almost three years after the passage of the IRA.
The Department of Energy did not respond to my questions about the rebate programs. But the agency has been reviewing all Biden-era funding decisions. On June 10, Secretary of Energy Chris Wright told the House Committee on Energy and Commerce that his review was ongoing, but didn’t give a clear indication of how long it would take. “We got a process in place, we have a team in place, we’re getting through maybe a dozen or more projects a week, maybe more than a dozen projects a week,” he said. “And so by the end of this summer or middle of this summer we’re going to have clarity on most of the big projects.”
Since neither the reconciliation bill nor Trump’s budget nor his requested rescissions have threatened the rebate programs, there’s no reason to suspect that the DOE will try to claw back the obligated funds. But the funding review and soft pause on applications has created lingering uncertainty.
Meanwhile, Republicans in Congress are working to strip away other funding for energy efficiency. Both the House and Senate have proposed repealing the federal energy efficiency home improvement tax credit — which has existed in some form since 2005 — as part of Trump’s One, Big Beautiful Bill.
The program helps homeowners reduce their energy use, save money, and make their buildings more comfortable. It also eases strain on the grid. The latest iteration offered 30% off the cost of Energy Star-rated windows and doors, insulation, air sealing, heat pumps, and new electrical panels, up to $3,200 per year.
If Trump signs off on terminating this tax credit and the tax credit for rooftop solar, which also seems doomed, the IRA’s rebate programs will be some of the only subsidies left in many states to help Americans afford home improvements that have high up-front costs but long-term financial benefits.
But the termination of the tax credits could also have a negative impact on the rebate programs. That’s what Brian Kealoha, the Chief Growth and Impact Officer at VEIC, a nonprofit that’s working with seven states and the District of Columbia on their IRA rebate programs, is worried about. “The return on investment is just not going to be attractive enough” for heat pumps, he told me. “Unless you’re passionate about decarbonization … how much participation are you going to get without making the return look good?”
Some of the states that have already launched their IRA rebates were able to move quickly because they had pre-existing energy efficiency programs that they could funnel the funding into, rather than having to develop entirely new initiatives. New York, for example, which launched the first HEAR program in the country, put about $40 million of its $158 million award into its Empower+ program, which already provided incentives to low- and moderate-income New Yorkers for upgrades like insulation and heat pumps. Since then, the program has “supported nearly 5,700 projects, yielding $1.82 million in total energy bill savings,” a NYSERDA spokesperson told me.
The state later launched a second program in November offering rebates for heat pump clothes dryers. That has approved 1,100 applicants so far, 350 of whom have redeemed the rebate.
California, similarly, has launched its appliance rebate program in phases, with only the first phase of funding for heat pumps operating so far. The program is already fully subscribed for single family homes, having approved more than 4,000 applications totaling more than $32 million, but is still accepting applications for multifamily buildings. The California Energy Commission told me the second phase is still under development, and that staff are also working on implementation plans for the HOMES program, which they will submit to DOE later this summer.
Other states have taken the opposite approach, choosing to target projects that were not already served by existing programs. Maine already had a successful rebate for homeowners who switch from fossil fuel heating to heat pumps, for example, so it created two new programs using HEAR funding to get heat pumps to other markets — new multifamily buildings that serve low-income households and manufactured homes, often called mobile homes. To date, it has received 12 multifamily applications and approved five, providing up to $2.5 million to install heat pumps in more than 300 low-income units. It’s also awarded an average of $10,500 to 19 manufactured homeowners to switch their propane or kerosene heating systems to heat pumps.
Afton Vigue, the communications manager for the Governor’s Energy Office, told me in an email that Maine’s application for the HOMES program has been “conditionally awarded” and it is “awaiting guidance from the U.S. Department of Energy” but doesn’t know when that will come.
But it seems that everywhere these programs are operating, they have seen high demand.
Georgia was one of the first states to launch both HEAR and HOMES rebates. As of June 12, the state had paid out 178 HEAR rebate applications totaling $1.6 million, and had 72 more in the pipeline, Shane Hix, the director of public affairs at the Georgia Environmental Finance Authority, told me. Its HOMES program had awarded 93 households totaling $922,500, with 89 applications pending.
North Carolina is also operating both programs, but is rolling them out one county at a time, starting in “high energy burden, disadvantaged communities,” Sascha Medina, the Public Information Officer at the State Energy Office told me. Between the launch in January and June 13, the state had received more than 4,100 applications, she said.
The good news for those living in places that are stuck in limbo is that the funding for the rebate programs was authorized through 2031. As long as Chris Wright doesn’t decide the rebates are a waste of taxpayer dollars, and he ultimately resumes approvals for the programs, you’ll still have a number of years to take advantage.
On a new report from the Energy Institute, high-stakes legislating, and accelerating nuclear development
Current conditions: Monsoon rains hit the southwestern U.S., with flash floods in Roswell, New Mexico, and flooding in El Paso, Texas • The Forsyth Fire in Utah has spread to 9,000 acres and is only 5% contained • While temperatures are falling into the low 80s in much of the Northeast, a high of 96 degrees Fahrenheit is forecast for Washington, D.C., where Republicans in the Senate seek to finish their work on the “One Big, Beautiful Bill.”
The world used more of just about every kind of energy source in 2024, including coal, oil, gas, renewables, hydro, and nuclear, according to the annual Statistical Review of World Energy, released by the Energy Institute. Here are some of the key numbers from the report:
You can read the full report here.
Virginia Republican Jen Kiggans is a vice chair of the Conservative Climate Caucus and a signatory of several letters supporting the preservation of clean energy tax credits in the Inflation Reduction Act, including one letter she co-authored with Pennsylvania’s Brian Fitzpatrick criticizing the House reconciliation bill’s rough approach to slashing the credits. On Wednesday, however, she said on X that the Senate language “responsibly phases out certain tax credits while preserving American investment and innovation in our energy sector.”
The Senate is still pushing to have the reconciliation bill on President Trump’s desk by July 4, and is expected to work through the weekend to get it done. But as Sahil Kapur of NBC News reported Wednesday, House and Senate leaders have been attempting to hash out yet another version of the bill that could pass both chambers quickly, meaning the legislation is still very much in flux.
Shell is in early talks to acquire fellow multinational oil giant BP, the Wall Street Journal reported. While BP declined to comment to the Journal, Shell called the story “market speculation” and said that “no talks are taking place.”
BP is currently valued at $80 billion, which would make a potential tie-up the largest corporate oil deal since the Exxon Mobil merger, according to the Journal.
Both Shell and BP have walked back from commitments to and investments in decarbonization and green energy in recent months. BP said in September of last year that it would divest from its U.S. wind business, while Shell said in January that it would “pause” its investment in the U.S. offshore wind industry and took an accompanying charge of $1 billion.
The combined company would be better positioned to compete with supermajors like Exxon, which is now worth over $450 billion, while Shell and BP have a combined valuation around $285 billion.
The shuttered Three Mile Island in October. Chip Somodevilla/Getty Images
Three Mile Island Unit 1 will restart a year early, its owner Constellation said Wednesday. When Constellation and Microsoft announced the plan to restart the nuclear facility last fall they gave a target date of 2028. More recently, however, PJM Interconnection, the interstate electricity market that includes Pennsylvania, approved a request made from the state’s governor, Josh Shapiro, to fast-track the plant’s interconnection, the company said, meaning it could open as soon as 2027.
Constellation reported “significant progress” on hiring and training new workers, with around 400 workers either hired or due to start new jobs soon. “We’re on track to make history ahead of schedule, helping America achieve energy independence, supercharge economic growth, and win the global AI race,” Constellation’s chief executive Joe Dominguez said.
The Chinese electric carmarker BYD is addressing rising inventory and lower prices by cutting back its production plans. The company “has slowed its production and expansion pace in recent months by reducing shifts at some factories in China and delaying plans to add new production lines,” Reuters reported.
The slowdown comes “as it grapples with rising inventory even after offering deep price cuts in China's cutthroat auto market,” according to the Reuters report.
In 2024, BYD beat out Tesla in annual sales, with over 4 million cars sold, for a total annual revenue over $100 billion. Tesla’s revenue was just short of $100 billion last year.
While BYD’s factories may be slowing down, it is still looking to expand, especially overseas. In April, more than 7,000 BYD battery electric cars were registered in Europe, according to Bloomberg. This more-than-doubling since last year slingshotted BYD past Tesla on the continent, where its sales have fallen by almost 50%.
“Where does the power sector go from here?” an audience member asked at our exclusive Heatmap subscriber event in New York on Wednesday, referring to a potential future without the Inflation Reduction Act. “Higher costs,” Emily Pontecorvo answered. There is one potential bright spot, however, as Robinson Meyer explained: “If I were a Democrat considering running an affordability campaign or a cost-of-living campaign in ’26 or ’28, there’s lots of openings to talk about clean energy — the policy that’s happening right now — utility rates, and energy affordability.”
The science is still out — but some of the industry’s key players are moving ahead regardless.
The ocean is by far the world’s largest carbon sink, capturing about 30% of human-caused CO2 emissions and about 90% of the excess heat energy from said emissions. For about as long as scientists have known these numbers, there’s been intrigue around engineering the ocean to absorb even more. And more recently, a few startups have gotten closer to making this a reality.
Last week, one of them got a vote of confidence from leading carbon removal registry Isometric, which for the first time validated “ocean alkalinity enhancement” credits sold by the startup Planetary — 625.6 to be exact, representing 625.6 metric tons of carbon removed. No other registry has issued credits for this type of carbon removal.
When the ocean absorbs carbon, the CO2 in the air reacts with the water to form carbonic acid, which quickly breaks down into hydrogen ions and bicarbonate. The excess hydrogen increases the acidity of the ocean, changing its chemistry to make it less effective at absorbing CO2, like a sponge that’s already damp. As levels of atmospheric CO2 increase, the ocean is getting more acidic overall, threatening marine ecosystems.
Planetary is working to make the ocean less acidic, so that it can take in more carbon. At its pilot plant in Nova Scotia, the company adds alkalizing magnesium hydroxide to wastewater after it’s been used to cool a coastal power plant and before it’s discharged back into the ocean. When the alkaline substance (which, if you remember your high school chemistry, is also known as a base) dissolves in the water, it releases hydroxide ions, which combine with and neutralize hydrogen ions. This in turn reduces local acidity and raises the ocean’s pH, thus increasing its capacity to absorb more carbon dioxide. That CO2 is then stored as a stable bicarbonate for thousands of years.
“The ocean has just got such a vast amount of capacity to store carbon within it,” Will Burt, Planetary’s vice president of science and product, told me. Because ocean alkalinity enhancement mimics a natural process, there are fewer ecosystem concerns than with some other means of ocean-based carbon removal, such as stimulating algae blooms. And unlike biomass or soil-related carbon removal methods, it has a very minimal land footprint. For this reason, Burt told me “the massiveness of the ocean is going to be the key to climate relevance” for the carbon dioxide removal industry as a whole.
But that’s no guarantee. As with any open system where carbon can flow in and out, how much carbon the ocean actually absorbs is tricky to measure and verify. The best oceanography models we have still don’t always align with observational data.
Given this, is it too soon for Planetary to issue credits? It’s just not possible right now for the startup — or anyone in the field — to quantify the exact amount of carbon that this process is removing. And while the company incorporates error bars into its calculations and crediting mechanisms, scientists simply aren’t certain about the degree of uncertainty that remains.
“I think we still have a lot of work to do to actually characterize the uncertainty bars and make ourselves confident that there aren’t unknown unknowns that we are not thinking about,” Freya Chay, a program lead at CarbonPlan, told me. The nonprofit aims to analyze the efficacy of various carbon removal pathways, and has worked with Planetary to evaluate and inform its approach to ocean alkalinity enhancement.
Planetary’s process for measurement and verification employs a combination of near field observational data and extensive ocean modeling to estimate the rate, efficiency, and permanence of carbon uptake. Close to the point where it releases the magnesium hydroxide, the company uses autonomous sensors at and below the ocean’s surface to measure pH and other variables. This real-time data then feeds into ocean models intended to simulate large-scale processes such as how alkalinity disperses and dissolves, the dynamics of CO2 absorption, and ultimately how much carbon is locked away for the long-term.
But though Planetary’s models are peer-reviewed and best in class, they have their limits. One of the largest remaining unknowns is how natural changes in ocean alkalinity feed into the whole equation — that is, it’s possible that artificially alkalizing the ocean could prevent the uptake of naturally occurring bases. If this is happening at scale, it would call into question the “enhancement” part of alkalinity enhancement.
There’s also the issue of regional and seasonal variability in the efficiency of CO2 uptake, which makes it difficult to put any hard numbers to the efficacy of this solution overall. To this end, CarbonPlan has worked with the marine carbon removal research organization [C]Worthy to develop an interactive tool that allows companies to explore how alkalinity moves through the ocean and removes carbon in various regions over time.
As Chay explained, though, not all the models agree on just how much carbon is removed by a given base in a given location at a given time. “You can characterize how different the models are from each other, but then you also have to figure out which ones best represent the real world,” she told me. “And I think we have a lot of work to do on that front.”
From Chay’s perspective, whether or not Planetary is “ready” to start selling carbon removal credits largely depends on the claims that its buyers are trying to make. One way to think about it, she told me, is to imagine how these credits would stand up in a hypothetical compliance carbon market, in which a polluter could buy a certain amount of ocean alkalinity credits that would then allow them to release an equivalent amount of emissions under a legally mandated cap.
“When I think about that, I have a very clear instinctual reaction, which is, No, we are far from ready,”Chay told me.
Of course, we don’t live in a world with a compliance carbon market, and most of Planetary’s customers thus far — Stripe, Shopify, and the larger carbon removal coalition, Frontier, that they’re members of — have refrained from making concrete claims about how their voluntary carbon removal purchases impact broader emissions goals. But another customer, British Airways, does appear to tout its purchases from Planetary and others as one of many pathways it’s pursuing to reach net zero. Much like the carbon market itself, such claims are not formally regulated.
All of this, Chay told me, makes trying to discern the most responsible way to support nascent solutions all the more “squishy.”
Matt Long, CEO and co-founder of [C]Worthy, told me that he thinks it’s both appropriate and important to start issuing credits for ocean alkalinity enhancement — while also acknowledging that “we have robust reason to believe that we can do a lot better” when it comes to assessing these removals.
For the time being, he calls Planetary’s approach to measurement “largely credible.”
“What we need to adopt is a permissive stance towards uncertainty in the early days, such that the industry can get off the ground and we can leverage commercial pilot deployments, like the one that Planetary has engaged in, as opportunities to advance the science and practice of removal quantification,” Long told me.
Indeed, for these early-stage removal technologies there are virtually no other viable paths to market beyond selling credits on the voluntary market. This, of course, is the very raison d’etre of the Frontier coalition, which was formed to help emerging CO2 removal technologies by pre-purchasing significant quantities of carbon removal. Today’s investors are banking on the hope that one day, the federal government will establish a domestic compliance market that allows companies to offset emissions by purchasing removal credits. But until then, there’s not really a pool of buyers willing to fund no-strings-attached CO2 removal.
Isometric — an early-stage startup itself — says its goal is to restore trust in the voluntary carbon market, which has a history of issuing bogus offset credits. By contrast, Isometric only issues “carbon removal” credits, which — unlike offsets — are intended to represent a permanent drawdown of CO2 from the atmosphere, which the company defines as 1,000 years or longer. Isometric’s credits also must align with the registry’s peer-reviewed carbon removal protocols, though these are often written in collaboration with startups such as Planetary that are looking to get their methodologies approved.
The initial carbon removal methods that Isometric dove into — bio-oil geological storage, biomass geological storage, direct air capture — are very measurable. But Isometric has since branched beyond the easy wins to develop protocols for potentially less permanent and more difficult to quantify carbon removal methods, including enhanced weathering, biochar production, and reforestation.
Thus, the core tension remains. Because while Isometric’s website boasts that corporations can “be confident every credit is a guaranteed tonne of carbon removal,” the way researchers like Chay and Long talk about Planetary makes it sound much more like a promising science project that’s being refined and iterated upon in the public sphere.
For his part, Burt told me he knows that Planetary’s current methodologies have room for improvement, and that being transparent about that is what will ultimately move the company forward. “I am constantly talking to oceanography forums about, Here’s how we’re doing it. We know it’s not perfect. How do we improve it?” he said.
While Planetary wouldn’t reveal its current price per ton of CO2 removed, the company told me in an emailed statement that it expects its approach “to ultimately be the lowest-cost form” of carbon removal. Burt said that today, the majority of a credit’s cost — and its embedded emissions — comes from transporting bases from the company’s current source in Spain to its pilot project in Nova Scotia. In the future, the startup plans to mitigate this by co-locating its projects and alkalinity sources, and by clustering project sites in the same area.
“You could probably have another one of these sites 2 kilometers down the coast,” he told me, referring to the Nova Scotia project. “You could do another 100,000 tonnes there, and that would not be too much for the system, because the ocean is very quickly diluted.”
The company has a long way to go before reaching that type of scale though. From the latter half of last year until now, Planetary has released about 1,100 metric tons of material into the ocean, which it says will lead to about 1,000 metric tons of carbon removal.
But as I was reminded by everyone, we’re still in the first inning of the ocean alkalinity enhancement era. For its part, [C]Worthy is now working to create the data and modeling infrastructure that startups such as Planetary will one day use to more precisely quantify their carbon removal benefits.
“We do not have the system in place that we will have. But as a community, we have to recognize the requirement for carbon removal is very large, and that the implication is that we need to be building this industry now,” Long told me.
In other words: Ready or not, here we come.