You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
And it involves dumping 9,000 tons of fancy sand off the North Carolina coast.

When visitors flock to the beach this summer in Duck, North Carolina, a small, 6-mile long town on the Outer Banks, they may catch a glimpse of a climate experiment happening among the waves.
About 1,500 feet offshore, a company called Vesta will be pouring 9,000 tons of sand into the sea and watching carefully to see what happens next. This finely crushed rock will not be of the typical Outer Banks variety. Instead, it will consist of a mineral called olivine, which should enhance the ocean’s ability to absorb carbon from the atmosphere — and lock it away for thousands of years.
That the experiment can go ahead at all marks a milestone for ocean-based carbon removal, a category of climate solutions that prod the ocean into sucking up more CO2. A big obstacle for the field has been the lack of a legal framework for permitting real-world trials — U.S. laws governing the ocean weren’t written with the prospect of intentionally altering its chemistry to address an existential environmental crisis in mind. But after an 18-month interagency review process, Vesta is now the first company with a federal permit from the U.S. Army Corps of Engineers to deploy a stand-alone carbon removal test in U.S. waters.
Though 9,000 tons may sound like a lot, this is still a relatively small-scale pilot designed to assess how effective the olivine is in driving carbon removal, as well as observe any other changes in the environment and develop methods for tracking the movement of the sand in the water. These kinds of field trials are essential to establishing which marine carbon removal methods have potential and which don’t.
“We want to measure everything very carefully at this stage and make sure that we are fully understanding the safety profile and the carbon removal data from this project,” Tom Green, Vesta’s CEO, told me. But the company has big aspirations. If things go well, he said, maybe olivine could be used for beach nourishment projects all over the country, where sand is deposited along the shore to address erosion. “Imagine the carbon removal possibilities if we did that with olivine sand,” he said. “We could quickly become the largest technique for permanent carbon removal that's out there.”
Scientists generally agree that stopping global warming this century will require both reducing emissions and taking carbon out of the atmosphere. The sheer size of the ocean and its natural ability to store vast amounts of carbon make it an enticing place to look for solutions.
Dumping thousands of tons of non-native sand into the ocean may not sound like the most convincing option — especially since the ocean is already “experiencing unprecedented destabilizing changes through massive warming, acidification, deoxygenation, and a host of resulting effects,” according to an open letter published last year and signed by hundreds of scientists. However, despite this — or perhaps because of it — the letter called for accelerating research to find out whether any of the proposed ocean-based carbon removal methods, including releasing large quantities of ground olivine, are viable.
Olivine is an abundant mineral with special properties. When it comes into contact with seawater, it drives a chemical reaction that converts CO2 gas into more stable forms of carbon that can’t readily return to the atmosphere. This in turn creates a deficit of CO2 in the surface waters, which triggers the ocean to take up more from the atmosphere in order to maintain equilibrium.
Reactions like this are happening constantly in the ocean already, but on very slow timescales. Vesta’s innovation is to speed up the process by crushing and deploying olivine strategically where the wind and waves can most efficiently weather it away.

Olivine could address the harms of CO2 pollution in more ways than one. The ocean already absorbs about 30% of the carbon released into the atmosphere each year, which has made the water more acidic and less hospitable to many of its inhabitants. But when olivine triggers these reactions, it can act as a sort of antacid. This approach to carbon removal is also known as enhancing the ocean’s alkalinity and olivine is just one of a number of different ways to do it. Another company called Planetary is experimenting with adding a different mineral, magnesium hydroxide, to the ocean. Ebb Carbon, on the other hand, is sucking up seawater and running it through a membrane to increase its alkalinity, before returning it to the tides.
Both already have field trials up and running, but instead of trying to conduct stand-alone experiments in the open ocean they’ve hitched onto existing ocean dumping permits. Ebb, for example, has set up at the Pacific Northwest National Laboratory’s facility in Sequim, Washington, where it is releasing treated seawater into wastewater that flows into the bay. Similarly, Planetary is conducting pilot projects at the wastewater outflows of a water treatment facility and power plant in Canada. Other ocean carbon removal companies, such as Los Angeles-based Captura, have opted to move abroad for their early projects and avoid the U.S. permitting puzzle altogether.
Vesta went to Duck because it is among the most studied stretches of coastline in the country. The town is home to an Army Corps coastal field research center known for its long-term data set on the surrounding waters. “Few locations on the globe provide a better archive of wave, water, bathymetry and other forces that shape nearshore conditions,” according to the Army Corps’ website. (“Bathymetry” is the topography of the seafloor.) That means Vesta will be able to get a more accurate picture of any changes the olivine is responsible for.
When Drew Havens, the town manager in Duck, first heard about Vesta’s plans, he was skeptical. “You're dumping something into the ocean, people automatically go to, well, is it going to harm humans? Is it going to be harmful to wildlife or other living organisms?” he told me.
Though some in the town are still nervous, Havens said he has become more comfortable with the idea as the project has been rigorously reviewed by environmental protection regulators at the federal and state level. Vesta’s scientists also engaged with the town council, did an open house for members of the public, and have generally invited questions and open dialogue.
Just because regulators have determined that the risks of this pilot project are low, however, doesn’t mean using olivine for carbon removal is risk-free. For one, the rock has to be mined — in this case, from a quarry in Norway, although it is also found in the U.S. — and transported to the project site. That’s likely to produce some environmental impacts, though the company estimates that the project will ultimately remove about 10 times more CO2 from the atmosphere than the emissions associated with running the experiment, including the mining and shipping of olivine.
But the biggest risk with mined olivine is that it contains nickel, said Jaime Palter, an associate professor of oceanography at the University of Rhode Island who has no affiliation with Vesta. Nickel can act as both a nutrient and a toxin for phytoplankton, she told me, so it's important to study whether putting olivine in the ocean will result in adverse effects.
Vesta has been closely examining that possibility. In fact, the project in Duck will be the company’s second U.S. field trial. In the summer of 2022, Vesta got permission from the town of Southampton in Long Island to spread olivine on the beach as part of a larger sand replenishment project that was already in the works. Vesta’s scientists worked with local academic partners at Cornell, SUNY Stony Brook, and Hamilton College to do extensive monitoring both before and after the sand was placed, collecting data on more than 20 indicators of the effects on the water, sediment, and ecology.
The company has since published two annual reports on the project. It is still awaiting analysis of many of the samples, but so far, the results have been promising, Green said. There has been no sign of trace metal accumulation in Eastern Oysters, a species known to accumulate pollutants from their environment, for instance. There was also no significant difference in water quality between control areas and the sites with olivine, and trace metal concentrations were below the relevant EPA water quality guidelines. The area’s benthic macrofauna — critters like clams and small crustaceans that live on or near the seafloor — were as abundant and various as before.
Notably, the tests also showed evidence of an increase in alkalinity in the waters of the olivine-treated area, which is the key reaction that leads to carbon removal. But Green said there’s more work to be done in terms of calculating where and when removal may have happened.
There’s also more work to be done to understand the effects of olivine in different environments, which brings us back to Duck. There, it will be deposited in 25-foot deep water instead of on the beach, helping Vesta to further refine its data and measurement methods. The plan is to continue testing and collecting data at the site for at least two years. The company declined to comment on the budget for the project. Vesta is funded primarily by venture capital investors but also raises money for research through an affiliated nonprofit.
Vesta may have been the first to get a federal permit to run a marine carbon removal test, but it definitely won’t be the last. Nikhil Neelakantan, a senior project manager at Ocean Visions, which is a nonprofit that advocates for ocean-based climate solutions, told me there are a number of other domestic projects in the pipeline, including more than a dozen government-funded research projects. The White House also recently set up a marine carbon removal fast track action committee with the mandate to create recommendations for policy, permitting, and regulatory standards for both research and implementation.
Neelakantan said there is work to do on clarifying the role of different agencies in regulating ocean carbon removal, and which laws apply to each method.
“This is an early first step, and it's exciting to see that it's finally going to come to fruition,” he said, of Vesta’s project in Duck. “I think there's momentum with this federal task force. It's going to be the first of many others that will happen soon.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: Severe thunderstorms will bring winds of up to 85 miles per hour to parts of the Texarkana region • A cold front in Southeast Asia is stirring waves up to three meters high along the shores of Vietnam • Parts of Libya are roasting in temperatures as high as 95 degrees Fahrenheit.
David Richardson, the acting head of the Federal Emergency Management Agency, resigned Monday after just six months on the job. Richardson had no experience in managing natural disasters, and Axios reported, he “faced sharp criticism for being unavailable” amid the extreme floods that left 130 dead in Central Texas in July. A month earlier, Richardson raised eyebrows when he held a meeting in which he told staff he was unaware the U.S. had a hurricane season. He was, however, a “loyalist” to Homeland Security Secretary Kristi Noem, CNN reported.
With hurricane season wrapping up this month, President Donald Trump was preparing to fire Richardson in the lead up to an overhaul of the agency, whose resources for carrying out disaster relief he wants to divvy up among the states. When FEMA staffers criticized the move in an open letter over the summer, the agency suspended 40 employees who signed with their names, as I wrote in the newsletter at the time.
The Environmental Protection Agency proposed stripping federal protections from millions of acres of wetlands and streams. The New York Times cast the stakes of the rollback as “potentially threatening sources of clean drinking water for millions of Americans” while delivering “a victory for a range of business interests that have lobbied to scale back the Clean Water Act of 1972, including farmers, home builders, real estate developers, oil drillers and petrochemical manufacturers.” At an event announcing the rulemaking, EPA Administrator Lee Zeldin recognized that the proposal “is going to be met with a lot of relief from farmers, ranchers, and other landowners and governments.” Under the Clean Water Act, companies and individuals need to obtain permits from the EPA before releasing pollutants into the nation’s waterways, and permits from the U.S. Army Corps of Engineers before discharging any dredged or fill material such as sand, silt, or construction debris. Yet just eliminating the federal oversight doesn’t necessarily free developers and farmers of permitting challenges since that jurisdiction simply goes to the state.

Americans are spending greater lengths of time in the dark amid mounting power outages, according to a new survey by the data analytics giant J.D. Power. The report, released last month but highlighted Monday in Utility Dive, cited “increased frequency and severity of extreme weather events” as the cause. The average length of the longest blackout of the year increased in all regions since 2022, from 8.1 hours to 12.8 by the midpoint of 2025. Ratepayers in the South reported the longest outages, averaging 18.2 hours, followed by the West, at 12.4 hours. While the duration of outages is worsening, the number of Americans experiencing them isn’t, J.D. Power’s director of utilities intelligence, Mark Spalinger, told Utility Dive. The percentage of ratepayers experiencing “perfect power” without any interruptions is gradually rising, he said, but disasters like storms and fires “are becoming so much more extreme that it creates these longer outage events that utilities are now having to deal with.”
The problem is particularly bad in the summertime. As Heatmap’s Matthew Zeitlin explained back in June, “the demands on the grid are growing at the same time the resources powering it are changing. Between broad-based electrification, manufacturing additions, and especially data center construction, electricity load growth is forecast to grow several percent a year through at least the end of the decade. At the same time, aging plants reliant on oil, gas, and coal are being retired (although planned retirements are slowing down), while new resources, largely solar and batteries, are often stuck in long interconnection queues — and, when they do come online, offer unique challenges to grid operators when demand is high.”

Sign up to receive Heatmap AM in your inbox every morning:
You win some, you lose some. Earlier this month, solar developer Pine Gate Renewables blamed the Trump administration’s policies in its bankruptcy filing. Now a major solar manufacturer is crediting its expansion plans to the president. Arizona-based First Solar said last week it plans to open a new panel factory in South Carolina. The $330 million factory will create 600 new jobs, E&E News reported, if it comes online in the second half of next year as planned. First Solar said the investment is the result of Trump’s One Big Beautiful Bill Act. “The passage of the One Big Beautiful Bill Act and the Administration’s trade policies boosted demand for American energy technology, requiring a timely, agile response that allows us to meet the moment,” First Solar CEO Mark Widmar said in a statement. “We expect that this new facility will enable us to serve the U.S. market with technology that is compliant with the Act’s stringent provisions, within timelines that align with our customers’ objectives.”
If you want to review what actually goes into making a solar panel, it’s worth checking out Matthew’s explainer from the Climate 101 series.
French oil and gas giant TotalEnergies said Monday it would make a $6 billion investment into power plants across Europe, expanding what The Wall Street Journal called “a strategy that has set it apart from rivals focused on pumping more fossil fuels.” To start, the company agreed to buy 50% of a portfolio of assets owned by Energeticky a Prumyslovy Holding, the investment fund controlled by the Czech billionaire Daniel Kretinsky. While few question the rising value of power generation amid a surge in electricity demand from the data centers supporting artificial intelligence software, analysts and investors “question whether investment in power generation — particularly renewables — will be as lucrative as oil and gas.” Rivals Shell and BP, for example, recently axed their renewables businesses to double down on fossil fuels.
The world has successfully stored as much carbon dioxide as 81,044,946 gasoline-powered cars would emit in a year. The first-ever audit of all major carbon storage projects in the U.S., China, Brazil, Australia, and the Middle East found over 383 million tons of carbon dioxide stored since 1996. “The central message from our report is that CCS works, demonstrating a proven capability and accelerating momentum for geologic storage of CO2,” Samuel Krevor, a professor of subsurface carbon storage at Imperial College London’s Department of Earth Science and Engineering, said in a press release.
New Jersey Governor-elect Mikie Sherrill made a rate freeze one of her signature campaign promises, but that’s easier said than done.
So how do you freeze electricity rates, exactly? That’s the question soon to be facing New Jersey Governor-elect Mikie Sherrill, who achieved a resounding victory in this November’s gubernatorial election in part due to her promise to declare a state of emergency and stop New Jersey’s high and rising electricity rates from going up any further.
The answer is that it can be done the easy way, or it can be done the hard way.
What will most likely happen, Abraham Silverman, a Johns Hopkins University scholar who previously served as the New Jersey Board of Public Utilities’ general counsel, told me, is that New Jersey’s four major electric utilities will work with the governor to deliver on her promise, finding ways to shave off spending and show some forbearance.
Indeed, “We stand ready to work with the incoming administration to do our part to keep rates as low as possible in the short term and work on longer-term solutions to add supply,” Ralph LaRossa, the chief executive of PSE&G, one of the major utilities in New Jersey, told analysts on an earnings call held the day before the election.
PSE&G’s retail bills rose 36% this past summer, according to the investment bank Jefferies. As for what working with the administration might look like, “We expect management to offer rate concessions,” Jefferies analyst Paul Zimbrado wrote in a note to clients in the days following the election, meaning essentially that the utility would choose to eat some higher costs. PSE&G might also get “creative,” which could mean things like “extensions of asset recoverable lives, regulatory item amortization acceleration, and other approaches to deliver customer bill savings in the near-term,” i.e. deferring or spreading out costs to minimize their immediate impact. “These would be cash flow negative but [PSE&G] has the cushion to absorb it,” Zimbrado wrote.
In return, Silverman told me that the New Jersey utilities “have a wish list of things they want from the administration and from the legislature,” including new nuclear plants, owning generation, and investing in energy storage. “I think that they are probably incented to work with the new administration to come up with that list of items that they think they can accomplish again without sacrificing reliability.”
Well before the election, in a statement issued in August responding to Sherrill’s energy platform, PSE&G hinted toward a path forward in its dealings with the state, noting that it isn’t allowed to build or own power generation and arguing that this deregulatory step “precluded all New Jersey electric companies from developing or offering new sources of power supply to meet rising demand and reduce prices.” Of course, the failure to get new supply online has bedeviled regulators and policymakers throughout the PJM Interconnection, of which New Jersey is a part. If Mikie Sherrill can figure out how to get generation online quickly in New Jersey, she’ll have accomplished something more impressive than a rate freeze.
As for ways to accomplish the governor-elect’s explicit goal of keeping price increases at zero, Silverman suggested that large-scale investments could be paid off on a longer timeline, which would reduce returns for utilities. Other investments could be deferred for at least a few years in order to push out beyond the current “bubble” of high costs due to inflation. That wouldn’t solve the problem forever, though, Silverman told me. It could simply mean “seeing lower costs today, but higher costs in the future,” he said.
New Jersey will also likely have to play a role in deliberations happening in front of the Federal Energy Regulatory Commission about interconnecting large loads — i.e. data centers — a major driver of costs throughout PJM and within New Jersey specifically. Rules that force data centers to “pay their own way” for transmission costs associated with getting on the grid could relieve some of the New Jersey price crunch, Silverman told me. “I think that will be a really significant piece.”
Then there’s the hard way — slashing utilities’ regulated rates of return.
In a report prepared for the Natural Resources Defence Council and Evergreen Collective and released after the election, Synapse Economics considered reducing utilities’ regulated return on equity, the income they’re allowed to generate on their investments in the grid, from its current level of 9.6% as one of four major levers to bring down prices. A two percentage point reduction in the return on equity, the group found, would reduce annual bills by $40 in 2026.
Going after the return on equity would be a more difficult, more contentious path than working cooperatively on deferring costs and increasing generation, Silverman told me. If voluntary and cooperative solutions aren’t enough to stop rate increases, however, Sherrill might choose to take it anyway. “You could come in and immediately cut that rate of return, and that would absolutely put downward pressure on rates in the short run. But you establish a very contentious relationship with the utilities,” Silverman told me.
Silverman pointed to Connecticut, where regulators and utilities developed a hostile relationship in recent years, resulting in the state’s Public Utilities Regulatory Authority chair, Marissa Gillett, stepping down last month. Gillett had served on PURA since 2019, and had tried to adopt “performance-based ratemaking,” where utility payouts wouldn’t be solely determined by their investment level, but also by trying to meet public policy goals like energy efficiency and reducing greenhouse gas emissions.
Connecticut utilities said these rules would make attracting capital to invest in the grid more difficult. Gillett’s tenure was also marred by lawsuits from the state’s utilities over accusations of “bias” against them in the ratemaking process. At the same time, environmental and consumer groups hailed her approach.
While Sherrill and her energy officials may not want to completely overhaul how they approach ratemaking, some conflict with the state’s utilities may be necessary to deliver on her signature campaign promise.
Going directly after the utilities’ regulated return “is kind of like making your kid eat their broccoli,” Silverman said. “You can probably make them eat it. You can have a very contentious evening for the rest of the night.”
Current conditions: Unseasonable warmth of up to 20 degrees Fahrenheit above average is set to spread across the Central United States, with the potential to set records • Scattered snow showers from water off the Great Lakes are expected to dump up to 18 inches on parts of northern New England • As winter dawns, Israel is facing summertime-like temperatures of nearly 90 degrees this week.
The Department of the Interior finalized a rule last week opening up roughly half of the largely untouched National Petroleum Reserve-Alaska to oil and gas drilling. The regulatory change overturns a Biden-era measure blocking oil and gas drilling on 11 million acres of the nation’s largest swath of public land, as my predecessor in anchoring this newsletter, Heatmap’s Jeva Lange, wrote in June. The Trump administration vowed to “unleash” energy production in Alaska by opening the 23 million-acre reserve, as well as nearby Arctic National Wildlife Refuge, to exploration. By rescinding the Biden-era restrictions, “we are following the direction set by President Trump to unlock Alaska’s energy potential, create jobs for North Slope communities, and strengthen American energy security,” Secretary of the Interior Doug Burgum said in a statement, according to E&E News. In a post on X, Alaska Governor Mike Dunleavy, a Republican, called the move “yet another step in the right direction for Alaska and American energy dominance.”
The new rule is expected to face challenges in court.“Today’s action is another example of how the Trump administration is trying to take us back in time with its reckless fossil fuels agenda,” Erik Grafe, a lawyer with Earthjustice, an environmental nonprofit group, said in a statement to The New York Times.

For the first time in United Nations climate negotiations, countries attending the COP30 summit in Belém, Brazil, are grappling with the effects of mining the minerals needed for batteries, solar panels, and wind turbines, Climate Home News reported. In a draft text on Friday, a working group at the summit recognized “the social and environmental risks associated with scaling up supply chains for clean energy technologies, including risks arising from the extraction and processing of critical minerals.”
The statement came amid ongoing protests from Indigenous groups, including those from Argentina who warned that the world’s increased appetite for South America’s lithium reserves came at the cost of local water resources for peoples who have lived in regions near mining operations for millennia.
Nearly one fifth of the Environmental Protection Agency’s workforce has opted into President Donald Trump’s mass resignation plan, according to new data E&E News obtained on Friday. As of the end of September, the EPA’s payroll included 15,166 employees, according to data released during the government shutdown, meaning that more than 2,620 employees accepted the “deferred resignation” offer.
Under Administrator Lee Zeldin, the EPA has advanced proposals that even the agency under Scott Pruitt, the top environmental regulator at the start of Trump’s first term, dared not attempt. Zeldin has moved to rescind the endangerment finding, which forms the legal basis for virtually all major climate regulations at the EPA. Zeldin even tried to kill off the popular Energy Star program for efficient appliances, but — as I wrote earlier this month — he backed off the plan.
Sign up to receive Heatmap AM in your inbox every morning:
The next-generation geothermal company Eavor is preparing to start up its debut closed-loop system at its pilot project in Germany, Think Geoenergy reported. The startup has stood out in the race to commercialize technology that can harness energy from the Earth’s molten core in more places than conventional approaches allow. While rivals such as Fervo Energy, Sage Geosystems, and XGS Energy, pursue projects in the American Southwest, Eavor focused its efforts on Germany, where it saw potential to tap into the lucrative district heating market. Eavor also developed special drilling tools that promised to shave “tens of millions” off the cost of digging wells. As I wrote here last month, the company just completed successful tests of its technology.
BlackRock’s Global Infrastructure Partners inked a deal with the Spanish construction company ACS to form a joint venture to develop roughly $2.3 billion worth of data centers. The 50-50 joint venture will consist of ACS’ existing data-center portfolio, including 1.7 gigawatts of assets under development in Europe, the U.S., and Australia. ACS is contributing its existing portfolio to the business, The Wall Street Journal reported, “in exchange for about 1 billion euros in cash and initial earnout payments of up to 1 billion euros” if the data centers hit certain commercial milestones. “Global demand for data centers is set to grow more than 15 times by 2035, driven by the expansion of AI, cloud migration, and the exponential rise in data volumes,” ACS CEO Juan Santamaria said.
In a first, Swedish scientists have managed to successfully isolate and sequence RNA from an Ice Age wooly mammoth. Researchers at Stockholm University extracted the genetic information from mammoth tissue preserved in Siberian permafrost for nearly 40,000 years. The findings, published in the journal Cell, show that RNA, in addition to DNA and proteins, can be preserved over long periods of time. “With RNA, we can obtain direct evidence of which genes are ‘turned on,’ offering a glimpse into the final moments of life of a mammoth that walked the Earth during the last Ice Age. This is information that cannot be obtained from DNA alone,” Emilio Mármol, lead author of the study, said in a press release.
Editor’s note: This article has been updated to clarify the staff shrinkage at the EPA.