You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Talking to Google Geo’s vice president of sustainability, Yael Maguire.
While browsing Google Flights for an escape from the winter doldrums, I recently encountered a notification I hadn’t seen before. One particular return flight from Phoenix to New York was highlighted in light green as avoiding “as much CO2 as 1,400 trees absorb a day.”
I’d seen Google Flights’ emissions estimates before, of course — they’ve been around since 2021 — but this was the first time I’d seen it translate a number like “265 kg CO2e” into something I could actually understand. Suddenly, not picking the flight felt like it would have made me, well, kind of bad.
Yael Maguire, the vice president and general manager of the sustainability team at Google Geo — which includes Maps, Earth, and Project Sunroof, the company’s solar calculator — stressed that Google isn’t trying to take people’s agency away with these kinds of light-green guilt trips. “We want to make the sustainable choice the easy choice,” he told me, in reference to a slew of new tools the company has been rolling out, from fuel-efficient routing in Maps (which Google estimates has eliminated the emissions equivalent of 500,000 internal combustion cars from the road since 2021), to suggesting train routes to flight-shoppers, to nudging Europeans to ditch their cars when public transportation could get them to their destinations in a comparable amount of time.
Last week, I spoke to Maguire about the sustainability projects at Google Geo, including the team’s Solar API, which provides solar-planning data for millions of buildings worldwide. Our conversation has been lightly condensed for clarity and brevity.
Do you see your job at Google Geo as passively presenting sustainability information to users, or do you see it as actively nudging people toward making better choices for the planet?
We’re not trying to take agency away from anybody. We want to make sure — whether you’re a consumer choosing an eco-friendly route, or you’re a developer who’s thinking about trying to build more sustainably, or you’re a solar developer who wants to help with that — we want the choices to be in their hands. But we want to make it the easiest choice possible because, while it’s ultimately their decision, it will lead to carbon reductions over time.
That’s the idea behind fuel efficiency suggestions in Google Maps, where a route is prominently displayed with the little leaf, right?
Exactly. We launched a capability in Google Earth last year to help real estate developers do high-level planning and building development to make the sustainable choice the easy choice. As they’re saying, “We’re trying to get this many units with these kinds of amenities, etc., etc.,” we give them the tools to optimize for all the things they want to optimize for. But we can also say, “Hey, if you also care about sustainability, you can use different materials, we can get more sunlight in the area, and you have this much potential for solar.” And that just comes bundled with the tool itself.
We always try to find the co-benefits. I know for me personally, I always try to make the sustainable choice as much as I can. But I know that other people may not be as motivated by that, and having those co-benefits — like, it saves money, or it saves time, or it saves fuel, whatever it might be. We want to try to bring those together as much as possible.
When I was in Tbilisi, Georgia, a few months ago, I was using the ride-share app Bolt, and at the time it had a feature where if you tried to book a car to a location less than a 15-minute walk away, it would suggest you walk instead. I saw in a video from Google’s sustainability summit last fall that you’re rolling out something similar in some locations in Europe — France was one. Do you find these sorts of rollouts in the U.S. are stymied at all by how un-walkable most American cities are?
We are trying to make the most of cities as they are. They’re hard to change. But one of the things I find really encouraging is there’s definitely a long timeframe for this. Mayors and the folks in their departments of transportation recognize that they have to make more options available for people to commute and move around. They’re not necessarily going to be able to change things overnight. But there are major changes that are happening — for example, in the city of London, we were able to announce hundreds of miles of new bike lanes. So a lot of changes are happening over a relatively short amount of time, too.
Sometimes it’s hard to know what is going to be the impact of those decisions, though. And so, again, with these tools, city planners have the opportunity to scenario plan and say, “Okay, we’re thinking of trying to put bike lanes in this corridor in the city, what is going to be the impact on carbon?”
I wanted to ask a similar question in the context of a new feature that suggests train routes to Europeans looking for short-haul flights. How is Google thinking about promoting low-emissions transportation options like trains to Americans, eventually, when our infrastructure often isn’t there yet? Is this a challenge you talk about internally?
It is definitely something that is top of mind. But I do think even in the U.S., there are times when taking a train is actually faster. There are actually a lot of instances where walking, cycling, and public transportation are the most effective ways to get somewhere — and that’s not even considering the cost side of it, which is also something people might want to consider. I’m actually fairly optimistic — when I worked in San Francisco, I took public transportation, and I tried to walk as much as I can in all the cities that I’ve lived in, so I feel like I have lived experience in what the reality [in the U.S.] is. And some of these alternative options can be very effective. There’s more work to do, though, to make sure that we’re doing this globally.
Arguably, Google Maps could have a significant role to play in the success of the larger EV transition in terms of making charging stations and trip planning easy and handy for drivers. I’ve been working on planning my first EV road trip this summer and have been pretty intimidated, to be honest. Can you tell me what is in Google’s pipeline to help make this process easier for drivers?
I can’t talk about things that haven’t been announced yet, but I will say that, just as an overarching goal, we want to make that as easy as possible. I’m an EV owner, I have been for a number of years, and I know sometimes it can be a cognitive task to think about, “How am I going to charge and what is that experience going to be like?” So I would just say that we are really aware and trying to deeply understand the problem as much as possible, and our goal is to really address it.
Even when someone is thinking about purchasing a car, oftentimes people go to Google Search to look for vehicles, and we can help people understand what the potential is of a particular vehicle they’re considering. What typically concerns people is a long-distance trip. So we’ve made a tool where you can plug in a familiar destination — like for me, I live in San Francisco, it might be going to Tahoe— and for a given car you can see how many charges would you have to do on the way. Being able to make that info a little bit easier for people to see before they even buy the car is a thing that we’ve tried to do.
We’re also trying to make charging experiences as positive as possible. The first thing is, honestly, just getting as many chargers on the map as possible. There are a number of different providers who have charging infrastructure and sometimes all the data isn’t widely available so we’ve tried really, really hard to work with those partners. We have information on, I believe, 360,000 chargers worldwide and we’re constantly trying to grow that. On top of that — and I hope you don’t experience this — but not all the chargers work. You’ve probably seen on Google Maps, there are reviews, right? So there’s all kinds of work happening there.
My EV doesn’t have Google Maps integrated, unfortunately, but I’m really looking forward to one day having this feature where I can search for a charger along the route. We’d like to get to that point where you don’t actually have to do all this planning in advance and you can just get in your car and plan along the way like you would if it was another type of vehicle.
It’s one thing to have a tool like the Google Tree Canopy available for cities and organizers, and it’s another thing for people to actually use that tool and act on the information. How are you measuring your success?
We measure our success ultimately by what people do with our tools. So it’s not just about putting the tool out there. We actually try to understand what people are doing. In the case of what we did with eco-friendly routing, we worked with the National Renewable Energy Laboratory in the U.S., for example, to help validate our carbon emissions model. We’re going through that process for everything we do, whether it’s Project Sunroof or the Solar API, or other things like that.
You preempted my next question, but maybe you can talk about it in a more macro sense — Google has the goal of “collectively reducing 1 gigaton of carbon equivalent emissions annually by 2030” with tools like Solar API. Can you give me any sort of progress update?
This is a project that’s been going on for some time. We’ve been working with solar developers for a while, but we’ve been pleasantly surprised not only by the solar developer community engagement, but there’s actually other industries that have shown interest. So MyHEAT — they’re not a typical solar installer, but they’re finding this data really useful to go to cities and help them with the plans that they have.
So the gigaton goal itself, there is nothing to share now other than the progress on eco-friendly routing, but it is something that we hope we’ll be able to share progress on over time. But so far, we’re quite happy.
At a time when there’s a lot of nervousness around AI — and often for good reason — you’ve been pretty vocal in your excitement about how such tools can be used for the positive purposes of sustainability. Tell me why you’re an optimist.
Here’s why I’m an optimist: Because it’s where I put all of Google’s public goals in context. We talked about the gigaton goal, we talked about the Solar API — but I think this is also a question about energy usage and carbon intensity. We will continue to invest in the infrastructure that we need — and we need that infrastructure to be able to actually help solve some of these problems, by providing information to people — but at the same time, the company has been really focused on trying to minimize the carbon intensity of the energy we produce. So, since 2017, we’ve been operating off of 100% renewable energy; this is on an annualized basis. We also have an initiative to use carbon-free energy — so the source of the energy that ultimately goes where electrons are going to our data centers, we’re actively measuring what percentage of that is carbon-free on a 24/7 basis.
With our net-zero commitments, to be on a net basis by 2030, that includes all of our AI infrastructure. That’s where I would try to separate the energy use that’s required to operate AI from the carbon intensity, which I think is very different. Our data centers, we estimate, are one-and-a-half times more efficient than your average data center. And with AI workloads themselves, in some instances, we’ve been able to get the energy usage down by 100x, and the corresponding amount of carbon intensity down by 1,000x.
But to your point, at the same time, it is very much on our minds that the carbon intensity to run all of these AI workloads — how does that compare to the benefits that they’re able to provide? I think that’s where I am. I do have a lot of optimism about the efficiency work, about the trajectory of carbon-free energy and net zero. The upsides in terms of what it does for solar, what it does for transportation — yeah, I am a big believer.
The big reason why I’m so excited about this opportunity in the Maps and Geo space is I just think there’s so much opportunity for all kinds of organizations, including individual citizens, to make these choices and changes to their environment. And I think the role that AI has is enormous — obviously not the whole thing, because it doesn’t build cycling lanes. People have to go do that. People have to change policies around how buildings are going to have less carbon intensity when they’re built. There’s tons and tons of other work that is required to actually build the future that we want, that is lower carbon intensity — ideally zero. But I do think that AI plays an enormous role as decision support for all those choices that are needed in the future.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Half of all Americans are sweating under one right now.
Like a bomb cyclone, a polar vortex, or an atmospheric river, a heat dome is a meteorological phenomenon that feels, well, a little made up. I hadn’t heard the term before I found myself bottled beneath one in the Pacific Northwest in 2021, where I saw leaves and needles brown on living trees. Ultimately, some 1,400 people died from the extreme heat in British Columbia, Washington, and Oregon that summer weekend.
Since that disaster, there have been a number of other high-profile heat dome events in the United States, including this week, over the Midwest and now Eastern and Southeastern parts of the country. On Monday, roughly 150 million people — about half the nation’s population — faced extreme or major heat risks.
“I think the term ‘heat dome’ was used sparingly in the weather forecasting community from 10 to 30 years ago,” AccuWeather senior meteorologist Brett Anderson told me, speaking with 36 years as a forecaster under his belt. “But over the past 10 years, with global warming becoming much more focused in the public eye, we are seeing ‘heat dome’ being used much more frequently,” he went on. “I think it is a catchy term, and it gets the public’s attention.”
Catching the public’s attention is critical. Heat is the deadliest weather hazard in the U.S., killing more people annually than hurricanes, floods, tornadoes, or extreme cold. “There is a misunderstanding of the risk,” Ashley Ward, the director of the Heat Policy Innovation Hub at Duke University, told me. “A lot of people — particularly working age or younger people — don’t feel like they’re at risk when, in fact, they are.”
While it seems likely that the current heat dome won’t be as deadly as the one in 2021 — not least because the Midwest and Southeastern regions of the country have a much higher usage of air conditioning than the Pacific Northwest — the heat in the eastern half of the country is truly extraordinary. Tampa, Florida reached 100 degrees Fahrenheit on Sunday for the first time in its recorded history. Parts of the Midwest last week, where the heat dome formed before gradually moving eastward, hit a heat index of 128 degrees.
Worst of all, though, have been the accompanying record-breaking overnight temperatures, which Ward told me were the most lethal characteristics of a heat dome. “When there are both high daytime temperatures and persistently high overnight temperatures, those are the most dangerous of circumstances,” Ward said.
Although the widespread usage of the term “heat dome” may be relatively new, the phenomenon itself is not. The phrase describes an area of “unusually strong” high pressure situated in the upper atmosphere, which pockets abnormally warm air over a particular region, Anderson, the forecaster, told me. “These heat domes can be very expansive and can linger for days, and even a full week or longer,” he said.
Anderson added that while he hasn’t seen evidence of an increase in the number of heat domes due to climate change, “we may be seeing more extreme and longer-lasting heat domes” due to the warmer atmosphere. A heat dome in Europe this summer, which closed the Eiffel Tower, tipped temperatures over 115 degrees in parts of Spain, and killed an estimated 2,300 people, has been linked to anthropogenic warming. And research has borne out that the temperatures and duration reached in the 2021 Pacific Northwest heat dome would have been “virtually impossible without human-caused climate change.”
The link between climate change and heat domes is now strong enough to form the basis for a major legal case. Multnomah County, the Oregon municipality that includes Portland, filed a lawsuit in 2023 against 24 named defendants, including oil and gas companies ExxonMobil, Shell, and BP, seeking $50 million in damages and $1.5 billion in future damages for the defendants’ alleged role in the deaths from the 2021 heat dome.
“As we learned in this country when we took on Big Tobacco, this is not an easy step or one I take lightly, but I do believe it’s our best way to fight for our community and protect our future,” Multnomah County Chair Jessica Vega Pederson said in a statement at the time. The case is now in jeopardy following moves by the Trump administration to prevent states, counties, and cities from suing fossil fuel companies for climate damages. (The estate of a 65-year-old woman who died in the heat dome filed a similar wrongful death lawsuit in Seattle’s King County Superior Court against Big Oil.)
Given the likelihood of longer and hotter heat dome events, then, it becomes imperative to educate people about how to stay safe. As Ward mentioned, many people who are at risk of extreme heat might not even know it, such as those taking commonly prescribed medications for anxiety, depression, PTSD, diabetes, and high blood pressure, which interfere with the body’s ability to thermoregulate. “Let’s just say recently you started taking high blood pressure medicine,” Ward said. “Every summer prior, you never had a problem working in your garden or doing your lawn work. You might this year.”
Air conditioning, while life-saving, can also stop working for any number of reasons, from a worn out machine part to a widespread grid failure. Vulnerable community members may also face hurdles in accessing reliable AC. There’s a reason the majority of heat-related deaths happen indoors.
People who struggle to manage their energy costs should prioritize cooling a single space, such as a bedroom, and focus on maintaining a cool core temperature during overnight hours, when the body undergoes most of its recovery. Blotting yourself with a wet towel or washcloth and sitting in front of a fan can help during waking hours, as can visiting a traditional cooling center, or even a grocery store or movie theater.
Health providers also have a role to play, Ward stressed. “They know who has chronic underlying health conditions,” she said. “Normalize asking them about their situation with air conditioning. Normalize asking them, ‘Do you feel like you have a safe place to go that’s cool, that you can get out of this heat?’”
For the current heat dome, at least, the end is in sight: Incoming cool air from Canada will drop temperatures by 10 to 20 degrees in cities like Philadelphia and Washington, D.C., with lows potentially in the 30s by midweek in parts of New York. And while there are still hot days ahead for Florida and the rest of the Southeast, the cold front will reach the region by the end of the week.
But even if this ends up being the last heat dome of the summer, it certainly won’t be in our lifetimes. The heat dome has become inescapable.
On betrayed regulatory promises, copper ‘anxiety,’ and Mercedes’ stalled EV plans
Current conditions: New York City is once again choking on Canadian wildfire smoke • Torrential rain is flooding southeastern Slovenia and northern Croatia • Central Asia is bracing for the hottest days of the year, with temperatures nearing 100 degrees Fahrenheit in Uzbekistan’s capital of Tashkent all week.
In May, the Trump administration signaled its plans to gut Energy Star, the energy efficiency certification program administered by the Environmental Protection Agency. Energy Star is extremely popular — its brand is recognized by nearly 90% of Americans — and at a cost to the federal government of just $32 million per year, saves American households upward of $40 billion in energy costs per year as of 2024, for a total of more than $500 billion saved since its launch in 1992, by the EPA’s own estimate. Not only that, as one of Energy Star’s architects told Heatmap’s Jeva Lange back in May, more energy efficient appliances and buildings help reduce strain on the grid. “Think about the growing demands of data center computing and AI models,” RE Tech Advisors’ Deb Cloutier told Jeva. “We need to bring more energy onto the grid and make more space for it.”
That value has clearly resonated with lawmakers on the Hill. Legislators tasked with negotiating appropriations in both the Senate and the House of Representatives last week proposed fully funding Energy Star at $32 million for the next fiscal year. It’s unclear how the House’s decision to go into recess until September will affect the vote, but Ben Evans, the federal legislative director at the U.S. Green Building Council, said the bill is “a major step in the right direction demonstrating that ENERGY STAR has strong bipartisan support on Capitol Hill.”
A worker connects panels on floating solar farm project in Huainan, China. Kevin Frayer/Getty Images
The United States installed just under 11 gigawatts of solar panels in the first three months of this year, industry data show. In June alone, China installed nearly 15 gigawatts, PV Tech reported. And, in a detail that demonstrates just how many panels the People’s Republic has been deploying at home in recent years, that represented an 85% drop from the previous month and close to a 40% decline compared to June of last year.
The photovoltaic installation plunge followed Beijing’s rollout of two new policies that changed the renewables business in China. The first, called the 531 policy, undid guaranteed feed-in tariffs and required renewable projects to sell electricity on the spot market. That took effect on June 1. The other, called the 430 policy, took effect on May 1 and mandated that new distributed solar farms consume their own power first before allowing the sale of surplus electricity to the grid. As a result of the stalled installations, a top panel manufacturer warned the trade publication Opis that companies may need to raise prices by as much as 10%.
For years now, Fortescue, the world’s fourth-biggest producer of iron ore, has directed much of the earnings from its mines in northwest Australia and steel mills in China toward building out a global green hydrogen business. But changes to U.S. policy have taken a toll. Last week, Fortescue told investors it was canceling its green hydrogen project in Arizona, which had been set to come online next year. It’s also abandoning its plans for a green hydrogen plant on Australia’s northeastern coast, The Wall Street Journal reported.
“A shift in policy priorities away from green energy has changed the situation in the U.S.,” Gus Pichot, Fortescue’s chief executive of growth and energy, told analysts on a call. “The lack of certainty and a step back in green ambition has stopped the emerging green-energy markets, making it hard for previously feasible projects to proceed.” But green hydrogen isn’t dead everywhere. Just last week, the industrial gas firm Air Liquide made a final decision to invest in a 200-megawatt green hydrogen plant in the Netherlands.
The Trump administration put two high-ranking officials at the National Oceanic and Atmospheric Administration on administrative leave, CNN reported. The reasoning behind the move wasn’t clear, but both officials — Steve Volz, who leads NOAA’s satellites division, and Jeff Dillen, NOAA’s deputy general counsel — headed up the investigation into whether President Donald Trump violated NOAA’s scientific integrity policies during his so-called Sharpiegate scandal.
The incident from September 2019, during Trump’s first term, started when the president incorrectly listed Alabama among the states facing a threat from Hurricane Dorian. Throughout the following week, Trump defended the remark, insisting he had been right, and ultimately showed journalists a weather map that had been altered with a black Sharpie market to show the path of the storm striking Alabama. NOAA’s investigation into the incident concluded that Neil Jacobs, the former agency official who backed Trump at the time and is now nominated to serve as chief, succumbed to political pressure and violated scientific integrity rules.
In March, North Carolina’s Republican-controlled Senate passed a bill to repeal the state’s climate law and scrap the 2030 deadline by which the monopoly utility Duke Energy had to slash its planet-heating emissions by 70% compared to 2005 levels. Governor Josh Stein, a Democrat, vetoed the legislation. But on Tuesday, the GOP majorities in both chambers of the legislature plan to vote to override the veto.
Doing so and enacting the bill could cost North Carolina more than 50,000 jobs annually and cause tens of billions of dollars in lost investments, Canary Media’s Elizabeth Ouzts reported. That’s according to a new study from a consultancy commissioned by clean-energy advocates in the state. The analysis is based on data from the state-sanctioned consumer advocate, Public Staff.
For years, a mystery has puzzled scientists: Why did Neanderthal remains show levels of a nitrogen isotope only seen among carnivores like hyenas and wolves that eat more meat than a hominid could safely consume? New research finally points to an answer: Neanderthals were eating putrefying meat garnished with maggots, said Melanie Beasley, an anthropologist at Purdue University. “When you get the lean meat and the fatty maggot, you have a more complete nutrient that you’re consuming.”
Oregon’s Cram Fire was a warning — the Pacific Northwest is ready to ignite.
What could have been the country’s first designated megafire of 2025 spluttered to a quiet, unremarkable end this week. Even as national headlines warned over the weekend that central Oregon’s Cram Fire was approaching the 100,000-acre spread usually required to achieve that status, cooler, damper weather had already begun to move into the region. By the middle of the week, firefighters had managed to limit the Cram to 95,736 acres, and with mop-up operations well underway, crews began rotating out for rest or reassignment. The wildfire monitoring app Watch Duty issued what it said would be its final daily update on the Cram Fire on Thursday morning.
By this time in 2024, 10 megafires had already burned or ignited in the U.S., including the more-than-million-acre Smokehouse Creek fire in Texas last spring. While it may seem wrong to describe 2025 as a quieter fire season so far, given the catastrophic fires in the Los Angeles area at the start of the year, it is currently tracking below the 10-year average for acres burned at this point in the season. Even the Cram, a grassland fire that expanded rapidly due to the hot, dry conditions of central Oregon, was “not [an uncommon fire for] this time of year in the area,” Bill Queen, a public information officer with the Pacific Northwest Complex Incident Management Team 3, told me over email.
At the same time, the Cram Fire can also be read as a precursor. It was routine, maybe, but also large enough to require the deployment of nearly 900 fire personnel at a time when the National Wildland Fire Preparedness Level is set to 4, meaning national firefighting resources were already heavily committed when it broke out. (The preparedness scale, which describes how strapped federal resources are, goes up to 5.) Most ominous of all, though, is the forecast for the Pacific Northwest for “Dirty August” and “Snaptember,” historically the two worst months of the year in the region for wildfires.
National Interagency Coordination Center
“Right now, we’re in a little bit of a lull,” Jessica Neujahr, a public affairs officer with the Oregon Department of Forestry, acknowledged to me. “What comes with that is knowing that August and September will be difficult, so we’re now doing our best to make sure that our firefighters are taking advantage of having time to rest and get rejuvenated before the next big wave of fire comes through.”
That next big wave could happen any day. The National Interagency Fire Center’s fire potential outlook, last issued on July 1, describes “significant fire potential” for the Northwest that is “expected to remain above average areawide through September.” The reasons given include the fact that “nearly all areas” of Washington and Oregon are “abnormally dry or in drought status,” combined with a 40% to 60% probability of above-average temperatures through the start of the fall in both states. Moisture from the North American Monsoon, meanwhile, looks to be tracking “largely east of the Northwest.” At the same time, “live fuels in Oregon are green at mid to upper elevations but are drying rapidly across Washington.”
In other words, the components for a bad fire season are all there — the landscape just needs a spark. Lightning, in particular, has been top of mind for Oregon forecasters, given the tinderbox on the ground. A single storm system, such as one that rolled over southeast and east-central Oregon in June, can produce as many as 10,000 lightning strikes; over the course of just one night earlier this month, thunderstorms ignited 72 fires in two southwest Oregon counties. And the “kicker with lightning is that the fires don’t always pop up right away,” Neujahr explained. Instead, lightning strike fires can simmer for up to a week after a storm, evading the detection of firefighting crews until it’s too late. “When you have thousands of strikes in a concentrated area, it’s bound to stretch the local resources as far as they can go,” Neujahr said.
National Interagency Coordination Center
The National Interagency Fire Center has “low confidence … regarding the number of lightning ignitions” for the end of summer in the Northwest, in large part due to the incredible difficulty of forecasting convective storms. Additionally, the current neutral phase of the El Niño-Southern Oscillation means there is a “wide range of potential lightning activity” that adds extra uncertainty to any predictions. The NIFC’s higher confidence in its temperature and precipitation outlooks, in turn, “leads to a belief that the ratio of human to natural ignitions will remain high and at or above 2024 levels.” (An exploding transformer appears to have been the ignition source for the Cram Fire; approximately 88% of wildfires in the United States have human-caused origins, including arson.)
Periodic wildfires are a naturally occurring part of the Western ecosystem, and not all are attributable to climate change. But before 1995, the U.S. averaged fewer than one megafire per year; between 2005 and 2014, that average jumped to 9.8 such fires per year. Before 1970, there had been no documented megafires at all.
Above-average temperatures and drought conditions, which can make fires larger and burn hotter, are strongly associated with a warming atmosphere, however. Larger and hotter fires are also more dangerous. “Our biggest goal is always to put the fires out as fast as possible,” Neujahr told me. “There is a correlation: As fires get bigger, the cost of the fire grows, but so do the risks to the firefighters.”
In Oregon, anyway, the Cram Fire’s warning has registered. Shortly after the fire broke out, Oregon Governor Tina Kotek declared a statewide emergency with an eye toward the months ahead. “The summer is only getting hotter, drier, and more dangerous — we have to be prepared for worsening conditions,” she said in a statement at the time.
It’s improbable that there won’t be a megafire this season; the last time the U.S. had a year without a fire of 100,000 acres or more was in 2001. And if or when the megafire — or megafires — break out, all signs point to the “where” being Oregon or Washington, concentrating the area of potential destruction, exhausting local personnel, and straining federal resources. “When you have two states directly next to each other dealing with the same thing, it just makes it more difficult to get resources because of the conflicting timelines,” Neujahr said.
By October, at least, there should be relief: The national fire outlook describes “an increasing frequency of weather systems and precipitation” that should “signal an end of fire season” for the Northwest once fall arrives. But there are still a long 68 days left to go before then.