You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Wildfire evacuation notices are notoriously confusing, and the stakes are life or death. But how to make them better is far from obvious.

How many different ways are there to say “go”? In the emergency management world, it can seem at times like there are dozens.
Does a “level 2” alert during a wildfire, for example, mean it’s time to get out? How about a “level II” alert? Most people understand that an “evacuation order” means “you better leave now,” but how is an “evacuation warning” any different? And does a text warning that “these zones should EVACUATE NOW: SIS-5111, SIS-5108, SIS-5117…” even apply to you?
As someone who covers wildfires, I’ve been baffled not only by how difficult evacuation notices can be to parse, but also by the extent to which they vary in form and content across the United States. There is no centralized place to look up evacuation information, and even trying to follow how a single fire develops can require hopping among jargon-filled fire management websites, regional Facebook pages, and emergency department X accounts — with some anxious looking-out-the-window-at-the-approaching-pillar-of-smoke mixed in.
Google and Apple Maps don’t incorporate evacuation zone data. Third-party emergency alert programs have low subscriber rates, and official government-issued Wireless Emergency Alerts, or WEAs — messages that trigger a loud tone and vibration to all enabled phones in a specific geographic region — are often delayed, faulty, or contain bad information, none of which is ideal in a scenario where people are making life-or-death decisions. The difficulty in accessing reliable information during fast-moving disasters like wildfires is especially aggravating when you consider that nearly everyone in America owns a smartphone, i.e. a portal to all the information in the world.
So why is it still so hard to learn when and where specific evacuation notices are in place, or if they even apply to you? The answer comes down to the decentralized nature of emergency management in the United States.
A downed power line sparks a fire on a day with a Red Flag Warning. A family driving nearby notices the column of smoke and calls to report it to 911. The first responders on the scene realize that the winds are fanning the flames toward a neighborhood, and the sheriff decides to issue a wildfire warning, communicating to the residents that they should be ready to leave at a moment’s notice. She radios her office — which is now fielding multiple calls asking for information about the smoke column — and asks for the one person in the office that day with training on the alert system to compose the message.
Scenarios like these are all too common. “The people who are put in the position of issuing the messages are doing 20 other things at the same time,” Jeannette Sutton, a researcher at the University at Albany’s Emergency and Risk Communication Message Testing Lab, told me. “They might have limited training and may not have had the opportunity to think about what the messages might contain — and then they’re told by an incident commander, Send this, and they’re like, Oh my God, what do I do?”
The primary way of issuing wildfire alerts is through WEAs, with 78,000 messages sent since 2012. Although partnerships between local emergency management officials, the Federal Emergency Management Agency, the Federal Communications Commission, and cellular and internet providers facilitate the technology, it’s local departments that determine the actual content of the message. Messaging limits force some departments to condense the details of complicated and evolving fire events into 90 characters or fewer. Typos, confusing wording, and jargon inevitably abound.
Emergency management teams often prefer to err on the side of sending too few messages rather than too many for fear of inducing information overload. “We’re so attached to our devices, whether it’s Instagram or Facebook or text messages, that it’s hard to separate the wheat from the chaff, so to speak — to make sure that we are getting the right information out there,” John Rabin, the vice president of disaster management at the consulting firm ICF International and a former assistant administrator at the Federal Emergency Management Agency, told me. “One of the challenges for local and state governments is how to bring [pertinent information] up and out, so that when they send those really important notifications for evacuations, they really resonate.”
But while writing an emergency alert is a bit of an art, active prose alone doesn’t ensure an effective evacuation message.
California’s Cal Fire has found success with the “Ready, Set, Go” program, designed by the International Association of Fire Chiefs, which uses an intuitive traffic light framework — “ready” is the prep work of putting together a go-bag and waiting for more news if a fire is in the vicinity, escalating to the “go” of the actual evacuation order. Parts of Washington and Oregon use similar three-tiered systems of evacuation “levels” ranging from 1 to 3. Other places, like Montana, rely on two-step “evacuation warnings” and “evacuation orders.”
Watch Duty, a website and app that surged in popularity during the Los Angeles fires earlier this year, doesn’t worry about oversharing. Most information on Watch Duty comes from volunteers, who monitor radio scanners, check wildfire cameras, and review official law enforcement announcements, then funnel the information to the organization’s small staff, who vet it before posting. Though WatchDuty volunteers and staff — many of whom are former emergency managers or fire personnel themselves — actively review and curate the information on the app, the organization still publishes far more frequent and iterative updates than most people are used to seeing and interpreting. As a result, some users and emergency managers have criticized Watch Duty for having too much information available, as a result.
The fact that Watch Duty was downloaded more than 2 million times during the L.A. fires, though, would seem to testify to the fact that people really are hungry for information in one easy-to-locate place. The app is now available in 22 states, with more than 250 volunteers working around the clock to keep wildfire information on the app up to date. John Clarke Mills, the app’s CEO and co-founder, has said he created the app out of “spite” over the fact that the government doesn’t have a better system in place for keeping people informed on wildfires.
“I’ve not known too many situations where not having information makes it better,” Katlyn Cummings, the community manager at Watch Duty, told me. But while the app’s philosophy is “rooted in transparency and trust with our users,” Cummings stressed to me that the app’s volunteers only use official and public sources of information for their updates and never include hearsay, separating it from other crowd-sourced community apps that have proved to be less than reliable.
Still, it takes an army of a dozen full-time staff and over 200 part-time volunteers, plus an obsessively orchestrated Slack channel to centralize the wildfire and evacuation updates — which might suggest why a more official version doesn’t exist yet, either from the government or a major tech company. Google Maps currently uses AI to visualize the boundaries of wildfires, but stops short of showing users the borders of local evacuation zones (though it will route you around known road closures). A spokesperson for Google also pointed me toward a feature in Maps that shares news articles, information from local authorities, and emergency numbers when users are in “the immediate vicinity” of an actively unfolding natural disaster — a kind of do-it-yourself Watch Duty. The company declined to comment on the record about why Maps specifically excludes evacuation zones. Apple did not respond to a request for comment.
There is, of course, a major caveat to the usefulness of Watch Duty.
Users of the app tend to be a self-selecting group of hyper-plugged-in digital natives who are savvy enough to download it or otherwise know to visit the website during an unfolding emergency. As Rabin, the former FEMA official, pointed out, Watch Duty users aren’t the population that first responders are most concerned about — they’re like “Boy Scouts,” he said, because they’re “always prepared.” They’re the ones who already know what’s going on. “It’s reaching the folks that aren’t paying attention that is the big challenge,” he told me.
The older adult population is the most vulnerable in cases of wildfire. Death tolls often skew disproportionately toward the elderly; of the 30 people who died in the Los Angeles fires in January, for example, all but two were over 60 or disabled, with the average age of the deceased 77, the San Francisco Chronicle reported. Part of that is because adults 65 and older are more likely to have physical impairments that make quick or unplanned evacuations challenging. Social and technological isolation are also factors — yes, almost everyone in America has a smartphone, but that includes just 80% of those 65 and older, and only 26% of the older adult population feels “very confident” using computers or smartphones. According to an extensive 2024 report on how extreme weather impacts older adults by CNA, an independent, nonprofit research organization, “Evacuation information, including orders, is not uniformly communicated in ways and via media that are accessible to older adults or those with access and functional needs.”
Sutton, the emergency warning researcher, also cautioned that more information isn’t always better. Similar to the way scary medical test results might appear in a health portal before a doctor has a chance to review them with you (and calm you down), wildfire information shared without context or interpretation from emergency management officials means the public is “making assumptions based upon what they see on Watch Duty without actually having those official messages coming from the public officials who are responsible for issuing those messages,” she said. One role of emergency managers is to translate the raw, on-the-ground information into actionable guidance. Absent that filter, panic is probable, which could lead to uncontrollable evacuation traffic or exacerbate alert fatigue. Alternatively, people might choose to opt out of future alerts or stop checking for updates.
Sutton, though she’s a strong advocate of creating standardized language for emergency alerts — “It would be wonderful if we had consistent language that was agreed upon” between departments, she told me — was ultimately skeptical of centralizing the emergency alert system under a large agency like FEMA. “The movement of wildfires is so fast, and it requires knowledge of the local communities and the local terrain as well as meteorological knowledge,” she said. “Alerts and warnings really should be local.”
The greater emphasis, Sutton stressed, should be on providing emergency managers with the training they need to communicate quickly, concisely, and effectively with the tools they already have.
The high wire act of emergency communications, though, is that while clear and regionally informed messages are critical during life-or-death situations, it also falls on residents in fire-risk areas to be ready to receive them. California first adopted the “Ready, Set, Go” framework in 2009, and it has spent an undisclosed amount of money over the years on a sustained messaging blitz to the public. (Cal Fire’s “land use planning and public education budget is estimated at $16 million, and funds things like the updated ad spots it released as recently as this August.) Still, there is evidence that even that has not been enough — and Cal Fire is the best-resourced firefighting agency in the country, setting the gold standard for an evacuation messaging campaign.
Drills and test messages are one way to bring residents up to speed, but participation is typically very low. Many communities and residents living in wildfire-risk areas continue to treat the threat with low urgency — something to get around to one day. But whether they’re coming from your local emergency management department or the White House itself, emergency notices are only as effective as the public is willing and able to heed them.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Deep Fission says that building small reactors underground is both safer and cheaper. Others have their doubts.
In 1981, two years after the accident at Three Mile Island sent fears over the potential risks of atomic energy skyrocketing, Westinghouse looked into what it would take to build a reactor 2,100 feet underground, insulating its radioactive material in an envelope of dirt. The United States’ leading reactor developer wasn’t responsible for the plant that partially melted down in Pennsylvania, but the company was grappling with new regulations that came as a result of the incident. The concept went nowhere.
More than a decade later, the esteemed nuclear physicist Edward Teller resurfaced the idea in a 1995 paper that once again attracted little actual interest from the industry — that is, until 2006, when Lowell Wood, a physicist at the Lawrence Livermore National Laboratory, proposed building an underground reactor to Bill Gates, who considered but ultimately abandoned the design at his nuclear startup, TerraPower.
Now, at last, one company is working to make buried reactors a reality.
Deep Fission proposes digging boreholes 30 inches in diameter and about a mile deep to house each of its 15-megawatt reactors. And it’s making progress. In August, the Department of Energy selected Deep Fission as one of the 10 companies enrolled in the agency’s new reactor pilot program, meant to help next-generation startups split their first atoms by July. In September, the company announced a $30 million reverse merger deal with a blank check firm to make its stock market debut on the lesser-known exchange OTCQB. Last month, Deep Fission chose an industrial park in a rural stretch of southeastern Kansas as the site of its first power plant.
Based in Berkeley, California, the one-time hub of the West Coast’s fading anti-nuclear movement, the company says its design is meant to save money on above-ground infrastructure by letting geology do the work to add “layers of natural containment” to “enhance safety.” By eliminating much of that expensive concrete and steel dome that encases the reactor on the surface, the startup estimates “that our approach removes up to 80% of the construction cost, one of the biggest barriers for nuclear, and enables operation within six months of breaking ground.”
“The primary benefit of placing a reactor a mile deep is cost and speed,” Chloe Frader, Deep Fission’s vice president of strategic affairs, told me. “By using the natural pressure and containment of the Earth, we eliminate the need for the massive, above-ground structures that make traditional nuclear expensive and slow to build.”
“Nuclear power is already the safest energy source in the world. Period,” she said. “Our underground design doesn’t exist because nuclear is unsafe, it exists because we can make something that is already extremely safe even safer, simpler, and more affordable.”
But gaining government recognition, going public, and picking a location for a first power plant may prove the easy part. Convincing others in the industry that its concept is a radical plan to cut construction costs rather than allay the public’s often-outsize fear of a meltdown has turned out to be difficult, to say nothing of what actually building its reactors will entail.
Despite the company’s recent progress, I struggled to find anyone who didn’t have a financial stake in Deep Fission willing to make the case for its buried reactors.
Deep Fission is “solving a problem that doesn't actually exist,” Seth Grae, the chief executive of the nuclear fuel company Lightbridge, told me. In the nearly seven decades since fission started producing commercial electrons on the U.S. grid, no confirmed death has ever come from radiation at a nuclear power station.
“You’re trying to solve a political problem that has literally never hurt anyone in the entire history of our country since this industry started,” he said. “You’re also making your reactors more expensive. In nuclear, as in a lot of other projects, when you build tall or dig deep or lift big and heavy, those steps make the projects much more expensive.”
Frader told me that subterranean rock structures would serve “as natural containment, which also enhances safety.” That’s true to some extent. Making use of existing formations “could simplify surface infrastructure and streamline construction,” Leslie Dewan, a nuclear engineer who previously led a next-generation small modular reactor startup, told IEEE Spectrum.
If everything pans out, that could justify Deep Fission’s estimate that its levelized cost of electricity — not the most dependable metric, but one frequently used by solar and wind advocates — would be between $50 and $70 per megawatt-hour, lower than other SMR developers’ projections. But that’s only if a lot of things go right.
“A design that relies on the surrounding geology for safety and containment needs to demonstrate a deep understanding of subsurface behavior, including the stability of the rock formations, groundwater movement, heat transfer, and long-term site stability,” Dewan said. “There are also operational considerations around monitoring, access, and decommissioning. But none of these are necessarily showstoppers: They’re all areas that can be addressed through rigorous engineering and thoughtful planning.”
As anyone in the geothermal industry can tell you, digging a borehole costs a lot of money. Drilling equipment comes at a high price. Underground geology complicates a route going down one mile straight. And not every hole that’s started ends up panning out, meaning the process must be repeated over and over again.
For Deep Fission, drilling lots of holes is part of the process. Given the size of its reactor, to reach a gigawatt — the output of one of Westinghouse’s flagship AP1000s, the only new type of commercial reactor successfully built from scratch in the U.S. this century — Deep Fission would need to build 67 of its own microreactors. That’s a lot of digging, considering that the diameters of the company’s boreholes are on average nearly three times wider than those drilled for harvesting natural gas or geothermal.
The company isn’t just distinguished by its unique approach. Deep Fission has a sister company, Deep Isolation, that proposes burying spent nuclear fuel in boreholes. In April, the two startups officially partnered in a deal that “enables Deep Fission to offer an end-to-end solution that includes both energy generation and long-term waste management.”
In theory, that combination could offer the company a greater social license among environmental skeptics who take issue with the waste generated from a nuclear plant.
In 1982, Congress passed a landmark law making the federal government responsible for the disposal of all spent fuel and high-level radioactive waste in the country. The plan centered on building a giant repository to permanently entomb the material where it could remain undisturbed for thousands of years. The law designated Yucca Mountain, a rural site in southwestern Nevada near the California border, as the exclusive location for the debut repository.
Construction took years to start. After initial work got underway during the Bush administration, Obama took office and promptly slashed all funding for the effort, which was opposed by then-Senate Majority Leader Harry Reid of Nevada; the nonpartisan Government Accountability Office clocked the move as a purely political decision. Regardless of the motivation, the cancellation threw the U.S. waste disposal strategy into limbo because the law requires the federal government to complete Yucca Mountain before moving on to other potential storage sites. Until that law changes, the U.S. effort to find a permanent solution to nuclear waste remains in limbo, with virtually all the spent fuel accumulated over the years kept in intermediate storage vessels on site at power plants.
Finland finished work on the world’s first such repository in 2024. Sweden and Canada are considering similar facilities. But in the U.S., the industry is moving beyond seeing its spent fuel as waste, as more companies look to start up a recycling industry akin to those in Russia, Japan, and France to reprocess old uranium into new pellets for new reactors. President Donald Trump has backed the effort. The energy still stored in nuclear waste just in this country is sufficient to power the U.S. for more than a century.
Even if Americans want an answer to the nuclear waste problem, there isn’t much evidence to suggest they want to see the material stored near their homes. New Mexico, for example, passed a law barring construction of an intermediate storage site in 2023. Texas attempted to do the same, but the Supreme Court found the state’s legislation to be in violation of the federal jurisdiction over waste.
While Deep Fission’s reactors would be “so far removed from the biosphere” that the company seems to think the NRC will just “hand out licenses and the public won’t worry,” said Nick Touran, a veteran engineer whose consultancy, What Is Nuclear, catalogs reactor designs and documents from the industry’s history, “the assumption that it’ll be easy and cheap to site and license this kind of facility is going to be found to be mistaken,” he told me.
The problem with nuclear power isn’t the technology, Brett Rampal, a nuclear expert at the consultancy Veriten, told me. “Nuclear has not been suffering from a technological issue. The technology works great. People do amazing things with it, from curing cancer to all kinds of almost magical energy production,” he told me. “What we need is business models and deployment models.”
Digging a 30-inch borehole a mile deep would be expensive enough, but Rampal also pointed out that lining those shafts with nuclear-grade steel and equipping them with cables would likely pencil out to a higher price than building an AP1000 — but with one one-hundredth of the power output.
Deep Fission insists that isn’t the case, and that the natural geology “removes the need for complex, costly pressure vessels and large engineered structures” on the surface.
“We still use steel and engineered components where necessary, but the total material requirements are a fraction of those used in a traditional large-scale plant,” Frader said.
Ultimately, burying reactors is about quieting concerns that should be debunked head on, Emmet Penney, a historian of the industry and a senior fellow at the Foundation for American Innovation, a right-leaning think tank that advocates building more reactors in the U.S., told me.
“Investors need to wake up and realize that nuclear is one of the safest power sources on the planet,” Penney said. “Otherwise, goofy companies will continue to snow them with slick slide decks about solving non-issues.”
On energy efficiency rules, Chinese nuclear, and Japan’s first offshore wind
Current conditions: Warm air headed northward up the East Coast is set to collide with cold air headed southward over the Great Lakes and Northeast, bringing snowfall followed by higher temperatures later in the week • A cold front is stirring up a dense fog in northwest India • Unusually frigid Arctic air in Europe is causing temperatures across northwest Africa to plunge to double-digit degrees below seasonal norms, with Algiers at just over 50 degrees Fahrenheit this week.

Oil prices largely fell throughout 2025, capping off December at their lowest level all year. Spot market prices for Brent crude, the leading global benchmark for oil, dropped to $63 per barrel last month. The reason, according to the latest analysis of the full year by the Energy Information Administration, is oversupply in the market. China’s push to fill its storage tanks kept prices from declining further. Israel’s June 13 strikes on Iran and attacks on oil infrastructure between Russia and Ukraine briefly raised prices throughout the year. But the year-end average price still came in at $69 per barrel, the lowest since 2020, even when adjusted for inflation.

The price drop bodes poorly for reviving Venezuela’s oil industry in the wake of the U.S. raid on Caracas and arrest of the South American country’s President Nicolás Maduro. At such low levels, investments in new infrastructure are difficult to justify. “This is a moment where there’s oversupply,” oil analyst Rory Johnston told my colleague Matthew Zeitlin yesterday. “Prices are down. It’s not the moment that you’re like, I’m going to go on a lark and invest in Venezuela.”
The Energy Department granted a Texas company known for recycling defunct tools from oil and gas drilling an $11.5 million grant to fund an expansion of its existing facility in a rural county between San Antonio and Dallas. The company, Amermin, said the funding will allow it to increase its output of tungsten carbide by 300%, “reducing our reliance on foreign nations like China, which produces 83%” of the world’s supply of the metal used in all kinds of defense, energy, and hardware applications. “Our country cannot afford to rely on our adversaries for the resources that power our energy industry,” Representative August Pfluger, a Texas Republican, said in a statement. “This investment strengthens our district’s role in American energy leadership while providing good paying jobs to Texas families.”
That wasn’t the agency’s only big funding announcement. The Energy Department gave out $2.7 billion in contracts for enriched uranium, with $900 million each to Maryland-based Centrus Energy, the French producer Orano, and the California-headquartered General Matter. “President Trump is catalyzing a resurgence in the nation’s nuclear energy sector to strengthen American security and prosperity,” Secretary of Energy Chris Wright said in a press release. “Today’s awards show that this Administration is committed to restoring a secure domestic nuclear fuel supply chain capable of producing the nuclear fuels needed to power the reactors of today and the advanced reactors of tomorrow.”
Low-income households in the United States pay roughly 30% more for energy per square foot than households who haven’t faced trouble paying for electricity and heat in the past, federal data shows. Part of the problem is that the national efficiency standards for one of the most affordable types of housing in the nation, manufactured homes, haven’t been updated since 1994. Congress finally passed a law in 2007 directing the Department of Energy to raise standards for insulation, and in 2022, the Biden administration proposed new rules to increase insulation and reduce air leaks. But the regulations had yet to take effect when President Donald Trump returned to office last year. Now the House of Representatives is prepared to vote on legislation to nullify the rules outright, preserving the standards set more than three decades ago. The House Committee on Rules is set to vote on advancing the bill as early as Tuesday night, with a full floor vote likely later in the week. “You’re just locking in higher bills for years to come if you give manufacturers this green light to build the homes with minimal insulation,” Mark Kresowik, senior policy director of the American Council for an Energy-Efficient Economy, told me.
Sign up to receive Heatmap AM in your inbox every morning:
The newest reactor at the Zhangzhou nuclear station in Fujian Province has officially started up commercial operation as China’s buildout of new atomic power infrastructure picks up pace this year. The 1,136-megawatt Hualong One represents China’s leading indigenous reactor design. Where once Beijing preferred the top U.S. technology for large-scale reactors, the Westinghouse AP1000, the Hualong One’s entirely domestic supply chain and design that borrows from the American standard has made China’s own model the new leader.
In a sign of just how many reactors China is building — at least 35 underway nationwide, as I noted in yesterday’s newsletter — the country started construction on two more the same week the latest Hualong One came online. World Nuclear News reported that first concrete has been poured for a pair of CAP1000 reactors, the official Chinese version of the Westinghouse AP1000, at two separate plants in southern China.
Back in October, when Japan elected Sanae Takaichi as its first female prime minister, I told you about how the arch-conservative leader of the Liberal Democratic Party planned to refocus the country’s energy plans on reviving the nuclear industry. But don’t count out offshore wind. Unlike Europe’s North Sea or the American East Coast, the sharp continental drop in Japan’s ocean makes rooting giant turbines to the sea floor impossible along much of its shoreline. But the Goto Floating Wind Farm — employing floating technology under consideration on the U.S. West Coast, too — announced the start of commercial operations this week, pumping nearly 17 megawatts of power onto the Japanese grid. Japanese officials last year raised the country’s goal for installed capacity of offshore wind to 10 gigawatts by 2030 and 45 gigawatts by 2040, Power magazine noted, so the industry still has a long way to go.
Beavers may be the trick to heal nature’s burn scars after a wildfire. A team of scientists at the U.S. Forest Service and Colorado State University are building fake beaver dams in scorched areas to study how wetlands created by the dams impact the restoration of the ecosystem and water quality after a blaze. “It’s kind of a brave new world for us with this type of work,” Tim Fegel, a doctoral candidate at Colorado State, who led the research, said in a press release.
Rob talks about the removal of Venezuela’s Nicolás Maduro with Commodity Context’s Rory Johnston.
Over the weekend, the U.S. military entered Venezuela and captured its president, Nicolás Maduro, and his wife. Maduro will now face drug and gun charges in New York, and some members of the Trump administration have described the operation as a law enforcement mission.
President Donald Trump has taken a different tack. He has justified the operation by asserting that America is going to “take over” Venezuela’s oil reserves, even suggesting that oil companies might foot the bill for the broader occupation and rebuilding effort. Trump officials have told oil companies that the U.S. might not help them recover lost assets unless they fund the American effort now, according to Politico.
Such a move seems openly imperialistic, ill-advised, and unethical — to say the least. But is it even possible? On this week’s episode of Shift Key, Rob talks to Rory Johnston, a Toronto-based oil markets analyst and the founder of Commodity Context. They discuss the current status of the Venezuelan oil industry, what a rebuilding effort would cost, and whether a reopened Venezuelan oil industry could change U.S. energy politics — or even, as some fear, bring about a new age of cheap fossil fuels.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: First of all, does Venezuela have the world’s largest hydrocarbon reserves — like, proven hydrocarbon reserves? And number two, let’s say that Trump has made some backdoor deal with the existing regime, that these existing issues are ironed ou to actually use those reserves. What kind of investment are we talking about on that end?
Rory Johnston: The mucky answer to this largest reserve question is, there’s lots of debate. I will say there’s a reasonable claim that at one point Venezuela — Venezuela has a lot of oil. Let’s just say it that way: Venezuela has a lot of oil, particularly the Orinoco Belt, which, again, similar to the oil sands we’re talking about —
Meyer: This is the Orinoco flow. We’re going to call this the Orinoco flow question.
Johnston: Yeah, exactly, that. Similar to the Canadian oil sands, we’re talking about more than a trillion barrels of oil in place, the actual resource in the ground. But then from there you get to this question of what is technically recoverable. Then from there, what is economically recoverable? The explosion in, again, both Venezuelan and Canadian reserve estimates occurred during that massive boom in oil prices in the mid-2000s. And that created the justification for booking those as reserves rather than just resources.
So I think that there is ample — in the same way, like, Russia and the United States don’t actually have super impressive-looking reserves on paper, but they do a lot with them, and I think in actuality that matters a lot more than the amount of technical reserves you have in the ground. Because as we’ve seen, Venezuela hasn’t been able to do much with those reserves.
So in order to, how to actually get that operating, this is where we get back to the — we’re talking tens, hundreds of billions of dollars, and a lot of time. And these companies are not going to do that without seeing a track record of whatever government replaces the current. The current vice president, his acting president — which I should also note, vice president and oil minister, which I think is particularly relevant here — so I think there’s lots that needs to happen. But companies are not going to trip over themselves to expose themselves to this risk. We still don’t know what the future is going to look like for Venezuela.
Mentioned:
The 4 Things Standing Between the U.S. and Venezuela’s Oil
Trump admin sends tough private message to oil companies on Venezuela
Previously on Shift Key: The Trump Policy That Would Be Really Bad for Oil Companies
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.