You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Wildfire evacuation notices are notoriously confusing, and the stakes are life or death. But how to make them better is far from obvious.

How many different ways are there to say “go”? In the emergency management world, it can seem at times like there are dozens.
Does a “level 2” alert during a wildfire, for example, mean it’s time to get out? How about a “level II” alert? Most people understand that an “evacuation order” means “you better leave now,” but how is an “evacuation warning” any different? And does a text warning that “these zones should EVACUATE NOW: SIS-5111, SIS-5108, SIS-5117…” even apply to you?
As someone who covers wildfires, I’ve been baffled not only by how difficult evacuation notices can be to parse, but also by the extent to which they vary in form and content across the United States. There is no centralized place to look up evacuation information, and even trying to follow how a single fire develops can require hopping among jargon-filled fire management websites, regional Facebook pages, and emergency department X accounts — with some anxious looking-out-the-window-at-the-approaching-pillar-of-smoke mixed in.
Google and Apple Maps don’t incorporate evacuation zone data. Third-party emergency alert programs have low subscriber rates, and official government-issued Wireless Emergency Alerts, or WEAs — messages that trigger a loud tone and vibration to all enabled phones in a specific geographic region — are often delayed, faulty, or contain bad information, none of which is ideal in a scenario where people are making life-or-death decisions. The difficulty in accessing reliable information during fast-moving disasters like wildfires is especially aggravating when you consider that nearly everyone in America owns a smartphone, i.e. a portal to all the information in the world.
So why is it still so hard to learn when and where specific evacuation notices are in place, or if they even apply to you? The answer comes down to the decentralized nature of emergency management in the United States.
A downed power line sparks a fire on a day with a Red Flag Warning. A family driving nearby notices the column of smoke and calls to report it to 911. The first responders on the scene realize that the winds are fanning the flames toward a neighborhood, and the sheriff decides to issue a wildfire warning, communicating to the residents that they should be ready to leave at a moment’s notice. She radios her office — which is now fielding multiple calls asking for information about the smoke column — and asks for the one person in the office that day with training on the alert system to compose the message.
Scenarios like these are all too common. “The people who are put in the position of issuing the messages are doing 20 other things at the same time,” Jeannette Sutton, a researcher at the University at Albany’s Emergency and Risk Communication Message Testing Lab, told me. “They might have limited training and may not have had the opportunity to think about what the messages might contain — and then they’re told by an incident commander, Send this, and they’re like, Oh my God, what do I do?”
The primary way of issuing wildfire alerts is through WEAs, with 78,000 messages sent since 2012. Although partnerships between local emergency management officials, the Federal Emergency Management Agency, the Federal Communications Commission, and cellular and internet providers facilitate the technology, it’s local departments that determine the actual content of the message. Messaging limits force some departments to condense the details of complicated and evolving fire events into 90 characters or fewer. Typos, confusing wording, and jargon inevitably abound.
Emergency management teams often prefer to err on the side of sending too few messages rather than too many for fear of inducing information overload. “We’re so attached to our devices, whether it’s Instagram or Facebook or text messages, that it’s hard to separate the wheat from the chaff, so to speak — to make sure that we are getting the right information out there,” John Rabin, the vice president of disaster management at the consulting firm ICF International and a former assistant administrator at the Federal Emergency Management Agency, told me. “One of the challenges for local and state governments is how to bring [pertinent information] up and out, so that when they send those really important notifications for evacuations, they really resonate.”
But while writing an emergency alert is a bit of an art, active prose alone doesn’t ensure an effective evacuation message.
California’s Cal Fire has found success with the “Ready, Set, Go” program, designed by the International Association of Fire Chiefs, which uses an intuitive traffic light framework — “ready” is the prep work of putting together a go-bag and waiting for more news if a fire is in the vicinity, escalating to the “go” of the actual evacuation order. Parts of Washington and Oregon use similar three-tiered systems of evacuation “levels” ranging from 1 to 3. Other places, like Montana, rely on two-step “evacuation warnings” and “evacuation orders.”
Watch Duty, a website and app that surged in popularity during the Los Angeles fires earlier this year, doesn’t worry about oversharing. Most information on Watch Duty comes from volunteers, who monitor radio scanners, check wildfire cameras, and review official law enforcement announcements, then funnel the information to the organization’s small staff, who vet it before posting. Though WatchDuty volunteers and staff — many of whom are former emergency managers or fire personnel themselves — actively review and curate the information on the app, the organization still publishes far more frequent and iterative updates than most people are used to seeing and interpreting. As a result, some users and emergency managers have criticized Watch Duty for having too much information available, as a result.
The fact that Watch Duty was downloaded more than 2 million times during the L.A. fires, though, would seem to testify to the fact that people really are hungry for information in one easy-to-locate place. The app is now available in 22 states, with more than 250 volunteers working around the clock to keep wildfire information on the app up to date. John Clarke Mills, the app’s CEO and co-founder, has said he created the app out of “spite” over the fact that the government doesn’t have a better system in place for keeping people informed on wildfires.
“I’ve not known too many situations where not having information makes it better,” Katlyn Cummings, the community manager at Watch Duty, told me. But while the app’s philosophy is “rooted in transparency and trust with our users,” Cummings stressed to me that the app’s volunteers only use official and public sources of information for their updates and never include hearsay, separating it from other crowd-sourced community apps that have proved to be less than reliable.
Still, it takes an army of a dozen full-time staff and over 200 part-time volunteers, plus an obsessively orchestrated Slack channel to centralize the wildfire and evacuation updates — which might suggest why a more official version doesn’t exist yet, either from the government or a major tech company. Google Maps currently uses AI to visualize the boundaries of wildfires, but stops short of showing users the borders of local evacuation zones (though it will route you around known road closures). A spokesperson for Google also pointed me toward a feature in Maps that shares news articles, information from local authorities, and emergency numbers when users are in “the immediate vicinity” of an actively unfolding natural disaster — a kind of do-it-yourself Watch Duty. The company declined to comment on the record about why Maps specifically excludes evacuation zones. Apple did not respond to a request for comment.
There is, of course, a major caveat to the usefulness of Watch Duty.
Users of the app tend to be a self-selecting group of hyper-plugged-in digital natives who are savvy enough to download it or otherwise know to visit the website during an unfolding emergency. As Rabin, the former FEMA official, pointed out, Watch Duty users aren’t the population that first responders are most concerned about — they’re like “Boy Scouts,” he said, because they’re “always prepared.” They’re the ones who already know what’s going on. “It’s reaching the folks that aren’t paying attention that is the big challenge,” he told me.
The older adult population is the most vulnerable in cases of wildfire. Death tolls often skew disproportionately toward the elderly; of the 30 people who died in the Los Angeles fires in January, for example, all but two were over 60 or disabled, with the average age of the deceased 77, the San Francisco Chronicle reported. Part of that is because adults 65 and older are more likely to have physical impairments that make quick or unplanned evacuations challenging. Social and technological isolation are also factors — yes, almost everyone in America has a smartphone, but that includes just 80% of those 65 and older, and only 26% of the older adult population feels “very confident” using computers or smartphones. According to an extensive 2024 report on how extreme weather impacts older adults by CNA, an independent, nonprofit research organization, “Evacuation information, including orders, is not uniformly communicated in ways and via media that are accessible to older adults or those with access and functional needs.”
Sutton, the emergency warning researcher, also cautioned that more information isn’t always better. Similar to the way scary medical test results might appear in a health portal before a doctor has a chance to review them with you (and calm you down), wildfire information shared without context or interpretation from emergency management officials means the public is “making assumptions based upon what they see on Watch Duty without actually having those official messages coming from the public officials who are responsible for issuing those messages,” she said. One role of emergency managers is to translate the raw, on-the-ground information into actionable guidance. Absent that filter, panic is probable, which could lead to uncontrollable evacuation traffic or exacerbate alert fatigue. Alternatively, people might choose to opt out of future alerts or stop checking for updates.
Sutton, though she’s a strong advocate of creating standardized language for emergency alerts — “It would be wonderful if we had consistent language that was agreed upon” between departments, she told me — was ultimately skeptical of centralizing the emergency alert system under a large agency like FEMA. “The movement of wildfires is so fast, and it requires knowledge of the local communities and the local terrain as well as meteorological knowledge,” she said. “Alerts and warnings really should be local.”
The greater emphasis, Sutton stressed, should be on providing emergency managers with the training they need to communicate quickly, concisely, and effectively with the tools they already have.
The high wire act of emergency communications, though, is that while clear and regionally informed messages are critical during life-or-death situations, it also falls on residents in fire-risk areas to be ready to receive them. California first adopted the “Ready, Set, Go” framework in 2009, and it has spent an undisclosed amount of money over the years on a sustained messaging blitz to the public. (Cal Fire’s “land use planning and public education budget is estimated at $16 million, and funds things like the updated ad spots it released as recently as this August.) Still, there is evidence that even that has not been enough — and Cal Fire is the best-resourced firefighting agency in the country, setting the gold standard for an evacuation messaging campaign.
Drills and test messages are one way to bring residents up to speed, but participation is typically very low. Many communities and residents living in wildfire-risk areas continue to treat the threat with low urgency — something to get around to one day. But whether they’re coming from your local emergency management department or the White House itself, emergency notices are only as effective as the public is willing and able to heed them.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On vulnerable batteries, Canada’s about face, and France’s double down
Current conditions: New York City is digging out from upward of six inches of snow • Storm Emilia is deluging Spain with as much as 10 inches of rain • South Africa and Southern Australia are both at high risk of wildfires.
Last month, I told you about China’s latest attempt at fusion diplomacy, uniting more than 10 countries including France and the United Kingdom in an alliance to work together on the holy grail energy source. Over the weekend, The New York Times published a sweeping feature on China’s domestic fusion efforts, highlighting just how much Beijing is outspending the West on making the technology long mocked as “the energy source of tomorrow that always will be” a reality today. China went from spending nothing on fusion energy in 2021 to making investments this year that outmatch the rest of the world’s efforts combined. Consider this point of comparison: The Chinese government and private investors poured $2.1 billion into a new state-owned fusion company just the summer. That investment alone, the Times noted, is two and half times the U.S. Department of Energy’s annual fusion budget.
Still, the race between the two countries is heating up. Cumulative investment in fusion energy soared 30% between June and September to $15 billion, up from a little over $11 billion, according to a report by the European Union’s F4E Fusion Observatory written up by NucNet. That fusion is, as Heatmap's Katie Brigham has written, “finally, possibly, almost” arriving at the same time that data centers to power artificial intelligence are driving up electricity demand is fortuitous. Or, it would be, if AI doesn’t end up proving to be inflated by hype. On Friday, Wall Street showed jitters over the possibility that the bubble may burst, sending shares of companies such as Oracle and Nvidia plunging. It begs the question Katie raised in another story in September: What if we get fusion, but we don’t need it?
The South Korean battery manufacturer SK On canceled its partnership to work on electric vehicles with the Ford Motor Company, throwing the fate of the two companies’ three factories in the American Southeast into jeopardy. The announcement, E&E News reported, also casts doubt over the $9.6 billion loan the Biden administration gave the joint venture, known as Blue Oval SK. The collaboration came as American automakers teamed up with Korean battery companies to hasten the establishment of an EV supply chain. General Motors inked a deal with LG Energy Solution and Ford with SK On. But as sales of EVs flatline — due in part to President Donald Trump axing the federal tax credit for purchases of new electric vehicles — the nascent supply networks are withering on the vine. Ford isn’t down for the count, however. In August, as I wrote in the newsletter at the time, the company unveiled what it billed as its “Model T moment” for EVs, a whole new assembly line structure meant to scale up and iron out production of battery-powered cars.

Prime Minister Mark Carney has scrapped Canada’s carbon tax, inked major oil and gas deals, and pumped the brakes on a scheme to boost electric vehicle sales. Now the leader of the Liberal Party is facing blowback from allies and sustainability-minded executives who say the reversals put Canada’s net-zero goals out of reach. The former environment minister, Steven Guilbeault, quit the cabinet in protest, as have two founding members of the federal government’s Net Zero Advisory Body. “From a climate-science standpoint, this risks undermining the urgency of emissions reduction,” Paul Polman, the former chief executive of home-goods giant Unilever and a campaigner for sustainable capitalism, told the Financial Times. “Betting heavily on unproven massive-scale CCS [carbon capture and storage] and a cleaner-oil narrative while accelerating production ... seems like a gamble with global emissions targets, and with the credibility of net zero by 2050. Gambling with firm science does not seem smart to me.”
Sign up to receive Heatmap AM in your inbox every morning:
Utility-scale battery storage systems are facing increased risk of cyberattack from hackers working either for governments or criminal groups. That’s according to a white paper from the consultancies Brattle Group and Dragos. Battery deployments are expected to grow by as much as 45% in the next five years, raising the need for new protections against digital meddling. “Battery storage systems are being used across the grid to enable the deployment of variable demand sources such as solar and wind,” Phil Tonkin, field chief technology officer at Dragos, told Utility Dive’s sister publication Cybersecurity Dive. “This growing dependence makes them an attractive target.” Even relatively small-scale attacks can have devastating consequences. A single outage involving a 100-megawatt system for four hours in the U.S. would cost up to $1.2 million in revenue, the report found. A large-scale cyber attack that takes out 3,000 megawatts for a day would take a $39 million toll on the economy. Dragos is currently tracking as many as 18 groups that “are known to pose a threat to the electrical grid.”
Canada may be taking a U turn on climate policy, but France just updated its National Low-Carbon Strategy with an end date for using fossil fuels. The document “foresees the end of oil use between 2040 and 2045,” France24 reported, with natural gas phasing out by 2050. France is far ahead of most developed countries toward decarbonizing its power system since the nation has generated the majority of its electricity from nuclear reactors since the late 20th century. Under the plan, the French government expected electricity consumption to increase as heat pumps replace furnaces and electric vehicles swap in for diesel cars. Renewables are expected to cover the increase in electricity production.
Conspiracy theorists who think condensation trails from airplanes are some kind of population-control chemical may have their hands full with the paranoia fodder that geoengineering efforts represent. But actual scientists at Leipzig University have made a discovery about contrails’ effect on warming. The researchers found that “hidden” contrails within naturally forming cirrus clouds — previously not factored into assessments — contribute up to 10% of the warming all contrails cause. “We now know that not only the visible contrails we see in the sky but also those that form within clouds need to be taken into account when assessing the impact of aviation on the climate,” Torsten Seelig, the study's lead author, said in a statement.
The seminal global climate agreement changed the world, just not in the way we thought it would.
Ten years ago today, the world’s countries adopted the Paris Agreement, the first global treaty to combat climate change. For the first time ever, and after decades of failure, the world’s countries agreed to a single international climate treaty — one that applied to developed and developing countries alike.
Since then, international climate diplomacy has played out on what is, more or less, the Paris Agreement’s calendar. The quasi-quinquennial rhythm of countries setting goals, reviewing them, and then making new ones has held since 2015. A global pandemic has killed millions of people; Russia has invaded Ukraine; coups and revolutions have begun and ended — and the United States has joined and left and rejoined the treaty, then left again — yet its basic framework has remained.
Perhaps you can tell: I am not among those who believe that the treaty has been a failure, although it would be difficult — in this politically arid moment — to call it a complete success. Yet the ensuing decade has seen real progress in limiting global temperature rise. When negotiators gathered to finalize the agreement, it seemed likely that global average temperatures could rise by 4 degrees Celsius by 2100, as compared to their pre-industrial level. Today, a rise from 2.5 to 3 degrees Celsius seems more likely.
And for a document that is often described as non-binding, or even as hortatory, Paris has had a surprisingly material influence on global politics in the ensuing years. During the negotiations, the small-island states — the three dozen or so countries most affected by near-term sea-level rise — successfully got the final text to recognize a “stretch goal” of limiting warming to just 1.5 degrees above pre-industrial levels. They also tasked the United Nations’ advisory scientific body to prepare a special report on the virtues of avoiding 1.5 degrees of warming. When that report was released in 2018, it catalyzed a new wave of global climate action, spawning the European Green Deal — and eventually the U.S. Inflation Reduction Act.
Yet there is at least one way that Paris did not go as imagined.
Cast your mind back to Paris 10 years ago, right as diplomats filed in and began to applaud the final text’s completion. “This is a tremendous victory for all of our citizens — not for any one country or any one bloc, but for everybody here who has worked so hard to bring us across the finish line,” John Kerry, then the U.S. secretary of state, declared to his fellow diplomats.
It was a strange kind of victory. After decades in which western liberals had attempted to secure a globally binding climate treaty — an agreement that would limit each country’s greenhouse gas emissions — the world finally won a non-binding alternative. Under the Paris Agreement, each country would pledge to cut its emissions by as much as it could manage. Countries would then meet regularly to review these pledges, encourage each other to get more ambitious, and gradually ratchet the world into a lower-carbon future.
Kerry was reasonably direct about how such a mechanism would work: capital markets. “We are sending literally a critical message to the global marketplace,” he said. “Many of us here know that it won’t be governments that actually make the decision or find the product, the new technology, the saving grace of this challenge. It will be the genius of the American spirit.”
He was right, in a way: The Paris Agreement did send a signal to the global marketplace— and it did so in part because governments did shape policy and investment outcomes, not because they resisted doing so. But it did not reveal the genius of the American spirit, per se.
In the years running up to and following the Paris Agreement, China rolled out a series of important policies to boost its new energy sectors — a roadmap encouraging “new energy vehicle” sales in 2012, billions of consumer subsidies beginning in 2014, and a domestic content mandate for electric-vehicle batteries in 2015. These programs — along with canny decisions made by Chinese entrepreneurs and engineers, and no small amount of demand pull from companies and policies in the West — have transformed the world’s approach to decarbonization. They have begun to change even what decarbonization means — in the United States, in the western democracies, and around the world.
Ten years ago, Kerry could assume that any eventual solution to climate change would be geopolitically neutral, if not advantageous to the United States. But in 2025, to a degree that commentators still hesitate to describe, the climate story has become the China story. Across a range of sectors, how a country approaches its near-term decarbonization goals depends on how it understands and relates to the Chinese government and Chinese companies.
Consider the power sector, which generates just under a third of all greenhouse gas emissions globally. For many countries, the best way to cut carbon pollution — and to add more power generation to the grid — will be to build new utility-scale solar and battery projects. That will all but require working with Chinese firms, which dominate 80% of the solar supply chain. (They command up to 98% market share for some pieces of equipment, according to the International Energy Agency.)
It is much the same story in the grid-scale battery industry. China produces more than three-quarters of the world’s batteries, and it refines most of the minerals that go into those batteries. Its batteries are at least 20% cheaper than those made in Europe or North America. Most of the world’s top battery firms are Chinese — in part because they have more experience than anyone else; the country’s firms have manufactured 70% of all lithium-ion batteries ever produced. Nearly two dozen countries have bought at least $500 million in Chinese-made batteries this year, according to the think tank Ember.
What if a country wants to build wind turbines, not batteries? Even then, it will have to work to buy non-Chinese products. Although European and American firms have long led among turbine makers, six of the top 10 wind turbine manufacturers are now in mainland China, according to BloombergNEF. And for the first time since analysts’ rankings began in 2013, none of the world’s top three turbine makers are North American or European.
Transportation generates another 13% of global climate emissions. If a country wants to tackle that sector, then it will find itself (again) working with China — which made more than 70% of the world’s EVs in 2024. Thanks to the country’s sprawling battery and electronics-making ecosystem, its home-grown automakers — BYD, Geely, Xiaomi, and others — can produce more affordable, innovative, and desirable EVs at greater scale and at lower cost than automakers anywhere else. “The competitive reality is that the Chinese are the 700-pound gorilla in the EV industry,” Jim Farley, the CEO of Ford, said recently. As the scholar Ilaria Mazzocco put it in a recent report: “Chinese companies are ubiquitous in the value chain for EVs and battery components, meaning that for most countries, climate policy is now at least in part linked to policy toward China, and more specifically trade with China.”
That insight — that climate policy is now linked to policy toward China — will apply more and more, even when countries wish to tackle the remaining third of emissions that come from energy-related sources. Earlier this year, China approved a plan to build roughly 100 low-carbon industrial parks by 2030, where its firms will develop new ways to capture carbon, make steel, and refine chemicals without carbon pollution. (The Trump administration revoked funding for similar low-carbon projects in the U.S. earlier this year.) At the same time, China is building more conventional nuclear reactors than the rest of the world combined, and it may be pulling ahead of the United States in the race to develop commercial fusion.
This wasn’t inevitable. It happened because Chinese politicians, executives, and engineers decided to make it happen — choices owing as much to the government’s focus on energy security as to its concern for the global environmental commons. But it was also the result of American business leaders and politicians squandering this country’s leadership in climate technologies — and especially the result of choices made by Trump administration officials, who at nearly every opportunity have regarded batteries and electric vehicles as a technological sideshow to the more profitable oil and gas sector.
It was the Trump administration, after all, that licensed and then eventually gave U.S.-funded research on flow batteries to a Chinese company in 2017. It was the Trump administration that gutted fuel economy and clean car rules in 2018 and 2019, setting the American car industry back compared to its Chinese and European competitors. And it was the Trump administration and congressional Republicans that killed electric vehicle tax credits earlier this year, further choking off investment.
For progressives, this all might suggest a pleasant parable: China embraced the energy transition, and America didn’t, and now America is paying for it. Nowadays, commentators often invoke China’s clean energy dominance to inspire awe at its accomplishments. And how can you not, in truth, be impressed? China’s industrial miracle — its move to the frontier of global technological development — is the most important story of the past quarter century. The scale of the Chinese consumer market and the success of Chinese industrial policy (or, at least, its success so far) has wrenched world history in new directions. And Chinese companies have done humanity a great service by bringing down the cost of solar panels, batteries, and EVs on the supply side, even if they did so at first with demand-side assistance from policies in California or Europe.
But climate advocates in North America and Europe cannot be completely sanguine about what this development means globally. For environmentalists and other western liberals who have worked in decarbonization for decades, it will in particular require some rhetorical and political adjustment. We cannot pretend that we are playing by the 1990s’ rules, nor that environmental activism is but one part of a post-1970s progressive coalition, which is free to make demands and ignore inconvenient trade-offs. Basic questions of decarbonization policy now have patent geopolitical significance, which environmental groups attempt to side-step at their own peril.
Yet it isn’t only Americans or Europeans who must answer these questions. China’s dominance of decarbonization technology means that for the time being, every country on Earth must address this dynamic. When the scholar Mazzocco looked at how six countries around the world are approaching Chinese EVs, she found an uneven landscape, she told me on a recent podcast. Costa Rica, which has long embraced climate policy, has welcomed Chinese-made EVs; Brazil opened its doors to them but has now begun to close it.
Most major countries have some form of domestic automaking industry; no country will be able to sit back and passively allow Chinese exports to drive their local automakers out of business. At the same time, China’s manufacturing primacy is already making conventional export-driven growth less attractive for countries. And that will only be the beginning of the dilemmas to come. As long as going green requires buying and integrating Chinese technologies into critical infrastructure, environmental policymakers will be wagering decarbonization’s success on some of the world’s highest stakes geopolitical bets.
Environmentalists have long insisted climate change is a national security issue, but are we ready to think and act like it is? Do Western anxieties about a large and globalized war — either a Chinese invasion of Taiwan, a Russian invasion of the EU, or both — reflect a reasonable response to a real and growing menace, or an elite panic driven by our declining economic primacy? If China were to invade Taiwan, what would that mean for climate and energy policy — not only in the West, but around the world? Would American or European environmentalists even get a vote on that question — and if they do, how would they balance emissions reduction against other goals? If the unthinkable happens, we will all be called to account.
A decade ago, I remember watching the live stream of the world’s diplomats applauding their own success in Paris and realizing that I would be seeing that video in documentaries and news reels for the rest of my life. How will I see it then? I wondered. Would it strike me as the naivete of a simpler time, an era when liberal internationalism still seemed possible? Or would it really reflect a turning point, the moment when the world took the climate challenge seriously, pragmatically, and began to decarbonize in earnest? A decade later, I still don’t know. Perhaps the answer is both.
The electric vehicle-maker’s newly unveiled, lidar-equipped, autonomy-enabled R2 is scheduled to hit the road next year.
When Rivian revealed the R2 back in the spring of 2024, the compelling part of the electric SUV was price. The vehicle looked almost exactly like the huge R1S that helped launch the brand, but scaled down to a true two-row, five-seat ride that would start at $45,000. That’s not exactly cheap, but it would create a Rivian for lots of drivers who admired the company’s sleek adventure EV but couldn’t afford to spend nearly a hundred grand on a vehicle.
But at the company’s “Autonomy and AI Day,” held on Thursday at Rivian’s Palo Alto office in the heart of Silicon Valley, company leaders raised the expectations for their next vehicle. R2 wouldn’t just be the more affordable Rivian — it would be the AI-defined car that vaults them into the race to develop truly self-driving cars.
First, the hardware. Rivian said that the R2 will come with 11 camera and five radar units spread around the vehicle to improve the car’s ability to comprehend the world around it. But the crucial, headline-grabbing addition is a lidar, or light-based radar, unit. Lidar shoots laser pulses and measures the time it takes for the reflected light to return, thereby building a three-dimensional picture of the environment it surveys.
Those twirling bobs you might have seen on the top of Waymo’s driverless cars as they roam the streets, mapping the world around them, are lidar. The technology’s ability to see the world in detail across distances is necessary for the upper levels of automotive autonomy — the ones where the car can basically do it all and the humans can take their hands off the wheel and their eyes off the road.
Lidar units to date have been large and expensive, which is one reason they’re seen in pods that protrude from the top of a vehicle. Rivian, however, figured out how to mount one within the vehicle, in the area at the top of the front windshield near the rear-view mirror. The forward-facing lidar gives the vehicle 300 meters of forward vision. Demos the company showed during autonomy day revealed just how much more a constellation of cameras, radar, and lidar can see than a system without lidar, especially in dark or foggy conditions.
The other “wow” reveal on Thursday was that the R2 will process all that camera data on a chip that Rivian built from scratch to handle the AI and autonomous driving workload of its vehicles, rather than sourcing chips from some other tech company. CEO R.J. Scaringe said during his presentation to open the event that this kind of vertical integration was meant to allow the company to keep pace with the AI race as opposed to having to work with whatever third-party components it could get.
The result is a leap forward in capability over what Rivian offered with the R1S SUV and R1T pickup truck. Those vehicles had a hand-free system that let the EVs drive themselves with minimal human oversight on a little more than 100,000 miles of roads that were well-marked and well-mapped. James Philbin, the vice president of autonomy and AI, promised on Thursday that the lidar and processing improvements would allow hands-free driving on more than 3 million miles of roads — basically anywhere that the lines on the highway are clear enough for the R2’s cameras to see. And what’s next, Rivian promises, is true autonomy. The SUV will drive itself entirely from point to point when the conditions allow, and as the AI continuously improves over time, you might eventually see driverless Rivians out there competing with the likes of Waymo.
All this stuff costs money, of course. The Rivian Autonomy+ package would add $2,500 or a monthly fee of $50 to the purchase price. But the fact that this tech is coming to a car that starts in the $40,000s is telling. It is how many people will get their first taste of true vehicle autonomy.
Thursday’s event wasn’t all about self-driving, either. Rivian also built an AI software assistant for the cabin that can be summoned with a “Hey Rivian” and perform all kinds of in-car functions, such as changing the driving mode or adjusting the climate control. The achievement here is one of natural language. In Rivian’s demos, the assistant could ably fulfill the driver’s wishes with a command like “make it a little toastier in here” as opposed to formal instructional language like “turn the driver’s temperature to 70 degrees and set the seat heater to level one.”
At times this feels unnecessary, like AI looking for something to do to justify its existence. It doesn’t take that many button-pushes to alter the climate, after all. I admit, though, that having test-driven Rivians on road trips this summer, one of their weak points is my struggle to remember exactly which menu contains which controls. AI, in a way, helpfully solves a problem created by the modern EV that has amazing capability, but routes that capability through a large touchscreen that’s annoying (and dangerous) to navigate while driving.
Rivian is playing catch up with Tesla when it comes to autonomy, of course, as Elon Musk’s company has been touting its Full Self Driving feature for years and is now building the Cybercab, which is meant to be a car that humans will never drive. But Tesla has struggled to meet its timelines and targets for autonomous systems, giving rivals like Rivian a window to develop their own technology.
And so, what’s clear after Rivian’s event is that car companies, especially EV makers, are going to be key players in this autonomy and AI age. Nowhere was it written that electric vehicles had to be synonymous with self-driving vehicles. Battery-powered cars could be dumb and not smart, ruled by buttons instead of touchscreens. It just so happens that EVs are finally coming of age during the simultaneous ascent of artificial intelligence — and that the leading EV-only startups are Silicon Valley tech companies, or at least started out that way.
Tesla has forgotten about acting like a car company and staked its future on being the one that will crack true self-driving and reap the windfall. Rivian, which hadn’t made nearly as much noise about AI and autonomy before this week, has put forth a compelling case for its in-house autonomous systems and AI models, ones that will continue to improve as they’re trained on data provided by thousands of R2s hitting the road starting in 2026.