You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
What happens when you can’t run and you can’t hide?
You did everything right.
You had your go-bag ready and you knew your evacuation route. You monitored the wildfire as it moved closer and closer to your home, and you kept the volume turned up on your phone so you could heed a “LEAVE NOW” notice if one came. When it finally does, jolting you awake in the middle of the night, you realize that you can smell the smoke inside. When did the fire get so close?
The power is out, so you make your way downstairs using your phone’s flashlight. You have to Google how to manually open the garage door since the electronic clicker doesn’t work (oh, so that’s what the red cord is for). Your heart is thumping, but you’ve made it, you’re in your car; you even remembered to keep it filled to half a tank in preparation. You pull out of your driveway and onto the dirt road that leads out of your rural neighborhood. The night sky ahead of you is a weird neon orange.
You have to hit your brakes when you reach the intersection at the main road. It’s completely backed up with other evacuees, their red taillights stretching ahead through the thickening smoke as far as your eye can see. Some of your neighbors are pulling their boats on trailers; there is an RV up ahead. And you can see the fire burning down the side of the hill now — toward you, toward the gridlocked traffic that isn’t moving.
Harrowing Fort McMurray wildfire escapeyoutu.be
Leaving your home is only the beginning of a wildfire evacuation. But the next step — the drive to a safe location — is usually given no more attention in preparedness guides than the reminder to “follow the directions of emergency officials.” In the best-case scenarios, where communication is clear and early and residents are prepared, that might be enough. But when communication breaks down, or fires move fast and unpredictably, traffic can reach a dangerous standstill and familiar roads can transform into death traps.
In 2015, some 20 vehicles were overcome by a fire while stuck in a traffic jam on Interstate 15 between Los Angeles and Las Vegas; on the same interstate in Utah five years later, a backup nearly became deadly as a fire burned up to the road’s shoulder and panicked travelers abandoned their cars. Fire evacuations in New South Wales, Australia, in 2020 resulted in a 10-hour backup, and Canada’s Highway 3 had bumper-to-bumper traffic earlier this month because it was the only road out of imperiled Yellowknife. In 2020, some 200 people had to be evacuated by helicopter from California’s Sierra National Forest after a fire cut off their only exit route.
And when people die in wildfires, they are often found in their vehicles. In Portugal, 47 of the 64 people killed during a 2017 forest fire were in their cars, trying to escape. At least 10 people were found dead in or near their cars after the 2018 Camp fire, the deadliest blaze in California’s history. And in Lahaina, Hawaii, this month, in what the Los Angeles Times has called “surely … the deadliest traffic jam in U.S. history,” the lack of advanced warning combined with inexplicably blocked roads led an untold number of people to perish in their cars while trying to evacuate, including a 7-year-old boy who was fleeing with his family; a man who used his last moments attempting to shield a beloved golden retriever in his hatchback; and a couple who were reportedly found in each other’s arms.
In a best-case scenario, emergency managers are able to phase evacuations in such a way that the roads don’t get backed up and residents have plenty of time to make it to safety. But wildfire is anything but predictable, and officials who call for an evacuation too soon can risk skeptical residents deciding to take a “wait and see” approach, where they only get in their car once things start to look dicey. In one 2017 study, only a quarter of people in wildfire-prone neighborhoods actually left as soon as they received an evacuation notice (other studies have found higher levels of compliance). This is the worst nightmare from an emergency management standpoint, since “evacuating at the last minute is probably the most dangerous thing you can do,” Sarah McCaffrey, one of the 2017 study’s authors, told The New Yorker.
Further complicating matters is the fact that many wildfire-prone areas are isolated or rural regions with a limited number of egresses to work with. One 2019 investigation found that in California alone, 350,000 people live in areas “that have both the highest wildfire risk designation, and either the same number or fewer exit routes per person as Paradise” — the site of the 2018 Camp fire, where backups on roads prevented many from escaping.
Evacuation traffic also doesn’t behave like the rush hour traffic we’re more familiar with. It’s “a peak of a peak,” with the congestion caused by “the sheer amount of people trying to leave and load onto the roadway at the same time in the same direction,” Stephen Wong, a wildfire evacuation researcher and an assistant professor of transportation engineering at the University of Alberta, told me. Burnovers and hazards like downed powerlines or trees can further reduce exit options, funneling all evacuees onto the same low-capacity roads. Worse, once that congestion starts to form, “you actually reduce the number of vehicles being able to go through that section,” Wong added. “So you go from 2,000 vehicles per hour [per lane], and it drops to, like, 500 vehicles per hour.”
Get one great climate story in your inbox every day:
Households will also frequently evacuate with multiple cars — rather than leave a valuable asset behind to burn — and tow trailers, boats, and RVs. As a result, the average vehicle length increases by 3% during wildfire evacuations, one recent study that looked at the 2019 Kincade fire in California found — leading, of course, to even worse congestion. (Agonizingly, Wong’s research further uncovered that over half of evacuating households “had at least two or more spare seats available”). The Kincade study also discovered that drivers significantly slow down during wildfire evacuations — contrary to the common misconception of careening, panicked escapees — likely due to a combination of factors such as lowered visibility and more cautious driving.
Because “most [evacuation] research focuses on hurricanes and then tornadoes,” Salman Ahmad, a traffic engineer at the civil engineering firm Fleis & VandenBrink, told me, “traffic simulations — how traffic moves during a wildfire — are still lacking.” When emergency planners use computer models to calculate minimum evacuation times for their jurisdictions, for example, their assumptions can be deadly. “If you plan for an allocation considering normal traffic as a benchmark, you’re basically not making the right assumption because you need to put in that extra safety margin” to account for “the fact that people slow down,” Enrico Ronchi, a fire researcher at Lund University in Sweden and the author of the Kincade study, told me.
Wong agreed, stressing that the number of variables fire managers need to juggle is dizzying. “Evacuations are really complex events that involve human behavior, risk perceptions, communication, emergency management, operations, the transportation system itself, psychology, the built environment, and biophysical fire,” Wong said. “So we have a long way to go for evidence-based and sufficient planning that can actually operationalize and prepare communities for these types of events.”
And that’s the scary thing: A person or a community might do everything right and still be at grave risk because of all the unknowns. Evacuation alerts might not get sent or arrive too late; exit routes might become unexpectedly blocked; fires might leapfrog, via flying embers, to create new spot fires that cut off egresses. Paradise, California, famously had a phased evacuation plan in place and had even run community wildfire drills, but even the best-laid plans can unravel.
Tom Cova, a geography professor at the University of Utah who has been studying wildfire evacuations for 30 years, told me that “too many communities may be planning for the roads to be open, the wireless emergency alert systems to work, there not to be tons of kids at home that day — you can just go down the list of things that [could go] wrong and think, What’s the backup plan?” The uncomfortable truth is that we need plans B, C, and D for when evacuations fail. Because they will fail.
Take Lahaina, where a closed bypass road concentrated outbound traffic onto a single, jam-packed street. When people started to panic and abandon their cars, it ultimately further obstructed the road for everyone behind them. “It’s like a chain reaction, where each car is seeing the [people in the] car in front of them run,” Cova said. “And then you look behind you, you can’t back up. If you look to the sides, you’re stuck. And then you say, ‘We’re going into the ocean, too.’”
That improvisation ultimately saved some lives. But “it’s hard for emergency managers to order this kind of thing because what if people drowned?” Cova went on. “So you’re trading one risk for another risk.”
But the need for creative improvisation is also a conclusion that’s been reached by the National Institute of Standards and Technology (NIST), the government agency tasked with issuing guidelines and regulations for engineers and emergency responders. In new guidance released last week, NIST used the Camp fire as its case study and found “evacuation is not a universal solution,” explaining there are times when “it may be better for residents to shelter in their community at a designated safety zone” rather than attempt to drive out of town.
This is a somewhat radical position for a U.S. agency since evacuations have long been the foundation of American wildfire preparations. But the thinking now appears to be turning toward asking “what shelters do we have?” if and when a worst-case scenario arises, as Cova further explained to me. “Temporary refuge areas, high schools, churches, large parking lots, large sports fields, golf courses, swimming pools — I wouldn’t recommend using any of these things, and I wouldn’t recommend people being told to use them,” he said, “but [people] have to know what to do when they can’t get out.”
In the case of Paradise, for example, NIST reports that there were 31 such “temporary refuge areas” that ultimately saved 1,200 lives during the fire, including 14 parking lots, seven roadways, six structures, and a handful of defensible natural areas, like a pre-established wildfire assembly area in a meadow that had already burned and ended up serving as a refuge for as many as 85 people. Once established, these concentrated refuge areas can be defended by firefighters, as was the case for 150 people who memorably hunkered down to wait out the blaze in a strip mall parking lot. It’s far from a best-case scenario, but that’s still 150 people who would’ve otherwise been stuck in potentially deadly traffic jams trying to get out of town.
Temporary refuges are unplanned areas of last resort, but establishing a larger safety zone network and preemptively hardening gathering places like schools and community centers could also potentially reduce exposure on roads by shortening the distance evacuees need to travel to get to lower-hazard areas. So-called WUI fire shelters — essentially, personal fire bunkers that NIST warns against because they aren’t standardized in the U.S. but are popular in Australia — could also be explored. “That’s the direction we’re heading in with wildfire communities,” Cova told me grimly, “because we don’t seem to be able to stop the development in these areas. That means we’re forcing people into a corner where shelter is their only backup plan.”
Maybe this is difficult for you to imagine: Your community is different; a wildfire couldn’t happen here. You’d evacuate as soon as you got the notice; there’s no way you’d get stuck. You’re a good driver; you could get out without help. But as Lahaina and other “unprecedented” fires show, it’s the limits of our lived experiences that we’re up against now.
“We should think about possible scenarios that we have not seen before in our communities,” Ronchi, the Swedish fire researcher, said. “I understand that it’s a bit of a challenge for everyone because often you have to invest money for something that you have not experienced directly. But we are [living] in scenarios now in which we cannot anchor ourselves on our past experiences only.”
Read more about wildfires:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
And for his energy czar, Doug Burgum.
When Trump enters the Oval Office again in January, there are some climate change-related programs he could roll back or revise immediately, some that could take years to dismantle, and some that may well be beyond his reach. And then there’s carbon capture and storage.
For all the new regulations and funding the Biden administration issued to reduce emissions and advance the clean energy economy over the past four years, it did little to update the regulatory environment for carbon capture and storage. The Treasury Department never clarified how the changes to the 45Q tax credit for carbon capture under the Inflation Reduction Act affect eligibility. The Department of Transportation has not published its proposal for new safety rules for pipelines that transport carbon dioxide. And the Environmental Protection Agency has yet to determine whether it will give Texas permission to regulate its own carbon dioxide storage wells, a scenario that some of the state’s own representatives advise against.
That means, as the BloombergNEF policy associate Derrick Flakoll put it in an analysis published prior to the election, “the next administration and Congress will encounter a blank canvas of carbon capture infrastructure rules they can shape freely.”
Carbon capture is unique among climate technologies because it is, in most cases, a pure cost with no monetizable benefit. That means the policy environment — that great big blank canvas — is essential to determining which projects actually get built and whether the ones that do are actually useful for fighting climate change.
The next administration may or may not decide to take an interest in carbon capture, of course, but there’s reason to expect it will. Doug Burgum, Trump’s pick for the Department of the Interior who will also head up a new National Energy Council, has been a vocal supporter of carbon capture projects in his home state of North Dakota. Although Trump’s team will be looking for subsidies to cut in order to offset the tax breaks he has promised, his deep-pocketed supporters in the oil and gas industry who have made major investments in carbon capture based, in part, on the 45Q tax credit, will not want to see it on the chopping block. And carbon capture typically enjoys bipartisan support in Congress.
Congress first created the carbon capture tax credit in 2008, under the auspices of cleaning up the image of coal plants. Lawmakers updated the credit in 2018, and then again in 2022 with the Inflation Reduction Act, each iteration increasing the credit amount and expanding the types of projects that are eligible. Companies can now get up to $85 for every ton of CO2 captured from an industrial plant and sequestered underground, and $180 for every ton captured directly from the air. Combined with grants and loans in the 2021 Bipartisan Infrastructure Law, the changes have driven a surge in carbon capture and storage projects in the United States. More than 150 projects have been announced since the start of 2022, according to a database maintained by the International Energy Agency, compared to fewer than 100 over the four years prior.
Many of these projects are notably different from what has been proposed and tried in the past. Historically in the U.S., carbon capture has been used on coal-fired power plants, ethanol refineries, and at natural gas processing facilities, and almost all of the captured gas has been pumped into aging oil fields to help push more fuel out of the ground. But the new policy environment spurred at least some proposals in industries with few other options to decarbonize, including cement, hydrogen, and steel production. It also catalyzed projects that suck carbon directly from the air, versus capturing emissions at the source. Most developers now say they plan to sequester captured carbon underground rather than use it to drill for oil.
Only a handful of projects are actually under construction, however, and the prospects for others reaching that point are far from guaranteed. Inflation has eroded the value of the 45Q tax credit, Madelyn Morrison, the government affairs director for the Carbon Capture Coalition, told me. “Coupled with that, project deployment costs have really skyrocketed over the past several years. Some folks have said that equipment costs have gone up upwards of 50%,” she said.
Others aren’t sure whether they’ll even qualify, Flakoll told me. “There is a sort of shadow struggle going on over how permissive the credit is going to be in practice,” he said. For example, the IRA says that power plants have to capture 75% of their baseline emissions to be eligible, but it doesn’t specify how to calculate those baseline emissions. The Treasury solicited input on these questions and others shortly after the IRA passed. Comments raised concerns about how projects that share pipeline infrastructure should track and report their carbon sequestration claims. Environmental groups sought updates to the reporting and verification requirements to prevent taxpayer money from funding false or inflated claims. A 2020 investigation by the inspector general for tax administration found that during the first decade of the program, nearly $900 billion in tax credits were claimed for projects that did not comply with EPA reporting requirements. But the Treasury never followed up its request for comment with a proposed rule.
Permitting for carbon sequestration sites has also lagged. The Environmental Protection Agency has issued final permits for just one carbon sequestration project over the past four years, with a total of two wells. Fifty-five applications are currently under review.
Carbon dioxide pipeline projects have also faced opposition from local governments and landowners. In California, where lawmakers have generally supported the use of carbon capture for achieving state climate goals, and where more than a dozen projects have been announced, the legislature placed a moratorium on CO2 pipeline development until the federal government updates its safety regulations.
The incoming Congress and presidential administration could clear away some of these hurdles. Congress is already expected to get rid of or rewrite many of the IRA’s tax credit programs when it opens the tax code to address other provisions that expire next year. The Carbon Capture Coalition and other proponents are advocating for another increase to the value of the 45Q tax credit to adjust it for inflation. Trump’s Treasury department will have free rein to issue rules that make the credit as cheap and easy as possible to claim. The EPA, under new leadership, could also speed up carbon storage permitting or, perhaps more likely, grant primacy over permitting to the states.
But other Trump administration priorities could end up hurting carbon capture development. The projects with the surest path forward are the ones with the lowest cost of capture and multiple pathways for revenue generation, Rohan Dighe, a research analyst at Wood Mackenzie told me. For example, ethanol plants emit a relatively pure stream of CO2 that’s easy to capture, and doing so enables producers to access low-carbon fuel markets in California and Washington. Carbon capture at a steel plant or power plant is much more difficult, by contrast, as the flue gas contains a mix of pollutants.
On those facilities, the 45Q tax credit is too low to justify the cost, Dighe said, and other sources of revenue such as price premiums for green products are uncertain. “The Trump administration's been pretty clear in terms of wanting to deregulate, broadly speaking,” Dighe said, pointing to plans to axe the EPA’s power plant rules and the Securities and Exchange Commission’s climate disclosure requirements. “So those sorts of drivers for some of these projects moving forward are going to be removed.”
That means projects will depend more on voluntary corporate sustainability initiatives to justify investment. Does Amazon want to build a data center in West Texas? Is it willing to pay a premium for clean electricity from a natural gas plant that captures and stores its carbon?
But the regulatory environment still matters. Flakoll will be watching to see whether lax monitoring and reporting rules for carbon capture, if enacted, will hurt trust and acceptance of carbon capture projects to the point that companies find it difficult to find buyers for their products or insurance companies to underwrite them.
“There will be a more of a policy push for [CCS] to enter the market,” Flakoll said. “But it takes two to tango, and there's a question of how much the private sector will respond to that.”
What he wants them to do is one thing. What they’ll actually do is far less certain.
Donald Trump believes that tariffs have almost magical power to bring prosperity; as he said last month, “To me, the world’s most beautiful word in the dictionary is tariffs. It’s my favorite word.” In case anyone doubted his sincerity, before Thanksgiving he announced his intention to impose 25% tariffs on everything coming from Canada and Mexico, and an additional 10% tariff on all Chinese goods.
This is just the beginning. If the trade war he launched in his first term was haphazard and accomplished very little except costing Americans money, in his second term he plans to go much further. And the effects of these on clean energy and climate change will be anything but straightforward.
The theory behind tariffs is that by raising the price of an imported good, they give a stronger footing in the market; eventually, the domestic producer may no longer need the tariff to be competitive. Imposing a tariff means we’ve decided that a particular industry is important enough that it needs this kind of support — or as some might call it, protection — even if it means higher prices for a while.
The problem with across-the-board tariffs of the kind Trump proposes is that they create higher prices even for goods that are not being produced domestically and probably never will be. If tariffs raise the price of a six-pack of tube socks at Target from $9.99 to $14.99, it won’t mean we’ll start making tube socks in America again. It just means you’ll pay more. The same is often true for domestic industries that use foreign parts in their manufacturing: If no one is producing those parts domestically, their costs will unavoidably rise.
The U.S. imported over $3 trillion worth of goods in 2023, and $426 billion from China alone, so Trump’s proposed tariffs would represent hundreds of billions of dollars of increased costs. That’s before we account for the inevitable retaliatory tariffs, which is what we saw in Trump’s first term: He imposed tariffs on China, which responded by choking off its imports of American agricultural goods. In the end, the revenue collected from Trump’s tariffs went almost entirely to bailing out farmers whose export income disappeared.
The past almost-four years under Joe Biden have seen a series of back-and-forth moves in which new tariffs were announced, other tariffs were increased, exemptions were removed and reinstated. For instance, this May Biden increased the tariff on Chinese electric vehicles to over 100% while adding tariffs on certain EV batteries. But some of the provisions didn’t take effect right away, and only certain products were affected, so the net economic impact was minimal. And there’s been nothing like an across-the-board tariff.
It’s reasonable to criticize Biden’s tariff policies related to climate. But his administration was trying to navigate a dilemma, serving two goals at once: reducing emissions and promoting the development of domestic clean energy technology. Those goals are not always in alignment, at least in the short run, which we can see in the conflict within the solar industry. Companies that sell and install solar equipment benefit from cheap Chinese imports and therefore oppose tariffs, while domestic manufacturers want the tariffs to continue so they can be more competitive. The administration has attempted to accommodate both interests with a combination of subsidies to manufacturers and tariffs on certain kinds of imports — with exemptions peppered here and there. It’s been a difficult balancing act.
Then there are electric vehicles. The world’s largest EV manufacturer is Chinese company BYD, but if you haven’t seen any of their cars on the road, it’s because existing tariffs make it virtually impossible to import Chinese EVs to the United States. That will continue to be the case under Trump, and it would have been the case if Kamala Harris had been elected.
On one hand, it’s important for America to have the strongest possible green industries to insulate us from future supply shocks and create as many jobs-of-the-future as possible. On the other hand, that isn’t necessarily the fastest route to emissions reductions. In a world where we’ve eliminated all tariffs on EVs, the U.S. market would be flooded with inexpensive, high-quality Chinese EVs. That would dramatically accelerate adoption, which would be good for the climate.
But that would also deal a crushing blow to the American car industry, which is why neither party will allow it. What may happen, though, is that Chinese car companies may build factories in Mexico, or even here in the U.S., just as many European and Japanese companies have, so that their cars wouldn’t be subject to tariffs. That will take time.
Of course, whatever happens will depend on Trump following through with his tariff promise. We’ve seen before how he declares victory even when he only does part of what he promised, which could happen here. Once he begins implementing his tariffs, his administration will be immediately besieged by a thousand industries demanding exemptions, carve-outs, and delays in the tariffs that affect them. Many will have powerful advocates — members of Congress, big donors, and large groups of constituents — behind them. It’s easy to imagine how “across-the-board” tariffs could, in practice, turn into Swiss cheese.
There’s no way to know yet which parts of the energy transition will be in the cheese, and which parts will be in the holes. The manufacturers can say that helping them will stick it to China; the installers may not get as friendly an audience with Trump and his team. And the EV tariffs certainly aren’t going anywhere.
There’s a great deal of uncertainty, but one thing is clear: This is a fight that will continue for the entirety of Trump’s term, and beyond.
Give the people what they want — big, family-friendly EVs.
The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.
I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.
The L.A. show is one the major events on the yearly circuit of car shows, where the car companies traditionally reveal new models for the media and show off their whole lineups of vehicles for the public. Given that California is the EV capital of America, carmakers like to talk up their electric models here.
Hyundai’s brand partner, Kia, debuted a GT performance version of its EV9, adding more horsepower and flashy racing touches to a giant family SUV. Jeep reminded everyone of its upcoming forays into full-size and premium electric SUVs in the form of the Recon and the Wagoneer S. VW trumpeted the ID.Buzz, the long-promised electrified take on the classic VW Microbus that has finally gone on sale in America. The VW is the quirkiest of the lot, but it’s a design we’ve known about since 2017, when the concept version was revealed.
Boring isn’t the worst thing in the world. It can be a sign of a maturing industry. At auto shows of old, long before this current EV revolution, car companies would bring exotic, sci-fi concept cars to dial up the intrigue compared to the bread-and-butter, conservatively styled vehicles that actually made them gobs of money. During the early EV years, electrics were the shiny thing to show off at the car show. Now, something of the old dynamic has come to the electric sector.
Acura and Chrysler brought wild concepts to Los Angeles that were meant to signify the direction of their EVs to come. But most of the EVs in production looked far more familiar. Beyond the new hulking models from Hyundai and Kia, much of what’s on offer includes long-standing models, but in EV (Chevy Equinox and Blazer) or plug-in hybrid (Jeep Grand Cherokee and Wrangler) configurations. One of the most “interesting” EVs on the show floor was the Cybertruck, which sat quietly in a barely-staffed display of Tesla vehicles. (Elon Musk reveals his projects at separate Tesla events, a strategy more carmakers have begun to steal as a way to avoid sharing the spotlight at a car show.)
The other reason boring isn’t bad: It’s what the people want. The majority of drivers don’t buy an exotic, fun vehicle. They buy a handsome, spacious car they can afford. That last part, of course, is where the problem kicks in.
We don’t yet know the price of the Ioniq 9, but it’s likely to be in the neighborhood of Kia’s three-row electric, the EV9, which starts in the mid-$50,000s and can rise steeply from there. Stellantis’ forthcoming push into the EV market will start with not only pricey premium Jeep SUVs, but also some fun, though relatively expensive, vehicles like the heralded Ramcharger extended-range EV truck and the Dodge Charger Daytona, an attempt to apply machismo-oozing, alpha-male muscle-car marketing to an electric vehicle.
You can see the rationale. It costs a lot to build a battery big enough to power a big EV, so they’re going to be priced higher. Helpfully for the car brands, Americans have proven they will pay a premium for size and power. That’s not to say we’re entering an era of nothing but bloated EV battleships. Models such as the overpowered electric Dodge Charger and Kia EV9 GT will reveal the appetite for performance EVs. Smaller models like the revived Chevy Bolt and Kia’s EV3, already on sale overseas, are coming to America, tax credit or not.
The question for the legacy car companies is where to go from here. It takes years to bring a vehicle from idea to production, so the models on offer today were conceived in a time when big federal support for EVs was in place to buoy the industry through its transition. Now, though, the automakers have some clear uncertainty about what to say.
Chevy, having revealed new electrics like the Equinox EV elsewhere, did not hold a media conference at the L.A. show. Ford, which is having a hellacious time losing money on its EVs, used its time to talk up combustion vehicles including a new version of the palatial Expedition, one of the oversized gas-guzzlers that defined the first SUV craze of the 1990s.
If it’s true that the death of federal subsidies will send EV sales into a slump, we may see messaging from Detroit and elsewhere that feels decidedly retro, with very profitable combustion front-and-center and the all-electric future suddenly less of a talking point. Whatever happens at the federal level, EVs aren’t going away. But as they become a core part of the car business, they are going to get less exciting.