You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Where there’s heat — like, say, the molten core of the Earth — there’s energy.

Could the answer to our energy demand conundrums lie beneath our feet? And no, I’m not talking about oil, coal, or natural gas. I’m referring to the fundamental stuff of energy itself: heat. Geothermal power is having something of a moment as a non-carbon-emitting source of electricity that everyone seems to like — including climate activists, the oil and gas industry, technology companies, and even the Trump White House and Republican-controlled Congress.
Geothermal energy has been in use for decades, but has seemingly faced fundamental geological and physical restrictions in how much of a resource it could ever be. Now, however, thanks to new technological and process developments, including some borrowed from the oil and gas industry, geothermal could become a pillar of the energy system, potentially making up as much as 90 gigawatts of capacity by the middle of the century, roughly equal to nuclear power today.
But I’m getting ahead of myself — let’s start with the basics.
At its most fundamental, geothermal energy is the heat from the Earth’s core made usable up here on top of the crust. The International Energy Agency estimates that the Earth holds 45 terawatts of continuous heat flow, thanks to a mixture of energy left over from the planet’s formation and the radioactive decay of isotopes in its core and mantle of layers, where the temperature is probably around 5,000 degrees Celsius. In general, temperatures go up around 25 degrees per kilometer you go beneath the Earth’s crust.
Any geothermal system needs three things: heat, fluid, and permeability. The energy comes from heat, which is transferred through fluid, and the fluid has to move through permeable rocks to reach the surface. Traditional geothermal involves finding fluid — typically water or steam — that can be brought to the surface and used to spin turbines that generate electricity. Sometimes this happens directly with underground steam; in other cases, extremely hot water under high pressure is converted to steam as it’s brought to the surface; in still other cases, geothermal heat is used to heat another liquid, which is then vaporized to spin a turbine.
Traditional geothermal is inherently limited, however — there’s only so much hot water already under the Earth’s surface that can be economically tapped. “It’s a great solution, but only in a handful of places on Earth where those conditions are met,” Drew Nelson, vice president of programs, policy, and strategy at Project InnerSpace, a geothermal nonprofit, told me. Iceland, Kenya, Indonesia, certain parts of the American Southwest have the ideal mix, but that still leaves a lot of untapped energy. “It’s hot everywhere underground,” Nelson said.
The number of hot rocks through which fluid can be pumped is far, far greater than the amount of naturally occurring hot steam or water. Enhanced geothermal systems bring fluid to already hot rocks, in a sense creating a reservoir that otherwise you’d have to rely on nature to supply. This is done using techniques borrowed from the oil and gas industry, including horizontal drilling and hydraulic fracturing, to run fluid through the hot rocks before bringing it back up to the surface.
A related technology, closed-loop geothermal (sometimes called “advanced geothermal”), runs fluid through underground pipes that harvest heat from rocks, instead of turning the rock themselves into a reservoir for hot fluid.
The United States is the once and perhaps future champion of geothermal power. We still have the world’s largest installed base of geothermal generation — but it’s largely from projects that were built between 1980 and 1995, according to the International Energy Association. About half of the United States’ roughly 4 gigawatts of geothermal capacity came online in the 1980s alone, according to Energy Information Administration data. Most of this is in California and Nevada.
The Department of Energy has estimated that geothermal could provide at least 90 gigawatts of power, or around 4% of total U.S. generation capacity, by 2050. In practice, however, geothermal could be more valuable on the grid than other more plentiful energy sources because it’s not weather dependent, meaning that much more of that capacity is consistently available.
Either way, the geothermal industry by 2050 will look very different from the one today. Recent growth has been concentrated in California, where utility regulators and the state legislature have instituted aggressive mandates for geothermal procurement, seeing it as a round-the-clock source of non-carbon-emitting power. Future growth, however, has started throughout the American West, and could, thanks to new technologies, flourish all over the world.
As with any source of power, especially if it can be used 24/7, the answer is likely technology companies. The Rhodium Group estimated that geothermal could supply “up to 64%” of future data center demand.
Last year, Meta signed a deal for 150 megawatts of geothermal power from Sage Geosystems, a Texas-based next-generation geothermal startup that specializes in long-duration power generation, and specifically energy storage. That would likely come online in 2027.
One of the leading enhanced geothermal companies, Fervo, has been providing power from a site in Nevada since 2023, and is developing a substantially larger, 500-megawatt project in Beaver County, Utah, near an existing Department of Energy research facility. That should be online by 2026. More recently, Fervo has inked deals with the likes of Google and Nevada utility NV Energy, and is working with the Department of Energy to expand its drilling and bring down costs.
The company has also hinted that it has a megadeal in the works, but even without that, Fervo has achieved impressive scale and results. The company has reported steadily decreasing drilling costs, falling from over $9 million per well to under $5 million from 2022 to 2024, and raised hundreds of millions of dollars from investors including Breakthrough Energy Ventures, DCVC, and Devon Energy.
What has made geothermal distinctive among the array of non-emitting energy sources is that Republicans like it, too. Tax credits accessible to geothermal developers were largely spared in the One Big Beautiful Bill Act, which featured deep cuts to wind and solar incentives. A gaggle of Republican lawmakers have visited Fervo’s Utah site, and Fervo Chief Executive Tim Latimer recently spoke alongside fossil energy executives with the American Energy Dominance Caucus, a bipartisan House caucus. Past bills to streamline permitting for geothermal exploration have had Republican and Democratic sponsors, often from Mountain West states.
Even Trump likes geothermal. The White House’s new AI Action Plan, released in July, calls on policymakers to “prioritize the interconnection of reliable, dispatchable power sources as quickly as possible and embrace new energy generation sources at the technological frontier,” including, by name, “enhanced geothermal.”
One major near-term risk for the geothermal buildout is Trump’s tariff regime, which will likely mean higher input costs for geothermal producers on materials like steel. Another is the new restrictions on tax credits established in the One Big Beautiful Bill Act, which penalize companies with supply chain or financial connections to so-called “foreign entities of concern,” a list of countries that includes North Korea, Iran, Russia, and most importantly in this context, China.
While the exact nexus between China and geothermal is not entirely clear, “there are parts of geothermal technologies, such as pressure valves and drill casings and well casings and the like, that are not unique to geothermal that are very much part of the fracking industry that could be exposed to Chinese investment or Chinese supply contracts,” Advait Arun, senior associate for energy finance at the Center for Public Enterprise, told me.
There’s also the issue of getting next-generation geothermal projects financed. While geothermal companies themselves are able to raise money from investors — Sage Geosystems raised a $17 million series A round last year, for instance, while XGS, a closed-loop geothermal startup, raised $13 million — getting normal project financing from banks and other traditional entities is more of a challenge compared to mature technologies like fracking for oil and gas.
“There was and remains an inherent risk in traditional hydrothermal that the financial community has been very aware of,” Project InnerSpace’s Nelson told me — that is, the scarcity of existing underground water resources. Next-generation geothermal could hopefully see less risk, though, because developers aren’t not searching for a particular reservoir of steam or fluid.
“Getting the financial community to understand that there’s far less risk there is an important piece of it,” Nelson added.
Industry estimates put conventional geothermal’s levelized cost between $64 and $106 per megawatt-hour, while the DOE has estimated that first of a kind of enhanced geothermal comes in at around $200 per megawatt-hour. Compare that to between $38 and $78 for solar, the fastest-growing source of new zero-carbon energy, and between $48 and $107 for natural gas, and you’ll see a challenge to be overcome.
The Biden administration’s goal was to drive next-generation geothermal costs down to $45 per megawatt-hour by 2035. Project InnerSpace projects that “enhanced geothermal can achieve an $88 per megawatt-hour levelized cost of energy” using first of a kind technology, assuming the project can access the investment tax credit and assuming some technologies of scale and efficiencies, which would make it competitive with many other non-carbon power sources. Those costs could come down to “between $50 and $60 per megawatt-hour” by 2035.
At that level, according to the IEA, geothermal would be “one of the cheapest dispatchable sources of low-emissions electricity, on a par or below hydro, nuclear and bioenergy,” and “would also be highly competitive with solar PV and wind paired with battery storage.”
Yes, so it would seem. As Carnegie Endowment researchers have pointed out, these levelized cost projections may not reflect the true value of geothermal. Key to geothermal’s appeal is its dispatchability, not dependent on the weather, and can be turned on or off or ramped up and down as needed.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.
Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.
A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.
The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.
As we chronicle time and time again in The Fight, residents in farming communities are fighting back aggressively – protesting, petitioning, suing and yelling loudly. Things have gotten so tense that some are refusing to let representatives for Piedmont’s developer, PSEG, onto their properties, and a court battle is currently underway over giving the company federal marshal protection amid threats from landowners.
Exacerbating the situation is a quirk we don’t often deal with in The Fight. Unlike energy generation projects, which are usually subject to local review, transmission sits entirely under the purview of Maryland’s Public Service Commission, a five-member board consisting entirely of Democrats appointed by current Governor Wes Moore – a rumored candidate for the 2028 Democratic presidential nomination. It’s going to be months before the PSC formally considers the Piedmont project, and it likely won’t issue a decision until 2027 – a date convenient for Moore, as it’s right after he’s up for re-election. Moore last month expressed “concerns” about the project’s development process, but has brushed aside calls to take a personal position on whether it should ultimately be built.
Enter a potential Trump card that could force Moore’s hand. In early October, commissioners and state legislators representing Carroll County – one of the farm-heavy counties in Piedmont’s path – sent Trump a letter requesting that he intervene in the case before the commission. The letter followed previous examples of Trump coming in to kill planned projects, including the Grain Belt Express transmission line and a Tennessee Valley Authority gas plant in Tennessee that was relocated after lobbying from a country rock musician.
One of the letter’s lead signatories was Kenneth Kiler, president of the Carroll County Board of Commissioners, who told me this lobbying effort will soon expand beyond Trump to the Agriculture and Energy Departments. He’s hoping regulators weigh in before PJM, the regional grid operator overseeing Mid-Atlantic states. “We’re hoping they go to PJM and say, ‘You’re supposed to be managing the grid, and if you were properly managing the grid you wouldn’t need to build a transmission line through a state you’re not giving power to.’”
Part of the reason why these efforts are expanding, though, is that it’s been more than a month since they sent their letter, and they’ve heard nothing but radio silence from the White House.
“My worry is that I think President Trump likes and sees the need for data centers. They take a lot of water and a lot of electric [power],” Kiler, a Republican, told me in an interview. “He’s conservative, he values property rights, but I’m not sure that he’s not wanting data centers so badly that he feels this request is justified.”
Kiler told me the plan to kill the transmission line centers hinges on delaying development long enough that interest rates, inflation and rising demand for electricity make it too painful and inconvenient to build it through his resentful community. It’s easy to believe the federal government flexing its muscle here would help with that, either by drawing out the decision-making or employing some other as yet unforeseen stall tactic. “That’s why we’re doing this second letter to the Secretary of Agriculture and Secretary of Energy asking them for help. I think they may be more sympathetic than the president,” Kiler said.
At the moment, Kiler thinks the odds of Piedmont’s construction come down to a coin flip – 50-50. “They’re running straight through us for data centers. We want this project stopped, and we’ll fight as well as we can, but it just seems like ultimately they’re going to do it,” he confessed to me.
Thus is the predicament of the rural Marylander. On the one hand, Kiler’s situation represents a great opportunity for a GOP president to come in and stand with his base against a would-be presidential candidate. On the other, data center development and artificial intelligence represent one of the president’s few economic bright spots, and he has dedicated copious policy attention to expanding growth in this precise avenue of the tech sector. It’s hard to imagine something less “energy dominance” than killing a transmission line.
The White House did not respond to a request for comment.
Plus more of the week’s most important fights around renewable energy.
1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.
2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.
3. Dane County, Wisconsin – The fight over a ginormous data center development out here is turning into perhaps one of the nation’s most important local conflicts over AI and land use.
4. Hardeman County, Texas – It’s not all bad news today for renewable energy – because it never really is.