You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Where there’s heat — like, say, the molten core of the Earth — there’s energy.

Could the answer to our energy demand conundrums lie beneath our feet? And no, I’m not talking about oil, coal, or natural gas. I’m referring to the fundamental stuff of energy itself: heat. Geothermal power is having something of a moment as a non-carbon-emitting source of electricity that everyone seems to like — including climate activists, the oil and gas industry, technology companies, and even the Trump White House and Republican-controlled Congress.
Geothermal energy has been in use for decades, but has seemingly faced fundamental geological and physical restrictions in how much of a resource it could ever be. Now, however, thanks to new technological and process developments, including some borrowed from the oil and gas industry, geothermal could become a pillar of the energy system, potentially making up as much as 90 gigawatts of capacity by the middle of the century, roughly equal to nuclear power today.
But I’m getting ahead of myself — let’s start with the basics.
At its most fundamental, geothermal energy is the heat from the Earth’s core made usable up here on top of the crust. The International Energy Agency estimates that the Earth holds 45 terawatts of continuous heat flow, thanks to a mixture of energy left over from the planet’s formation and the radioactive decay of isotopes in its core and mantle of layers, where the temperature is probably around 5,000 degrees Celsius. In general, temperatures go up around 25 degrees per kilometer you go beneath the Earth’s crust.
Any geothermal system needs three things: heat, fluid, and permeability. The energy comes from heat, which is transferred through fluid, and the fluid has to move through permeable rocks to reach the surface. Traditional geothermal involves finding fluid — typically water or steam — that can be brought to the surface and used to spin turbines that generate electricity. Sometimes this happens directly with underground steam; in other cases, extremely hot water under high pressure is converted to steam as it’s brought to the surface; in still other cases, geothermal heat is used to heat another liquid, which is then vaporized to spin a turbine.
Traditional geothermal is inherently limited, however — there’s only so much hot water already under the Earth’s surface that can be economically tapped. “It’s a great solution, but only in a handful of places on Earth where those conditions are met,” Drew Nelson, vice president of programs, policy, and strategy at Project InnerSpace, a geothermal nonprofit, told me. Iceland, Kenya, Indonesia, certain parts of the American Southwest have the ideal mix, but that still leaves a lot of untapped energy. “It’s hot everywhere underground,” Nelson said.
The number of hot rocks through which fluid can be pumped is far, far greater than the amount of naturally occurring hot steam or water. Enhanced geothermal systems bring fluid to already hot rocks, in a sense creating a reservoir that otherwise you’d have to rely on nature to supply. This is done using techniques borrowed from the oil and gas industry, including horizontal drilling and hydraulic fracturing, to run fluid through the hot rocks before bringing it back up to the surface.
A related technology, closed-loop geothermal (sometimes called “advanced geothermal”), runs fluid through underground pipes that harvest heat from rocks, instead of turning the rock themselves into a reservoir for hot fluid.
The United States is the once and perhaps future champion of geothermal power. We still have the world’s largest installed base of geothermal generation — but it’s largely from projects that were built between 1980 and 1995, according to the International Energy Association. About half of the United States’ roughly 4 gigawatts of geothermal capacity came online in the 1980s alone, according to Energy Information Administration data. Most of this is in California and Nevada.
The Department of Energy has estimated that geothermal could provide at least 90 gigawatts of power, or around 4% of total U.S. generation capacity, by 2050. In practice, however, geothermal could be more valuable on the grid than other more plentiful energy sources because it’s not weather dependent, meaning that much more of that capacity is consistently available.
Either way, the geothermal industry by 2050 will look very different from the one today. Recent growth has been concentrated in California, where utility regulators and the state legislature have instituted aggressive mandates for geothermal procurement, seeing it as a round-the-clock source of non-carbon-emitting power. Future growth, however, has started throughout the American West, and could, thanks to new technologies, flourish all over the world.
As with any source of power, especially if it can be used 24/7, the answer is likely technology companies. The Rhodium Group estimated that geothermal could supply “up to 64%” of future data center demand.
Last year, Meta signed a deal for 150 megawatts of geothermal power from Sage Geosystems, a Texas-based next-generation geothermal startup that specializes in long-duration power generation, and specifically energy storage. That would likely come online in 2027.
One of the leading enhanced geothermal companies, Fervo, has been providing power from a site in Nevada since 2023, and is developing a substantially larger, 500-megawatt project in Beaver County, Utah, near an existing Department of Energy research facility. That should be online by 2026. More recently, Fervo has inked deals with the likes of Google and Nevada utility NV Energy, and is working with the Department of Energy to expand its drilling and bring down costs.
The company has also hinted that it has a megadeal in the works, but even without that, Fervo has achieved impressive scale and results. The company has reported steadily decreasing drilling costs, falling from over $9 million per well to under $5 million from 2022 to 2024, and raised hundreds of millions of dollars from investors including Breakthrough Energy Ventures, DCVC, and Devon Energy.
What has made geothermal distinctive among the array of non-emitting energy sources is that Republicans like it, too. Tax credits accessible to geothermal developers were largely spared in the One Big Beautiful Bill Act, which featured deep cuts to wind and solar incentives. A gaggle of Republican lawmakers have visited Fervo’s Utah site, and Fervo Chief Executive Tim Latimer recently spoke alongside fossil energy executives with the American Energy Dominance Caucus, a bipartisan House caucus. Past bills to streamline permitting for geothermal exploration have had Republican and Democratic sponsors, often from Mountain West states.
Even Trump likes geothermal. The White House’s new AI Action Plan, released in July, calls on policymakers to “prioritize the interconnection of reliable, dispatchable power sources as quickly as possible and embrace new energy generation sources at the technological frontier,” including, by name, “enhanced geothermal.”
One major near-term risk for the geothermal buildout is Trump’s tariff regime, which will likely mean higher input costs for geothermal producers on materials like steel. Another is the new restrictions on tax credits established in the One Big Beautiful Bill Act, which penalize companies with supply chain or financial connections to so-called “foreign entities of concern,” a list of countries that includes North Korea, Iran, Russia, and most importantly in this context, China.
While the exact nexus between China and geothermal is not entirely clear, “there are parts of geothermal technologies, such as pressure valves and drill casings and well casings and the like, that are not unique to geothermal that are very much part of the fracking industry that could be exposed to Chinese investment or Chinese supply contracts,” Advait Arun, senior associate for energy finance at the Center for Public Enterprise, told me.
There’s also the issue of getting next-generation geothermal projects financed. While geothermal companies themselves are able to raise money from investors — Sage Geosystems raised a $17 million series A round last year, for instance, while XGS, a closed-loop geothermal startup, raised $13 million — getting normal project financing from banks and other traditional entities is more of a challenge compared to mature technologies like fracking for oil and gas.
“There was and remains an inherent risk in traditional hydrothermal that the financial community has been very aware of,” Project InnerSpace’s Nelson told me — that is, the scarcity of existing underground water resources. Next-generation geothermal could hopefully see less risk, though, because developers aren’t not searching for a particular reservoir of steam or fluid.
“Getting the financial community to understand that there’s far less risk there is an important piece of it,” Nelson added.
Industry estimates put conventional geothermal’s levelized cost between $64 and $106 per megawatt-hour, while the DOE has estimated that first of a kind of enhanced geothermal comes in at around $200 per megawatt-hour. Compare that to between $38 and $78 for solar, the fastest-growing source of new zero-carbon energy, and between $48 and $107 for natural gas, and you’ll see a challenge to be overcome.
The Biden administration’s goal was to drive next-generation geothermal costs down to $45 per megawatt-hour by 2035. Project InnerSpace projects that “enhanced geothermal can achieve an $88 per megawatt-hour levelized cost of energy” using first of a kind technology, assuming the project can access the investment tax credit and assuming some technologies of scale and efficiencies, which would make it competitive with many other non-carbon power sources. Those costs could come down to “between $50 and $60 per megawatt-hour” by 2035.
At that level, according to the IEA, geothermal would be “one of the cheapest dispatchable sources of low-emissions electricity, on a par or below hydro, nuclear and bioenergy,” and “would also be highly competitive with solar PV and wind paired with battery storage.”
Yes, so it would seem. As Carnegie Endowment researchers have pointed out, these levelized cost projections may not reflect the true value of geothermal. Key to geothermal’s appeal is its dispatchability, not dependent on the weather, and can be turned on or off or ramped up and down as needed.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The cost crisis in PJM Interconnection has transcended partisan politics.
If “war is too important to be left to the generals,” as the French statesman Georges Clemenceau said, then electricity policy may be too important to be left up to the regional transmission organizations.
Years of discontent with PJM Interconnection, the 13-state regional transmission organization that serves around 67 million people, has culminated in an unprecedented commandeering of the system’s processes and procedures by the White House, in alliance with governors within the grid’s service area.
An unlikely coalition including Secretary of Energy Chris Wright, Secretary of the Interior Doug Burgum, and the governors of Indiana, Ohio, Virginia, West Virginia, Tennessee, and Kentucky (Republicans), plus the governors of Maryland, Pennsylvania, Delaware, Illinois, Michigan, New Jersey, and North Carolina (Democrats) — i.e. all 13 states of PJM — signed a “Statement of Principles” Friday demanding extensive actions and reforms to bring new generation onto the grid while protecting consumers.
The plan envisions procuring $15 billion of new generation in the region with “revenue certainty” coming from data centers, “whether they show up and use the power or not,” according to a Department of Energy fact sheet. This would occur through what’s known as a “reliability backstop auction,” The DOE described this as a “an emergency procurement auction,” outside of the regular capacity auction where generation gets paid to be available on the grid when needed. The backstop auction would be for new generation to be built and to serve the PJM grid with payments spreading out over 15 years.
“We’re in totally uncharted waters here,” Jon Gordon, director of the clean energy trade group Advanced Energy United, told me, referring to the degree of direction elected officials are attempting to apply to PJM’s processes.
“‘Unprecedented,’ I feel, is a word that has lost all meaning. But I do think this is unprecedented,” Abraham Silverman, a Johns Hopkins University scholar who previously served as the New Jersey Board of Public Utilities’ general counsel, told me.
“In some ways, the biggest deal here is that they got 13 governors and the Trump administration to agree to something,” Silverman said. “I just don't think there's that many things that [Ohio] Governor [Mike] DeWine and or [Indiana] Governor [Mike] Braun agree with [Maryland] Governor [Wes] Moore.”
This document is “the death of the idea that PJM could govern itself,” Silverman told me. “PJM governors have had a real hands off approach to PJM since we transitioned into these market structures that we have now. And I think there was a real sense that the technocrats are in charge now, the governors can kind of step back and leave the PJM wrangling to the public service commissions.”
Those days are over.
The plan from the states and the White House would also seek to maintain price caps in capacity auctions, which Pennsylvania Governor Josh Shapiro had previously obtained through a settlement. The statement envisions a reliability auction for generators to be held by September of this year, and requested that PJM make the necessary filings “expeditiously.”
Shapiro’s office said in a statement that the caps being maintained was a condition of his participation in the agreement, and that the cost limit had already saved consumers over $18 billion.
The Statement of Principles is clear that the costs of new generation procured in the auction should be allocated to data centers that have not “self-procured new capacity or agreed to be curtailable,” a reference to the increasingly popular idea that data centers can avoid increasing the peak demand on the system by reducing their power usage when the grid is stressed.
The dealmaking seems to have sidestepped PJM entirely, with a PJM spokesperson noting to Bloomberg Thursday evening that its representatives “ were not invited to the event they are apparently having” at the White House. PJM also told Politico that it wasn’t involved in the process.
“PJM is reviewing the principles set forth by the White House and governors,” the grid operator said in a statement to Heatmap.
PJM also said that it would be releasing its own long-gestating proposal to reform rules for large load interconnection, on which it failed to achieve consensus among its membership in November, on Friday.
“The Board has been deliberating on this issue since the end of that stakeholder process. We will work with our stakeholders to assess how the White House directive aligns with the Board’s decision,” the statement said.
The type of “backstop procurement” envisioned by the Statement of Principles sits outside of PJM’s capacity auctions, Jefferies analysts wrote in a note to clients, and “has been increasingly inevitable for months,” the note said.
While the top-down steering is precedent-breaking, any procurement within PJM will have to follow the grid’s existing protocols, which means submitting a plan and seeking signoff from the Federal Energy Regulatory Commission, Gordon told me. “Everything PJM does is guided by their tariffs and their manuals,” he said. “They follow those very closely.”
The governors of the PJM states have been increasingly vocal about how PJM operates, however, presaging today’s announcement. “Nobody really cared about PJM — or even knew what they PJM was or what they did — until electric prices reached a point where they became a political lightning rod,” Gordon said.
The Statement is also consistent with a flurry of announcements and policies issued by state governments, utility regulators, technology companies, and the White House this year coalescing around the principle that data centers should pay for their power such that they do not increase costs for existing users of the electricity system.
Grid Strategies President Rob Gramlich issued a statement saying that “the principle of new large loads paying their fair share is gaining consensus across states, industry groups, and political parties. The rules that have been in place for years did not ensure that.”
This $15 billion could bring on around 5.5 gigawatts of new capacity, according to calculations done by Jefferies. That figure would come close to the 6.6 gigawatts PJM fell short of its target reserve margin after its last capacity auction, conducted in December.
That auction hit the negotiated price caps and occasioned fierce criticism for how PJM manages its capacity markets. Several commissioners of the Federal Energy Regulatory Commission have criticized PJM for its high capacity prices, low reserve margin, and struggles bringing on new generation. PJM’s Independent Market Monitor has estimated that planned and existing data center construction has added over $23 billion in costs to the system.
Several trade and advocacy groups pointed out, however, that a new auction does not fix PJM’s interconnection issues, which have become a major barrier to getting new resources, especially batteries, onto the grid in the PJM region. “The line for energy projects to connect to the power grid in the Mid-Atlantic has basically had a ‘closed for maintenance’ sign up for nearly four years now, and this proposal does nothing to fix that — or any of the other market and planning reforms that are long overdue,” AEU said in a statement.
The Statement of Principles includes some language on interconnection, asking PJM to “commit to rapidly deploying broader interconnection improvements” and to “achieving meaningful reductions in interconnection timelines,” but this language largely echoes what FERC has been saying since at least its Order No. 2023, which took effect over two years ago.
Climate advocacy group Evergreen Action issued a statement signed by Deputy Director of State Action Julia Kortrey, saying that “without fixing PJM’s broken interconnection process and allowing ready-to-build clean energy resources onto the grid, this deal could amount to little more than a band aid over a mortal wound.”
The administration’s language was predictably hostile to renewables and supportive of fossil fuels, blasting PJM for “misguided policies favored intermittent energy resources” and its “reliance on variable generation resources.” PJM has in fact acted to keep coal plants in its territory running, and has for years warned that “retirements are at risk of outpacing the construction of new resources,” as a PJM whitepaper put it in 2023.
There was a predictable partisan divide at the White House event around generation, with Interior Secretary Burgum blaming a renewables “fairy tale” for PJM’s travails. In a DOE statement, Burgum said “For too long, the Green New Scam has left Mid-Atlantic families in the dark with skyrocketing bills.”
Shapiro shot back that “anyone who stands up here and says we need one and not the other doesn’t have a comprehensive, smart energy dominance strategy — to use your word — that is going to ultimately create jobs, create more freedom and create more opportunity.”
While the partisan culture war over generation may never end, today’s announcement was more notable for the agreement it cemented.
“There is an emerging consensus that the political realities of operating a data center in this day and age means that you have to do it in a way that isn't perceived as big tech outsourcing its electric bill to grandma,” Silverman said.
“Additionality” is back.
You may remember “additionality” from such debates as, “How should we structure the hydrogen tax credit?”
Well, it’s back, this time around Meta’s massive investment in nuclear power.
On January 9, the hyperscaler announced that it would be continuing to invest in the nuclear business. The announcement went far beyond its deal last year to buy power from a single existing plant in Illinois and embraced a smorgasbord of financial and operational approaches to nukes. Meta will buy the output for 20 years from two nuclear plants in Ohio, it said, including additional power from increased capacity that will be installed at the plants (as well as additional power from a nuclear plant in Pennsylvania), plus work on developing new, so-far commercially unproven designs from nuclear startups Oklo and TerraPower. All told, this could add up to 6.6 gigawatts of clean, firm power.
Sounds good, right?
Well, the question is how exactly to count that power. Over 2 gigawatts of that capacity is already on the grid from the two existing power plants, operated by Vistra. There will also be an “additional 433 megawatts of combined power output increases” from the existing power plants, known as “uprates,” Vistra said, plus another 3 gigawatts at least from the TerraPower and Oklo projects, which are aiming to come online in the 2030s
Princeton professor and Heatmap contributor Jesse Jenkins cried foul in a series of posts on X and LinkedIn responding to the deal, describing it as “DEEPLY PROBLEMATIC.”
“Additionality” means that new demand should be met with new supply from renewable or clean power. Assuming that Meta wants to use that power to serve additional new demand from data centers, Jenkins argued that “the purchase of 2.1 gigawatts of power … from two EXISTING nuclear power plants … will do nothing but increase emissions AND electricity rates” for customers in the area who are “already grappling with huge bill increases, all while establishing a very dangerous precedent for the whole industry.”
Data center demand is already driving up electricity prices — especially in the area where Meta is signing these deals. Customers in the PJM Interconnection electricity grid, which includes Ohio, have paid $47 billion to ensure they have reliable power over the grid operator’s last three capacity auctions. At least $23 billion of that is attributable to data center usage, according to the market’s independent monitor.
“When a huge gigawatt-scale data center connects to the grid,” Jenkins wrote, “it's like connecting a whole new city, akin to plopping down a Pittsburgh or even Chicago. If you add massive new demand WITHOUT paying for enough new supply to meet that growth, power prices spike! It's the simple law of supply & demand.”
And Meta is investing heavily in data centers within the PJM service area, including its Prometheus “supercluster” in New Albany, Ohio. The company called out this facility in its latest announcement, saying that the suite of projects “will deliver power to the grids that support our operations, including our Prometheus supercluster in New Albany, Ohio.”
The Ohio project has been in the news before and is planning on using 400 megawatts of behind-the-meter gas power. The Ohio Power Siting Board approved 200 megawatts of new gas-fired generation in June.
This is the crux of the issue for Jenkins: “Data centers must pay directly for enough NEW electricity capacity and energy to meet their round-the-clock needs,” he wrote. This power should be clean, both to mitigate the emissions impact of new demand and to meet the goals of hyperscalers, including Meta, to run on 100% clean power (although how to account for that is a whole other debate).
While hyperscalers like Meta still have clean power goals, they have been more sotto voce recently as the Trump administration wages war on solar and wind. (Nuclear, on the other hand, is very much administration approved — Secretary of Energy Chris Wright was at Meta’s event announcing the new nuclear deal.)
Microsoft, for example, mentioned the word “clean” just once in its Trump-approved “Building Community-First AI Infrastructure” manifesto, released Tuesday, which largely concerned how it sought to avoid electricity price hikes for retail customers and conserve water.
It’s not entirely clear that Meta views the entirety of these deals — the power purchase agreements, the uprates, financially supporting the development of new plants — as extra headroom to expand data center development right now. For one, Meta at least publicly claims to care about additionality. Meta’s own public-facing materials describing its clean energy commitments say that a “fundamental tenet of our approach to clean and renewable energy is the concept of additionality: partnering with utilities and developers to add new projects to the grid.”
And it’s already made substantial deals for new clean energy in Ohio. Last summer, Meta announced a deal with renewable developer Invenergy to procure some 440 megawatts of solar power in the state by 2027, for a total of 740 megawatts of renewables in Ohio. So Meta and Jenkins may be less far apart than they seem.
There may well be value in these deals from a sustainability and decarbonization standpoint — not to mention a financial standpoint. Some energy experts questioned Jenkins’ contention that Meta was harming the grid by contracting with existing nuclear plants.
“Based on what I know about these arrangements, they don’t see harm to the market,” Jeff Dennis, a former Department of Energy official who’s now executive director of the Electricity Customer Alliance, an energy buyers’ group that includes Meta, told me.
In power purchase agreements, he said, “the parties are contracting for price and revenue certainty, but then the generator continues to offer its supply into the energy and capacity markets. So the contracting party isn’t siphoning off the output for itself and creating or exacerbating a scarcity situation.”
The Meta deal stands in contrast to the proposed (and later scotched) deal between Amazon and Talen Energy, which would have co-located a data center at the existing Susquehanna nuclear plant and sucked capacity out of PJM.
Dennis said he didn’t think Meta’s new deals would have “any negative impact on prices in PJM” because the plants would be staying in the market and on the grid.
Jenkins praised the parts of the Meta announcement that were both clean and additional — that is, the deals with TerraPower and Oklo, plus the uprates from existing nuclear plants.
“That is a huge purchase of NEW clean supply, and is EXACTLY what hyperscalars [sic] and other large new electricity users should be doing,” Jenkins wrote. “Pay to bring new clean energy online to match their growing demand. That avoids raising rates for other electricity users and ensures new demand is met by new clean supply. Bravo!”
But Dennis argued that you can’t neatly separate out the power purchase agreement for the existing output of the plants and the uprates. It is “reasonable to assume that without an agreement that shores up revenues for their existing output and for maintenance and operation of that existing infrastructure, you simply wouldn't get those upgrades and 500 megawatts of upgrades,” he told me.
There’s also an argument that there’s real value — to the grid, to Meta, to the climate — to giving these plants 20 years of financial certainty. While investment is flooding into expanding and even reviving existing nuclear plants, they don’t always fare well in wholesale power markets like PJM, and saw a rash of plant retirements in the 2010s due to persistently low capacity and energy prices. While the market conditions are now quite different, who knows what the next 20 years might bring.
“From a pure first order principle, I agree with the additionality criticism,” Ethan Paterno, a partner at PA Consulting, an innovation advisory firm, told me. “But from a second or third derivative in the Six Degrees of Kevin Bacon, you can make the argument that the hyperscalers are keeping around nukes that perhaps might otherwise be retired due to economic pressure.”.
Ashley Settle, a Meta spokesperson, told me that the deals “enable the extension of the operational lifespan and increase of the energy production at three facilities.” Settle did not respond, however, when asked how Facebook would factor the deals into its own emissions accounting.
“The only way I see this deal as acceptable,” Jenkins wrote, “is if @Meta signed a PPA with the existing reactors only as a financial hedge & to help unlock the incremental capacity & clean energy from uprates at those plants, and they are NOT counting the capacity or energy attributes from the existing capacity to cover new data center demand.”
There’s some hint that Meta may preserve the additionality concept of matching only new supply with demand, as the announcement refers to “new additional uprate capacity,” and says that “consumers will benefit from a larger supply of reliable, always-ready power through Meta-supported uprates to the Vistra facilities.” The text also refers to “additional 20-year nuclear energy agreements,” however, which would likely not meet strict definitions of additionality as it refers to extending the lifetime and maintaining the output of already existing plants.
A third judge rejected a stop work order, allowing the Coastal Virginia offshore wind project to proceed.
Offshore wind developers are now three for three in legal battles against Trump’s stop work orders now that Dominion Energy has defeated the administration in federal court.
District Judge Jamar Walker issued a preliminary injunction Friday blocking the stop work order on Dominion’s Coastal Virginia offshore wind project after the energy company argued it was issued arbitrarily and without proper basis. Dominion received amicus briefs supporting its case from unlikely allies, including from representatives of PJM Interconnection and David Belote, a former top Pentagon official who oversaw a military clearinghouse for offshore wind approval. This comes after Trump’s Department of Justice lost similar cases challenging the stop work orders against Orsted’s Revolution Wind off the coast of New England and Equinor’s Empire Wind off New York’s shoreline.
As for what comes next in the offshore wind legal saga, I see three potential flashpoints:
It’s important to remember the stakes of these cases. Orsted and Equinor have both said that even a week or two more of delays on one of these projects could jeopardize their projects and lead to cancellation due to narrow timelines for specialized ships, and Dominion stated in the challenge to its stop work order that halting construction may cost the company billions.