You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The same technology that powers your cell phone also helps expand the reach of renewable energy.

Batteries are the silent workhorses of our technological lives, powering our phones, computers, tablets, and remotes. But their impact goes far beyond our daily screentime — they’re also transforming the electricity grid itself. Grid-scale batteries store excess renewable energy and release it as needed, compensating for the fact that solar and wind resources aren’t always available on demand.
The price of the most ubiquitous battery technology — lithium-ion — has fallen remarkably in the past 15 years. That’s allowed for an enormous buildout of battery storage systems in the U.S. and beyond, which has in turn helped to integrate more renewables onto the grid than ever before. With the assistance of batteries, California ran entirely on clean energy for the equivalent of 51 days last year, while South Australia managed the same for 99 days.
Even as deployment accelerates, startups and other innovators are working to improve on standard lithium-ion tech — or in some cases, supplant it. We’ll get into all that soon, but first, let’s start with a little Battery 101.
All electrochemical batteries — that’s everything from your standard AA to grid-scale lithium-ion systems — work by turning chemical energy into electrical energy through what’s known as an electrochemical reaction. These batteries have three primary components:
Grid batteries charge when there’s excess renewable energy on the grid or when demand for energy is low. When a lithium-ion battery is charging, lithium ions move from the cathode to the anode, where they’re stored. When the battery discharges electricity back to the grid, lithium ions move from the anode to the cathode. This movement triggers the release of electrons at the anode, which move through an external wire that carries power to the grid.
There’s variation within the realm of lithium-ion batteries. For example, some use different cathode chemistries, a solid electrolyte, or a pure lithium metal anode. Within the broader world of electrochemical batteries, there are also a variety of alternate chemistries including sodium-ion, lithium-sulfur, and iron-air (more on those below).
But if one broadens the definition of a battery to include any system that stores energy, that’s when the possibilities really open up. In this sense, a battery could be a pumped hydropower storage system, in which energy is stored by moving water uphill into a reservoir and later releasing it to generate electricity through kinetic energy. A battery could also be energy stored as heat or compressed air. Many of these mechanisms rely on converting stored energy into electricity by turning a turbine or generator.
Batteries help to stabilize the electric grid and help communities and grid operators to take full advantage of their renewable energy resources by providing a reliable power supply when, as the saying goes, the sun isn’t shining and the wind isn’t blowing. New solar or wind plants combined with battery storage can also be highly cost-effective, achieving power prices that are competitive with or lower than those of new natural gas facilities in many cases.
Homes and businesses can also install their own personal battery storage systems to bank energy from rooftop solar panels or directly from the grid. This allows individuals and companies to lower their electricity bills by charging their batteries when grid prices are low and using stored energy when prices are high.
By the end of last year, the installed capacity of utility-scale batteries in the U.S. reached about 26 gigawatts, surpassing the cumulative capacity of pumped hydro for the first time. So while pumped hydro can still store a larger amount of total energy, batteries can now deliver more instantaneous power to the grid than any other energy storage resource. And though that 26 gigawatts represents a mere 2% of the U.S.’s total 1,230 gigawatts of generation capacity, the battery sector is growing rapidly. The International Energy Agency reported in February that planned capacity additions for this year totaled 18.2 gigawatts for the U.S. alone.
Lithium-ion batteries weren’t originally designed for grid-scale energy storage. Rather, they were commercialized in the early 1990s for use in portable consumer electronics such as camcorders, cell phones, and laptops. These batteries proved to be more energy dense, lighter, and longer lasting than their predecessors, and were thus eventually adopted for a whole host of applications, including the growing electric vehicle market in the 2010s.
As electric vehicle production ramped up throughout the decade, manufacturers scaled up their production of lithium-ion batteries, quickly driving down prices — from 2010 to 2020 the cost of battery packs declined nearly 90%. Production became primarily concentrated in East Asia, where companies such as CATL, LG Energy Solution, and Panasonic emerged as dominant players.
As the cheapest and most mature battery tech on the market, lithium-ion thus became the default for grid developers looking to manage the variability of intermittent solar and wind resources. As renewables deployment surged, adding battery storage to these facilities started to become more cost-effective than building new fossil-fuel facilities in some markets and provided a reliable way to regulate the grid’s frequency. Lithium-ion batteries can begin absorbing or delivering power at a moment’s notice, which is integral to keeping the grid balanced.
While lithium-ion batteries have never been a very practical or economical option when it comes to long-duration storage — that is, the ability to dispatch energy for more than about four to eight hours at a time — they are well suited to applications such as storing excess solar produced during the day for use in the evening, or smoothing out the fluctuations in renewable resources throughout the day.
For one, China essentially has a virtual monopoly on the lithium-ion battery industry. The country made EV production a national priority beginning in the 2000s, and by the 2010s it was heavily subsidizing battery and EV manufactures alike. Thus, China came to dominate the supply chain at nearly every level, from raw materials refining to cell manufacturing, anode and cathode production, and battery pack assembly. Ideally, the U.S. would lessen its technological reliance on a nation that it’s long seen as an adversary, but building a domestic lithium-ion battery industry from scratch is an extremely complex and expensive endeavor.
In terms of technical drawbacks, most lithium-ion batteries use a flammable liquid electrolyte. That’s prone to catching fire if a battery component or surrounding equipment fails, if a cell is punctured or simply overheats, as illustrated by the Moss Landing fire in California, which broke out in January at one the world’s largest battery storage facilities. While the energy density of lithium-ion is a main selling point, the flipside is that in a fire, more energy equals more heat. And since grid-scale systems pack battery cells close together, a fire in one cell can spread quickly across an entire facility.
Finally, in terms of cost, there’s only so far lithium-ion batteries can fall due to the expense of the raw materials. The price of lithium itself has been notoriously volatile. After hitting record highs in 2022, the commodity price subsequently collapsed after a wave of new mining projects oversupplied the market. This type of volatility wreaks havoc for battery storage developers and their balance sheets, thus spurring interest in chemistries that offer lower, more stable costs, as well as technologies with potentially superior cycle life, energy density, discharge times, and safety profiles.
The most widely commercialized spin on conventional lithium-ion batteries, which are traditionally made with an NMC cathode, is a variant known as lithium iron phosphate, or LFP. The iron-phosphate bond in a LFP cathode is very strong, making it more thermally stable than those in NMC batteries. LFP materials are also more structurally durable than nickel and cobalt, meaning these batteries can be charged and discharged more times before wearing out. Finally, LFPs are also cheaper and more sustainable, as the cathode materials are plentiful and less environmentally damaging to mine. LFP’s main drawback is its lower energy density, but its many advantages have enabled it to overtake NMC as the leading chemistry for new battery energy storage systems.
All the other competitors have much lower levels of commercial maturity. But on the plus side, this means there’s an opportunity to build out domestic supply chains for them. Sodium-ion batteries, for example, replace lithium with sodium, which is far more abundant. They’re also more thermally stable. Unfortunately for U.S. manufacturers, China is already surging ahead in the race to scale up this tech. Then there’s the more nascent lithium-sulfur batteries. They have a very high theoretical energy density, which could lead to lighter and more compact energy storage systems if companies can overcome core technical challenges such as short cycle life.
Flow batteries are also an option that’s been studied for decades. These store energy in liquid electrolytes held in external tanks rather than in solid electrodes. This presents a promising option for longer-duration energy storage since the design can be scaled easily — more energy simply means bigger tanks. Because the active materials are liquid, these batteries also have a very long cycle life, and their water-based designs are non-flammable. Flow batteries are also much bulkier, however, and haven’t yet scaled enough to become cost-competitive with lithium-ion under most circumstances.
Getting into the realm of long-duration storage also opens up possibilities such as iron-air batteries, which are being commercialized by the Massachusetts-based Form Energy. In theory, these can discharge for 100-plus hours by taking in oxygen from the air and reacting it with iron to form rust, releasing electrons in the process. When the battery is charging, an electrical current converts the rust back into iron. Because iron is cheap and plentiful, this tech could also be significantly less expensive than LFP batteries. And since it uses a water-based electrolyte, these batteries aren’t flammable. The first iron-air battery plant is set to come online at the end of the year.
Beyond the electrochemical domain, there’s a wider, weirder world of energy storage technologies, many of which are being explored for their long-duration storage potential. Pumped hydro can only be built only in very specific geographies, so it’s not a main competitor in many regions today. But gravity-based storage companies such as Energy Vault often take inspiration from this approach, storing energy by using excess electricity to raise heavy objects such as concrete blocks. When energy is needed, the blocks are lowered, causing the motors that lifted them to run in reverse and act as generators to produce electricity.
Canadian company Hydrostor is pursuing another method, which involves using surplus energy to compress air and pump it into a water-filled cavern, displacing the water to the surface. To discharge, water is released back into the cavern, pushing the air to the surface, where it mixes with stored heat to turn an electricity-generating turbine.
Then there’s thermal energy storage — essentially storing energy as heat in materials such as carbon blocks. This method has the potential to decarbonize industrial processes such as steel and cement production, which demand high temperatures that are difficult to achieve with electricity. Via resistance heating — the same technology as a toaster — electricity from renewable energy is converted into heat, which is then stored in thermally conductive rocks or bricks. When that heat is needed, it can be delivered directly as hot air or steam to the facility, or in some cases converted back into electricity for use at the facility or on the grid.
Experts say that none of the aforementioned technologies is likely to fully replace lithium-ion anytime soon. That’s in large part because lithium-ion is a fully mature technology with well-established supply chains, but also because it’s simply efficient and cost effective for what it can do.
Many of the technologies mentioned could, however, become effective complements to lithium-ion on the grid. For example, it’s possible that some combination of iron-air batteries, gravity energy storage, and compressed air energy storage could meet longer-duration needs — in some cases discharging continuously for days at a time. Thermal energy storage could also play a role here, as well as in decarbonizing high-heat heavy industries, which don’t make economic sense to electrify with lithium-ion batteries.
Sodium-ion batteries could eventually become cheaper than LFP, but because the tech has yet to scale and reach that price point, it’s still primarily viewed as a complementary solution. Having other viable battery chemistries such as sodium-ion would help reduce the overall demand for lithium, thus working to stabilize prices and risk in the battery supply chain as a whole. But because sodium-ion is less energy dense, it probably won’t make sense in space-constrained regions.
As for lithium-sulfur, the tech is just beginning to hit the market as companies such as Lyten focus on early applications in drones, satellites, and two- and three-wheelers. But it doesn’t yet have the cycle life to make sense for any grid-scale applications, and whether it will ever get there has yet to be discovered.
Yes, but battery recycling — especially for battery energy storage systems — is still a nascent industry. And it remains uncertain whether recycling and reusing battery materials is financially viable in an environment where lithium prices have plummeted and other key battery minerals such as nickel, cobalt, and graphite have become significantly cheaper. LFP’s cost efficiency improvements have further depressed interest in recycling their materials. But there’s still interest in this sector as it could help establish a domestic mineral supply chain, greatly reduce the need for environmentally disruptive mining projects, and ameliorate problems such as toxic chemical leaching and fire risk, which can occur when batteries are improperly disposed of.
Because grid-scale battery deployments didn’t begin to ramp in earnest until 2019, most systems have yet to reach the end of their useful life, which can last on the order of 10 to 20 years. As such, most leading battery recyclers — such as the well-funded startup Redwood Materials — are primarily focused on old EV batteries for now. Redwood says it can recover, on average, over 95% of battery materials such as lithium, nickel, cobalt, copper, aluminum, and graphite. Recently, the company has also been working to repurpose old EV batteries with some life left in them to make grid-scale battery storage systems, and it’s made forays into recycling grid batteries as well.
One of the industry’s former leaders, Li-Cycle, filed for bankruptcy in May, while another player, Ascend Elements, has paused construction on its recycling facility in Kentucky due to “changing market conditions.” As the U.S. seeks to develop a more localized battery supply chain, however, recycling will only become more critical.
It’s a mixed bag. On the one hand, President Trump’s steep tariffs on Chinese goods are set to substantially increase prices for domestic battery energy storage systems, given that the U.S. imports nearly all of its battery cells from China. This will threaten developers’ margins, potentially leading to project cancellations or delays.
Trump’s One Big Beautiful Bill maintained tax credits for battery energy storage projects through 2032, however stringent foreign sourcing rules now apply, withholding tax credits from projects that source a certain percentage of their components from Russia, Iran, North Korea, and most importantly, China. Given how China-centric the battery supply chain is, achieving the required sourcing levels could prove difficult, though exactly how difficult ultimately depends on forthcoming guidance from the Treasury department.
On the bright side, the administration is also bullish on bolstering the U.S. supply chain for critical minerals and rare earths. In a recent meeting, White House officials told a group of critical minerals firms that they would guarantee a price floor for their products. Such a policy could, of course, bolster the domestic battery supply chain, though at the risk of making this tech more expensive.
Assuming the U.S. navigates the current political headwinds and maintains a degree of momentum in its transition to clean energy, battery energy storage will play an increasingly critical role on the future grid, both domestically and globally. As electricity demand grows and renewables make up a progressively larger proportion of the mix, batteries will help ensure grid flexibility and resiliency. That will be increasingly important as extreme weather events become more common and severe.
In some markets, solar plus storage facilities have been more economical than so-called fossil fuel “peaker plants” for years. Peakers fire up during times of maximum electricity demand, and as batteries continue to fall in price, stored renewable power becomes an ever-cheaper way to supplement supply. As long-duration storage tech advances and comes down the cost curve, renewables will be able to provide firm baseload power over a period of days or even weeks, making fossil fuel infrastructure increasingly obsolete.
The International Energy Agency reports that in order to reach net zero emissions by 2050, global grid-scale battery storage needs to expand to nearly 970 gigawatts of capacity by 2030. That means annual grid-scale deployments must average about 120 gigawatts per year from 2023 to 2030. So while last year saw a record-setting 55 gigawatts of newly installed grid-scale capacity, that type of hockey-stick growth will need to accelerate even further if batteries are to pull their weight in the IEA’s net zero scenario.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob catches up with the Center for Strategic and International Studies’ Ilaria Mazzocco.
China’s electric vehicle industry, it’s now well understood, is churning out cars that rival or exceed the best products coming out of the West. Chinese EVs are cheaper, cooler, more innovative, and have better range. And now they’re surging into car markets around the world — markets where consumers are hungry for clean, affordable transportation.
On this week’s episode of Shift Key, Rob talks to Ilaria Mazzocco about her new report on how six countries around the world are dealing with the rise of Chinese EVs. Why do countries welcome Chinese-made EVs, and why do countries resist them? How do domestic carmakers act when Chinese EVs come to town? And are climate concerns still driving uptake?
Mazzocco is the deputy director and senior fellow with the Trustee Chair in Chinese Business and Economics at the Center for Strategic and International Studies. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Ilaria Mazzocco: Chinese batterymakers have persisted in focusing on LFP batteries with some spectacular results, I would say. And partly I think that’s been thanks to just being able to deploy them at really large scale and just testing and getting them out there.
But I think BYD is really a great example of that. They invest so much in R&D that it’s really hard to compete with them on some of these things. That’s really the big challenge, where, if you want to make a cheap car, you need LFP. That’s why Ford sought out that licensing deal with CATL, was to acquire LFP battery technology. And LFP batteries are really something that Chinese batterymakers have really excelled at.
Now, there could be breakthroughs in other chemistries. There could be a catchup game with non-Chinese batterymakers that actually become good at making LFP. That’s entirely possible. But right now, if you’re an Indian carmaker and you want to make a cheap car, your best bet is probably to get it from BYD or CATL, or maybe Gotion or something like that. That’s really what you’re looking at.
Robinson Meyer: It also, though, really changes how we talk about a lot of the development of auto industries abroad. Because I mean, I realize this is how cars were made for a long time, but I think … basically like if you were to say, Oh yeah, we make our own internal combustion cars here, we simply import the engines from Detroit, and then we place them in our otherwise finished vehicles that we’ve made domestically, and then we put it under a domestic label. We’re very proud of that. That’s essentially what is happening when countries import batteries. The batteries are so central to the operation of the EVs and what the EVs are capable of that when you import your batteries, you’re really relying on your trade partner for a lot of the core physical capacity of that vehicle, and a lot of the core, underlying chemical engineering capability that that vehicle affords you.
It suggests to me that in terms of when you think about the global EV industry, there are companies that are dependent on some kind of Chinese battery export. There are companies that are dependent on some kind of Korean battery export. There’s a few American entrants — mostly Tesla. There’s a few European entrants. And that’s kind of it. Everyone else is piggybacking on the back of one of those core technologies.
Mentioned:
Ilaria’s new report: The Global EV Shift: The Role of China and Industrial Policy in Emerging Economies
Previously on Shift Key: How China’s EV Industry Got So Big
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.
A trio of powerful climate hawks are throwing their weight against the SPEED Act.
Key Senate Democrats are opposing a GOP-led permitting deal to overhaul federal environmental reviews without assurances that clean energy projects will be able to reap the benefits. Winning these lawmakers’ support will require major concessions to build new transmission infrastructure and greater permitting assistance for renewable energy projects.
In an exclusive joint statement provided Tuesday to Heatmap News, Senate Energy and Natural Resources ranking member Martin Heinrich, Environment and Public Works ranking member Sheldon Whitehouse, and Hawaii senator Brian Schatz came out against passing the SPEED Act, a bill that would change the National Environmental Policy Act, citing concerns about how it would apply to renewable energy and transmission development priorities.
“We are committed to streamlining the permitting process — but only if it ensures we can build out transmission and cheap, clean energy. While the SPEED Act does not meet that standard, we will continue working to pass comprehensive permitting reform that takes real steps to bring down electricity costs,” the statement read.
As I wrote weeks ago, there’s very little chance the SPEED Act could become law without addressing Senate climate hawks’ longstanding policy preferences. Although the SPEED Act was voted out of committee in the House two weeks ago with support from a handful of Democratic lawmakers, it has yet to win support from even moderate energy wonks in that legislative body, including Representative Scott Peters, one of the Democratic House negotiators in bipartisan permitting talks. Peters told me he would need to see more assurances dealing with the renewables permitting freeze, for example, in order for him to support the bill.
Observers had initially expected a full House vote on the SPEED Act as soon as this week, but an additional hurdle arose in recent days in the form of opposition from House conservative Republicans, led by Representative Chip Roy. The congressman from Texas had requested additional federal actions targeting renewables projects in exchange for passage of the One Big Beautiful Bill Act, which effectively repealed the Inflation Reduction Act. What followed was a set of directives from the Interior Department that all but halted federal solar and wind permitting. Roy’s frustration with the SPEED Act concerns a relatively milquetoast nod to renewables permitting problems that would block presidents from rescinding already issued permits. This upset appears to have delayed a vote on the bill in the House.
There’s an eerie familiarity to this moment: Almost exactly one year ago, the last major attempt at a permitting deal, authored by Senators Joe Manchin and John Barrasso, died when then-Majority Leader Chuck Schumer declined to bring it up for a vote in the face of opposition from the House. Unlike the SPEED Act, that bill offered changes to transmission siting policy that even conservative estimates said would’ve hastened the pace of national decarbonization.
Having Schatz, Heinrich, and Whitehouse — the three most powerful climate hawks in Congress — throw their weight against the SPEED Act casts serious doubt on the prospects for that legislation becoming the permitting deal this Congress. It also exposes an intra-energy world conflict, as it appears to position these lawmakers in opposition to American Clean Power, an energy trade group that represents a swath of diversified energy companies and utilities, as well as solar, wind, and battery storage developers.
Last week, ACP joined with the American Petroleum Institute and gas pipeline advocacy organizations to urge Congress to pass the SPEED Act. In a letter to House Speaker Mike Johnson and Minority Leader Hakeem Jeffries, ACP and the fossil fuel industry trade groups said that the legislation “directly addresses” the challenges facing their interests and “represents meaningful bipartisan progress toward a more stable and dependable permitting framework.” The only reference to potential additions came in a single, vague line: “While the SPEED Act makes important progress, there are additional ways Congress can facilitate the development of reliable and affordable energy infrastructure as part of a broader permitting package.”
This letter was taken by some backers of the renewable energy industry to be an endorsement without concessions. It was also a surprise because just days earlier, American Clean Power responded to the bill’s passage with a vaguely supportive statement that declared “additional efforts” were needed for “transmission infrastructure,” without which “energy prices will spike and system reliability will be threatened.” (It’s worth noting that the committee behind the SPEED Act, House Natural Resources, has no authority over transmission siting. No other proposal has yet emerged from Republicans in that chamber for Republicans to address the issue, either.)
One of the renewables backers taken aback was Schatz, who took to X to sound off against the organization. “Congratulations to ‘American Clean Power’ for cutting a deal with the American Petroleum Institute, but to enact a law both the house and the Senate have to agree, and Senators are finding out about this for the first time,” Schatz wrote in a post, which Whitehouse retweeted from one of his official X accounts.
In a subsequent post, Schatz said: “I am not finding out about the bill’s existence for the first time, I am tracking it all very closely. I am finding out that ACP endorsed it as is without anything on transmission, for the first time.”
By contrast, the statement from the three senators aligns them with the Solar Energy Industries Association, which sent a letter from more than 140 solar companies to top congressional leaders requesting direct action to fix a bureaucratic freeze on permit-related activity that has already helped kill large projects, including Esmeralda 7, which was the largest solar mega-farm in the United States.
In its message to Congress, the trade association made plain that while the SPEED Act was a welcome form of permitting changes, it was nowhere close to dealing with Trumpian chicanery on the group’s priority list.
We’ll have more on this unfolding drama in the days to come.
One longtime analyst has an idea to keep prices predictable for U.S. businesses.
What if we treated lithium like oil? A commodity so valuable to the functioning of the American economy that the U.S. government has to step in not only to make it available, but also to make sure its price stays in a “sweet spot” for production and consumption?
That was what industry stalwart Howard Klein, founder and chief executive of the advisory firm RK Equities, had in mind when he came up with his idea for a strategic lithium reserve, modeled on the existing Strategic Petroleum Reserve.
Klein published a 10-page white paper on the idea Monday, outlining an expansive way to leverage private companies and capital markets to develop a non-Chinese lithium industry without the risk and concentrated expense of selecting specific projects and companies.
The lithium challenge, Klein and other industry analysts and executives have long said, is that China’s whip hand over the industry allows it to manipulate prices up and down in order to throttle non-Chinese production. When investment in lithium ramps up outside of China, Chinese production ramps up too, choking off future investment by crashing prices.
Recognizing the dangers stemming from dysfunction in the global lithium market constitutes a rare area of agreement between both parties in Washington and across the Biden and Trump administrations. Last year, a Biden State Department official told reporters that China “engage[s] in predatory pricing” and will “lower the price until competition disappears.”
A bipartisan investigation released last month by the House of Representatives’ Select Committee on Strategic Competition between the United States and the Chinese Communist Party found that “the PRC engaged in a whole‐of‐government effort to dominate global lithium production,” and that “starting in 2021, the PRC government engaged in a coordinated effort to artificially depress global lithium prices that had the effect of preventing the emergence of an America‐focused supply chain.”
Klein thinks he’s figured out a way to deal with this problem
“They manipulated and they crushed prices through oversupply to prevent us from having our own supply chains,” he told me.
It’s not just that China can keep prices low through overproduction, it’s also that the country’s enormous market power can make prices volatile, Klein said, which scares off private sector investment in mining and processing. “You have two years, up two years down, two years up, two years down,” he told me. “That’s the problem we’re trying to solve.
His proposal is to establish “a large, rules-based buffer of lithium carbonate — purchased when prices are depressed due to Chinese oversupply, and released during price spikes, shortages, or export restrictions.”
This reserve, he said, would be more than just a stockpile from which lithium could be released as needed. It would also help to shape the market for lithium, keeping prices roughly in the range of $20,000 per ton (when prices fall below that, the reserve would buy) and $40,000 to $50,000 per ton, when the reserve would sell. The idea is to keep the price of lithium carbonate — which can be processed as a material for batteries with a wide range of defense (e.g. drones) and transportation (e.g. electric vehicles) applications — within a range that’s reasonable for investors and businesses to plan around.
“Lithium has swung from like $6,000 [per ton] to $80,000, back down to $9,000, and now it’s at $11,000 or $12,000,” Klein told me. “But $11,000 or $12,000 is not a high enough price for a company to build a plan that’s going to take three to five years. They need $20,000 to $25,000 now as a minimum for them to make a $2 billion dollar investment.” When prices for lithium get up to “$50,000, $60,000, or $70,000, then it becomes a problem because battery makers can’t make money.”
Both the Biden and Trump administrations have taken more active steps to secure a U.S. or allied supply chain for valuable inputs, including rare earth metals. But Klein’s proposed reserve looks to balance government intervention with a diverse, private-sector led industry.
The reserve would be more broad-based than price floor schemes, where a major buyer like the Defense Department guarantees a minimum price for the output from a mine or refining facility. This is what the federal government did in its deal with MP Materials, the rare earths miner and refiner, which secured a multifaceted deal with the federal government earlier this year.
Klein estimates that the cost in the first year of the strategic lithium reserve could be a few billion dollars — on the scale of the nearly $2.3 billion loan provided by the Department of Energy for the Thacker Pass mine in Nevada, which also saw the federal government take an equity stake in the miner, Lithium Americas.
Ideally, Klein told me, “there’s a competition of projects that are being presented to prospective funders of those projects, and I want private market actors to decide, should we build more Thacker Passes or should we do the Smackover?” referring to a geologic formation centered in Arkansas with potentially millions of tons of lithium reserves.
Klein told me that he’s trying to circulate the proposal among industry and policy officials. His hoped is that as the government attempts to come up with a solution to Chinese dominance of the lithium industry, “people are talking about this idea and they’re saying, Oh, that’s actually a pretty good idea.”